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Abstract

Computer hardware and software evolve very fast. With the advent of chip-multiprocessors
and symmetric multithreading, multiprocessor hardware configurations are becoming
prevalent. For software, new hardware and requirements such as security, performance
and maintainability drive the development of new runtime environments, virtual ma-
chines and programming methodologies. These trends present problems when porting
legacy software. Multiprocessor hardware require ports of uniprocessor operating system
kernels while new software environments might require that programs have to be ported
to different languages.

This thesis examines the tradeoff between performance and development effort for
software porting with case studies in operating system porting to multiprocessors and
tool support for porting C and C++ applications to Java virtual machines. The thesis
consists of seven papers. The first paper is a survey of existing multiprocessor develop-
ment approaches and focuses on the tradeoff between performance and implementation
effort. The second and third papers describe the evolution a traditional lock-based
multiprocessor port, going from a serialized “giant locked” port and evolving into a
coarse-grained implementation. The fourth paper instead presents an alternative port-
ing approach which aims to minimize development effort. The fifth paper describes a
tool for efficient instrumentation of programs, which can be used during the development
of large software systems such as operating system kernels. The sixth and seventh papers
finally describe a binary translator which translates MIPS binaries into Java bytecode
to allow low-effort porting of C and C++ applications to Java virtual machines.

The first main contributions of this thesis is an in-depth investigation of the tech-
niques used when porting operating system kernels to multiprocessors, focusing on devel-
opment effort and performance. The traditional approach used in the second and third
papers required longer development time than expected, and the alternative approach
in the fourth paper can therefore be preferable in some cases. The second main contri-
bution is the development of a binary translator that targets portability of C and C++
applications to J2ME devices. The last two papers show that the approach is functional
and has good enough performance to be feasible in real-life situations.
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edge Foundation in Sweden under a research grant for the project“Blekinge – Engineering
Software Qualities (BESQ)” (http://www.ipd.bth.se/besq).

iii



iv



List of Papers

The following papers are included in the thesis

Paper I: S. K̊agström, H. Grahn, and L. Lundberg. Scalability vs. Development Effort
for Multiprocessor Operating System Kernels. Submitted for publication.

Paper II: S. K̊agström, H. Grahn, and L. Lundberg. The Design and Implementation
of Multiprocessor Support for an Industrial Operating System Kernel. To
appear in the the International Journal of Computers and Their Application.

Paper III: S. K̊agström, B. Tuska, H. Grahn, and L. Lundberg. Implementation issues
and evolution of a multiprocessor operating system port. Submitted for
publication.

Paper IV: S. K̊agström, L. Lundberg, and H. Grahn. The application kernel approach -
a novel approach for adding SMP support to uniprocessor operating systems.
Software: Practice and Experience, 36(14):1563–1583, November 2006.

Paper V: S. K̊agström, H. Grahn, and L. Lundberg. Automatic low overhead program
instrumentation with the LOPI framework. In Proceedings of the 9th Work-
shop on Interaction between Compilers and Computer Architectures, pages
82–93, San Francisco, CA, USA, February 2005.

Paper VI: S. K̊agström, H. Grahn, and L. Lundberg. Cibyl - an environment for lan-
guage diversity on mobile devices. In Proceedings of the Virtual Execution
Environments (VEE), pages 75–81, San Diego, USA, June 2007.

Paper VII: S. K̊agström, H. Grahn, and L. Lundberg. Optimizations in the cibyl bi-
nary translator for J2ME devices. In Proceedings of the 12th Workshop on
Interaction between Compilers and Computer Architectures, Salt Lake City,
USA, February 2008.

The following papers are related but not included in the thesis.

Paper VIII: S. K̊agström, L. Lundberg, and H. Grahn. A novel method for adding mul-
tiprocessor support to a large and complex uniprocessor kernel. In Proceed-
ings of the 18th International Parallel and Distributed Processing Symposium
(IPDPS 2004), Santa Fe, NM, USA, April 2004.

Paper IX: S. K̊agström, H. Grahn, and L. Lundberg. Experiences from implement-
ing multiprocessor support for an industrial operating system kernel. In

v



Proceedings of the International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA’2005), pages 365–368, Hong
Kong, China, August 2005.

Paper VIII is an earlier version of Paper IV and Paper IX is an earlier version of
Paper II.

vi



Contents

Abstract i

Acknowledgements iii

List of Papers v

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Multiprocessor porting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Language Porting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Comparison of porting tools . . . . . . . . . . . . . . . . . . . . . . 4

1.3.2 Binary translation . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5.1 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5.2 Development Effort Measurement . . . . . . . . . . . . . . . . . . . 10

1.6 Contributions of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6.1 Chapter 2 (Paper I) . . . . . . . . . . . . . . . . . . . . . . . . . . 11

vii



1.6.2 Chapter 3 (Paper II) . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6.3 Chapter 4 (Paper III) . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6.4 Chapter 5 (Paper IV) . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.6.5 Chapter 6 (Paper V) . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.6.6 Chapter 7 (Paper VI) . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6.7 Chapter 8 (Paper VII) . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.7 Validity of the Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.7.1 Generalizability, External Validity . . . . . . . . . . . . . . . . . . 15

1.7.2 Internal Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.8 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.8.1 Traditional Multiprocessor Ports . . . . . . . . . . . . . . . . . . . 18

1.8.2 Alternative Operating System organizations . . . . . . . . . . . . . 18

1.8.3 Program Instrumentation . . . . . . . . . . . . . . . . . . . . . . . 19

1.8.4 Binary translation . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Paper I 23

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Multiprocessor Port Challenges . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Categorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.1 Locking-based schemes . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.2 Lock-free Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.3 Asymmetric Approaches . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.4 Virtualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.5 Reimplementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Operating System Implementations . . . . . . . . . . . . . . . . . . . . . . 29

viii



2.4.1 Giant-locking Implementations . . . . . . . . . . . . . . . . . . . . 29

2.4.2 Coarse-grained locking implementations . . . . . . . . . . . . . . . 29

2.4.3 Fine-grained locking implementations . . . . . . . . . . . . . . . . 29

2.4.4 Lock-free Implementations . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.5 Asymmetric Implementations . . . . . . . . . . . . . . . . . . . . . 30

2.4.6 Virtualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Linux Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.1 Evolution of Locking in Linux . . . . . . . . . . . . . . . . . . . . . 33

2.5.2 Locking and Source Code Changes . . . . . . . . . . . . . . . . . . 34

2.5.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Paper II 41

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 The Operating System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 The Programming Model . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.2 The Distributed Main-Memory Database . . . . . . . . . . . . . . 44

3.2.3 The Process and Memory Model . . . . . . . . . . . . . . . . . . . 44

3.3 Design of the Multiprocessor Support . . . . . . . . . . . . . . . . . . . . 46

3.3.1 Kernel Locking and Scheduling . . . . . . . . . . . . . . . . . . . . 46

3.3.2 CPU-local Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.3 Multithreaded Processes . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Evaluation Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6 Implementation Experiences . . . . . . . . . . . . . . . . . . . . . . . . . . 51

ix



3.7 Related and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Paper III 57

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.1 The uniprocessor kernel . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.2 Giant lock implementation . . . . . . . . . . . . . . . . . . . . . . 60

4.2.3 Coarse-grained approach . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Uniprocessor semantics problems . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.1 Termination of multithreaded processes . . . . . . . . . . . . . . . 63

4.3.2 Thread context saving . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.3 Timer handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.4 Heap locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.5 Idle loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Solving the problems with uniprocessor semantics . . . . . . . . . . . . . . 66

4.4.1 Termination of multithreaded processes . . . . . . . . . . . . . . . 66

4.4.2 Thread context saving . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.3 Timer handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.4 Heap locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.5 Idle loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Paper IV 73

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

x



5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2.1 Monolithic Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2.2 Microkernel-based Systems . . . . . . . . . . . . . . . . . . . . . . 76

5.2.3 Asymmetric Operating Systems . . . . . . . . . . . . . . . . . . . . 76

5.2.4 Cluster-based Approaches . . . . . . . . . . . . . . . . . . . . . . . 77

5.3 The Application Kernel Approach . . . . . . . . . . . . . . . . . . . . . . 78

5.3.1 Terminology and Assumptions . . . . . . . . . . . . . . . . . . . . 78

5.3.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3.3 Hardware and Software Requirements . . . . . . . . . . . . . . . . 80

5.3.4 Application Kernel Interaction . . . . . . . . . . . . . . . . . . . . 80

5.3.5 Exported Application Programming Interface . . . . . . . . . . . . 82

5.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4.1 Paging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4.2 clone/fork System Calls . . . . . . . . . . . . . . . . . . . . . . . 85

5.4.3 Running Applications . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.5 Experimental Setup and Methodology . . . . . . . . . . . . . . . . . . . . 87

5.5.1 Evaluation Environment . . . . . . . . . . . . . . . . . . . . . . . . 88

5.5.2 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.6.1 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 90

5.6.2 Implementation Complexity and Size . . . . . . . . . . . . . . . . . 93

5.7 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 94

6 Paper V 97

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

xi



6.2.1 Instrumentation approaches . . . . . . . . . . . . . . . . . . . . . . 99

6.2.2 Instrumentation perturbation . . . . . . . . . . . . . . . . . . . . . 100

6.3 The LOPI instrumentation framework . . . . . . . . . . . . . . . . . . . . 101

6.4 Measurement methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.5 Measurement results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7 Paper VI 115

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.2 Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.2.1 Memory Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.2.2 Code Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.2.3 Floating point support . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.2.4 Function calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.2.5 Calls to Native Java Methods . . . . . . . . . . . . . . . . . . . . . 122

7.2.6 Runtime Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.3.1 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.3.2 Code Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.3.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8 Paper VII 129

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.2 Cibyl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

xii



8.3 Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.3.1 32-bit multiplications/divisions . . . . . . . . . . . . . . . . . . . . 131

8.3.2 Size reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8.3.3 Inlining of builtin functionality . . . . . . . . . . . . . . . . . . . . 133

8.3.4 Function co-location . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.3.5 Peephole optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.4 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8.5 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.6 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . . . 139

xiii



xiv



List of Figures

1.1 Sequence of MIPS instructions . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Sequence of Java bytecode instructions . . . . . . . . . . . . . . . . . . . . 6

2.1 Multiprocessor operating system oganizations. . . . . . . . . . . . . . . . . 25

2.2 Postmark benchmark running on different versions of Linux. . . . . . . . . 36

2.3 SPLASH FFT benchmark running on different versions of Linux. . . . . . 37

2.4 The available design space. . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1 The architecture of the operating system. . . . . . . . . . . . . . . . . . . 43

3.2 Address space on IA-32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Container address space handling . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Multiprocessor container address space handling . . . . . . . . . . . . . . 48

4.1 Address space layout for the operating system . . . . . . . . . . . . . . . . 59

4.2 Multithreaded container implementation . . . . . . . . . . . . . . . . . . . 61

4.3 Context save/restore race . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Add timer race . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5 Heap locking performance problem . . . . . . . . . . . . . . . . . . . . . . 66

4.6 C++ traffic performance results . . . . . . . . . . . . . . . . . . . . . . . . 68

xv



4.7 Java traffic performance results . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1 Overview of the application kernel approach. . . . . . . . . . . . . . . . . 79

5.2 System call and trap handling . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 Shared area layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4 Application kernel device driver structure . . . . . . . . . . . . . . . . . . 85

5.5 Handling of the clone system call . . . . . . . . . . . . . . . . . . . . . . 86

5.6 Application startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.7 Speedup vs uniprocessor Linux . . . . . . . . . . . . . . . . . . . . . . . . 92

5.8 Histogram of McCabe cyclomatic complexity . . . . . . . . . . . . . . . . 94

6.1 The instrumentation process . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2 A non-instrumented function call. . . . . . . . . . . . . . . . . . . . . . . . 102

6.3 An instrumented function call . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.4 An instrumented function return . . . . . . . . . . . . . . . . . . . . . . . 103

6.5 Pseudo code for the instr_func_enter-function. . . . . . . . . . . . . . . 104

6.6 Pseudo code for the instr_func_leave-function. . . . . . . . . . . . . . . 105

6.7 Cycles per function call . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.8 Execution profile for two SPEC benchmarks. . . . . . . . . . . . . . . . . 110

7.1 Cibyl translation process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.2 Cibyl address space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.3 Cibyl memory access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.4 Cibyl floating point support . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.5 Handling of indirect function calls in Cibyl . . . . . . . . . . . . . . . . . 121

7.6 System call handling in Cibyl . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.1 Cibyl translation process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

xvi



8.2 Handling of co-located functions in Cibyl . . . . . . . . . . . . . . . . . . 132

8.3 FreeMap benchmark results . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8.4 A* benchmark results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

xvii



xviii



List of Tables

2.1 Categorized multiprocessor operating systems. . . . . . . . . . . . . . . . 31

2.2 Number of locks in the Linux kernel. . . . . . . . . . . . . . . . . . . . . . 34

2.3 Lines of code with and without SMP support in Linux. . . . . . . . . . . . 35

3.1 Proportion of time spent executing user and kernel code. . . . . . . . . . . 51

5.1 The benchmarks used in the performance evaluation . . . . . . . . . . . . 89

5.2 getpid latency in Linux and the application kernel . . . . . . . . . . . . . 90

5.3 Single-process speedup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4 Parallel and multiprogramming speedup . . . . . . . . . . . . . . . . . . . 91

5.5 Comment-free lines of code . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.1 Benchmark description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2 SPEC benchmark overhead. . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.1 Class size for Cibyl and native Java . . . . . . . . . . . . . . . . . . . . . . 125

7.2 A* and game of life benchmarks . . . . . . . . . . . . . . . . . . . . . . . 125

7.3 Mediabench benchmark results . . . . . . . . . . . . . . . . . . . . . . . . 127

xix



xx



Chapter 1
Introduction

1.1 Background

The evolution of computer hardware and software moves very fast. In the hardware
domain, storage capacity and processing performance increase at a high rate. For soft-
ware, both the hardware evolution and requirements such as security, performance and
maintainability drive the development of new languages, runtime environments, virtual
machines and programming methodologies.

Both hardware and software trends present problems when porting legacy software.
On the hardware side, new hardware generations often require software porting to benefit
from the improved hardware support, and this can often lead to significant refactoring
of the existing code. In the software domain, new languages or devices locked to specific
virtual machines present difficult problems for maintaining legacy software. In the worst
case, software evolution could require porting to a different language.

This thesis is centered around issues in maintaining legacy software through hardware
changes and new software environments. Special focus has been placed on case studies in
porting of operating system kernels to multiprocessors, where both traditional lock-based
ports and alternative organizations have been explored, and tool support for porting C
and C++ software to Java virtual machines.

1.2 Multiprocessor porting

The first main topic of this thesis is porting uniprocessor operating system kernels to
multiprocessor architectures, discussed in Paper I-Paper IV. The main motivation for
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multiprocessor operating system porting is the current trend of moving to multithreaded
and multicore processors, which necessitates a parallelized operating system to make use
of the additional processing resources. The increased use of multithreaded and multicore
processors are in turn motivated by physical constraints, mainly power usage and heat
generation, making scaling with traditional means such as increased clock frequency
difficult [105].

The trend of parallelized processors has two main tracks. First, symmetric multi-
threading (SMT) [34] is an approach where processor resources are shared between two
or more concurrently running program threads to allow more efficient use of processor
resources. Symmetric multithreading has been implemented in, e.g., Intel Pentium 4
and Xeon processors [93] (branded as HyperThreading), and the 2-way multithreaded
Sony/IBM Cell processor [113].

The second track is chip multiprocessors (CMPs) [48]. This approach partitions the
chip area into two or more mostly independent processor cores. This means that in
the CMP case, the processor resources are statically allocated to a core whereas the
resources in an SMT are dynamically allocated to a processor thread. The argument
for chip multiprocessors is similar to that for simultaneous multithreading: using many
simple cores provides better energy efficiency and higher operating frequency than using
one complex core. Chip multiprocessors have been released by Intel [56] and AMD [4],
and the IBM POWER4 architecture was released as a dual-core chip in 2001 [63].

Future microprocessors will in many cases contain elements of both the SMT and
CMP approaches. For example, the IBM POWER5 [64] and the Sun Niagara and Ni-
agara 2 [70, 62] architectures employ a combination of CMP and SMT technologies.
Further, Intel chip multiprocessors (e.g., Intel Pentium processor Extreme Edition) also
supports HyperThreading. As a result of these trends, a lot of future microprocessors
will be small multiprocessors, and multiprocessors will thus be used in a large number
of systems (also embedded) where uniprocessors were earlier prevalent.

Developing programs for multiprocessors presents special problems. While program
threading is possible on uniprocessor computers, truly concurrent program threads are
only available on a multiprocessor. True concurrency can expose problems which never
occurs on a uniprocessor, e.g., concurrent update of a shared variable. It also makes
debugging more difficult since controlling other threads of execution is harder than on
a uniprocessor and presents timing issues. Simulation can help alleviate some of these
problems, but gives a slow-down and can also be difficult to use if there is specialized
hardware present.

Operating systems need to be adapted to work with the new multiprocessors. It is not
possible to simply allow several processors to start executing in a uniprocessor operat-
ing system, since this would cause unpredictable behavior when processors concurrently
modifies a data structure. Instead, mutual exclusion is needed in multiprocessor operat-
ing systems, e.g., through locking, so that a processor is stalled or redirected when trying
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to access a resource held by another processor. For good performance, it is important
that the mutual exclusion is fine-grained enough to avoid spending time waiting for other
processors.

However, making modifications to large software bodies such as operating system
kernels is generally very hard. For instance, Freeman L. Rawson III writes about this
problem when developing the IBM Workplace OS [115], which was canceled after six
years of development by a large team of engineers because of engineering problems and
performance issues. In addition, operating system kernels are in many cases harder to
develop and debug than other software systems because of non-predictability, limited
library support, real-time issues, and hardware effects.

There are performance issues associated with applications running in multiprocessor
operating systems. First, a non-threaded application will not benefit from a multiproces-
sor. Second, applications can be categorized into two broad classes, compute bound and
system bound, where compute bound applications spend most of their time executing
application code and system bound applications spend a large proportion of their time
in-kernel. Compute-bound applications are not dependent on the parallelization of the
operating system kernel (since these spend little time in-kernel) and can therefore easier
benefit from multiprocessors even on modestly parallelized operating systems. Third,
there are theoretical limits to the performance obtainable from a multiprocessor. Am-
dahl’s law [5] states that since all programs need to execute parts serialized (system calls,
printouts, etc.), the highest speedup attainable with a given number of processors is:

speedup =
1

tserial + tparallel

#processors

With Amdahl’s law, the maximum speedup theoretically possible is given by setting
the number of processors to∞. For example, with an application that spends 10% of the
time running serialized code, the maximum speedup is 1

0.1+ 0.9
∞

= 10, i.e., even a system

with thousands of processors could never achieve more than a speedup of 10 compared
to a uniprocessor. Amdahl’s law also places constraints on processor design as even with
a large number of cores, the performance of serialized execution is important for the
overall speedup [35].

Porting an operating system to a multiprocessor computer with good performance
characteristics can therefore demand a tremendous effort, which can pose problems even
to large organizations and experienced software developers. In this thesis, the tradeoff
between performance and implementation effort for operating system kernels is therefore
explored, focusing on techniques for reducing the development effort.
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1.3 Language Porting

The second main topic of this thesis is porting between languages, discussed in Paper VI
and VII. There are several reasons for porting programs to a different language. In some
cases, language-level security can be the main motivation, in other, the platform might
only support a specific language. This type of porting can be very difficult and time
consuming depending on the languages involved, and because of this, it is an area where
tool support can reduce development effort.

Of particular interest is porting of C and C++ programs to Java virtual machines.
This category is important because of the very large body of programs and libraries
written in C and C++, and the prevalence of Java virtual machines on platforms such
as mobile phones. It can also be used to export C libraries to Java on host machines,
which enables distribution of pure Java archives without the need to resort to calling
native code. While the languages share much of the syntax, there are major differences
between C/C++ and Java:

• Java enforces type-safety strictly, while it is easy to circumvent in C/C++. Many
C and C++ programs are also written with implicit dependencies on allowing
exceptions to type-safety.

• C/C++ allows pointers to arbitrary memory (even invalid), whereas Java uses
type-safe references

• Standard library support is also quite different, for example in how file handling is
implemented

These things contribute to making this porting difficult and adds to the advantage
of using tool support.

1.3.1 Comparison of porting tools

There are a number of different categories of tools that can be used when porting between
languages:

• Source-to-source translators, which translate the source code of the source language
to source code of the destination language [94, 61].

• Machine emulation that provides an isolated runtime environment for an un-
changed program.

• A compiler backend to generate binaries for the target language [10, 29].
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• Binary translation that translates the source binary to binary code for the target
language (runtime), either online during runtime or offline beforehand [51, 18, 2].

Source-to-source translation can be beneficial when the goal is to switch language
and maintain the code in the new language afterwards. However, in the case of C/C++,
certain parts are inherently difficult to translate. For example, since pointers in C/C++
can point to any part of memory, it’s difficult to translate these into Java bytecode in a
meaningful way. Source-to-source translation is therefore less useful when the goal is to
run the current software or to keep maintenance of the original source code.

Emulation provides a way of keeping the original binary unchanged, but can require
a large runtime environment and also limited performance. For resource-constrained
embedded systems, the size of the runtime environment can be a major problem. Also,
emulating every single instruction can in many cases make the program too slow for
practical use.

Writing a custom compiler backend for the target language / machine has the best
performance potential, but can also be quite complex to implement. The target machine
might also not always be a good match for the compiler. For example, since Java
bytecode is typesafe, it is not possible to access memory through arbitrary types, which
the compiler intermediate format might assume.

Binary translation allows a binary for one architecture to be executed on another
architecture, but without emulating every single instruction such as in the emulator case.
Depending on how it’s implemented and the architectures affected, binary translation
can also be fairly efficient. Paper VI and Paper VII describes Cibyl, which is a binary
translator used for porting C/C++ programs to J2ME devices, and the rest of this
section will focus on binary translation.

1.3.2 Binary translation

Binary translators can be further split in two main types: dynamic binary translators,
which perform the translation during runtime, and static binary translators, which per-
form the translation beforehand. It is not possible to translate all binaries with static
translation because of e.g., self-modifying code and unclear separation between code
and data, but dynamic translation overcomes these problems. With binaries specifically
targeted for translation, the limitation of static translation can be overcome.

For the rest of the section, the focus will be on translating 32-bit MIPS binaries
into Java bytecode. MIPS has been selected since it provides a set of advantages when
translating to Java bytecode, which is further described below and in Paper VI. At first
it might seem that the MIPS and Java bytecode architectures would be very different.
MIPS is a traditional load/store register-based RISC architecture where arithmetic in-
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structions always operate on 32-bit registers (two sources and one destination) and where
only special load and store instructions can read and write to memory. Figure 1.1 shows
a section of annotated MIPS assembly.

1: lw v0,16(a0) # Load 32-bits from mem[a0 + 16] into register v0

...

slt v0,a1,t1 # v0 = a1 < t1

bnez v0, 1b # if v0 != 0 then goto 1

sll v1,a1,0x2 # v1 = a1 << 2

li a1,-1 # a1 = -1

jr ra # Jump to address in ra

move v0,a1 # v0 = a1, delayed instruction, executed

# in pair with the last instruction

Figure 1.1: A sequence of MIPS instructions. Text after the ’#’ sign denotes comments.

Java bytecode [85] is on the other hand based on a stack machine where arithmetic
operations are performed on elements on an operand stack and pushed back as results.
Apart from the operand stack, Java bytecode also has local variables, which provides
register-like storage for temporary values (and automatic variables for high-level Java
code), and class member variables and static class variables. Local variables are further
used to pass arguments to functions, and the first local variables - corresponding to the
number of arguments passed - are used as function arguments. Figure 1.2 illustrates an
annotated sequence of Java bytecode instructions.

iload 5 ; push local variable 5 on the stack

iconst_0 ; push constant 0 on the operand stack

getstatic CRunTime/memory [I ; push reference to the CRunTime.memory

; int vector on the operand stack

iload 18 ; push local variable 18 on the operand stack

iconst_2 ; push constant 2 on the operand stack

iushr ; push var 18 >> 2 on the stack (popping

; two items and pushing the result)

iload 5 ; push local variable 5 on the stack

iastore ; CRunTime.memory[var 18 >> 2] = var 5

if_icmpne L_fwd ; if var 5 != 0 then goto L_fwd

...

L_fwd:

Figure 1.2: A sequence of Java bytecode instructions in Jasmin [98] syntax. Text after
the ’;’ sign denotes comments.

Java bytecode is designed with security in mind. The bytecode is strictly typesafe
and there are 8-bit bytes, 16-bit shorts, 32-bit integers, 64-bit longs, 32-bit floats and 64-
bit doubles, all of which are signed. Arithmetic operations on elements on the operand
stack must be performed on two elements of the same type, and the operand must
otherwise be converted manually with a special instruction (for example i2l which sign-
extends an integer to a long. The type must always be known, which is also the case for
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local variables and it is therefore not allowed to read a local variable before it has been
assigned. For each location in the program, these rules must hold for every possible path
to the location.

The bytecode is itself not trusted and the Java virtual machine will verify it at startup
to see that none of the rules are breached. For the more constrained J2ME JVMs, the
verification is instead done in a preverifier beforehand. The virtual machine will throw
an exception if incorrect bytecode is loaded.

Because of the security features and the stack-oriented operation, Java bytecode is
clearly different from MIPS assembly. Even so, the 32-bit MIPS architecture provide
certain benefits as a base for translating in general and to Java bytecode in particular:

• Both architectures are big-endian, which simplifies in-memory data layout

• MIPS instructions generally have no side-effects, i.e., do not affect flags registers
etc. This simplifies each instruction translation since only one register need to be
updated with a simple write.

• There is no use of partial registers (e.g., updating a single byte of a four byte
register)

• Unaligned memory access can only be done through special instructions

There are also some problems with translation to Java bytecode from MIPS binaries.
The first problem is general when performing static translation to Java bytecode, code is
generated beforehand and self-modifying code or execution of data as code can therefore
not be supported. This is only used in a very limited set of programs, and typically not
a problem for programs written in high-level languages.

The second and most difficult problem is memory access. Because the binary trans-
lator has no control over pointers, translation effectively mandates that memory is rep-
resented by a vector in Java, either in a two-level scheme as in NestedVM [2] or through
a flat scheme as in Cibyl. Memory is opaque in MIPS assembly, i.e., any address can be
accessed at any size (byte, short, integer) providing the address is aligned on a natural
boundary, whereas Java bytecode does not allow this because of the type safety. This
problem can be solved in different ways: either memory accesses can always be done
at byte-level, reading multiple bytes and combining them to form the result, or it can
be done at a larger size (e.g., 32-bit words), masking out parts of the word for byte
and short access. Chapter 7 describes solutions to these translation problems, while
Chapter 8 outlines optimizations to improve the performance of the translated code.
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1.4 Research Questions

• Primary research question: How can a good tradeoff between performance and
development effort be found when moving software across hardware or language
boundaries?

All papers in the thesis deal with different aspects of this question. Papers I-IV
are all related to operating system porting from uniprocessor to multiprocessor archi-
tectures. Papers VI and VII directly address the problem of porting to new language
environments, specifically migration of legacy C/C++ code to Java virtual machines.
Paper V investigates efficient binary instrumentation, a similar technique to the binary
translation in papers VI and VII, and can be used as a debugging tool for development.

• Research question 1, traditional: What is the cost and performance benefit of
performing a traditional symmetric lock-based multiprocessor port of an operating
system kernel?

This question is discussed in Paper I, Paper II and Paper III. Paper I contains an overview
of different multiprocessor porting approaches, and Paper II describes the implementa-
tion of a giant locking scheme in an operating system kernel. This implementation is
then further improved in Paper III. Having discussed the traditional approaches, the
next goal was to explore the development effort needed to port an operating system.
The next question relates to these alternative organizations:

• Research question 2, alternative multiprocessor organizations: What are
the lower limits of development effort when performing a multiprocessor port of an
operating system kernel? Can multiprocessor support be added to the operating
system without modifying the original kernel?

The second research question is investigated in Paper I and Paper IV. Paper I discuss
different approaches to multiprocessor operating systems, while paper IV describe the
asymmetric application kernel approach.

• Research question 3, application instrumentation: How can perturbation
and runtime overhead caused by binary instrumentation be reduced?

Paper V focuses on this question. This technique can be used to support software
porting and debugging, and is also technically closely related to binary translation.
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• Research question 4, binary translation: How can binary translation be em-
ployed to facilitate porting of C/C++ applications to a Java runtime environment?

Paper VI and Paper VII discuss different aspects of this question, focusing on tech-
niques and performance.

1.5 Research Methodology

In this thesis, there are two basic issues: performance and development effort. To address
the first issue, a quantitative benchmark-based approach has been used. In our studies,
a combination of application benchmarks and synthetic benchmarks has been used for
the performance evaluations. Theoretical analysis, which serves to establish performance
limits, has also been employed in some cases. The benchmarks have been run either in
the Simics full system simulator [90] or on real hardware. When evaluating development
effort, time has been used as the premier attribute, but there are also measurements of
code properties e.g., number of code lines and McCabe cyclomatic complexity [36].

1.5.1 Performance Evaluation

Generally, scripted application benchmarks are used to measure the performance of a
real application with specified input and output [50, page 27]. Synthetic benchmarks (or
micro benchmarks), on the other hand, measure specific parts of an execution such as
the time required for a system call.

For the evaluations, a combination of the standard benchmarks SPEC CPU 2000 [130],
SPLASH 2 [148], more specialized benchmarks such as Postmark [67], and custom syn-
thetic benchmarks has been used. SPEC CPU 2000 contains a set of mainly compute-
bound single-threaded benchmarks which is often used in computer architecture research,
compiler research, and computer systems performance evaluation. SPLASH 2 is a bench-
mark suite with parallel scientific applications commonly used when evaluating multipro-
cessor performance. As the SPEC applications are single-threaded, they will generally
not benefit from running on a multiprocessor machine unless run in a multiprogramming
setting. Most of the SPLASH benchmarks, on the other hand, scale well on multipro-
cessor machines.

The MinneSPEC reduced workloads [69] has been used to decrease the simulation
time of SPEC CPU 2000. The MinneSPEC workloads are constructed to have similar
characteristics as the full workloads, although recent work have shown that periodic
sampling gives a closer correspondence to the full workloads [150].
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Since both SPEC and SPLASH are compute-bound, the operating system will have
only minor influence on the performance. In contrast, the Postmark [67] benchmark is
a mainly system bound benchmark. Postmark models the behavior of a mail server,
focusing on the performance of many small files. Since file system operations to a large
extent are handled in-kernel, Postmark will spend a significant time executing kernel
code. The parallelization of the operating system kernel is therefore very important when
running the Postmark benchmark, and only highly parallel operating system kernels will
scale well with this benchmark.

In some cases it has not been possible to use standard benchmarks. For example we
measure the latency of a “null” system call in Chapter 5, and for this we use a custom
synthetic benchmark measuring that particular operation. Further, in Chapter 3, it
was not possible to use standard benchmarks because of the specialized platform, and
configuration problems also prohibited the use of normal applications on the operating
system. Instead, we constructed a custom application with one thread per processor
that makes it possible to measure performance during varying system call load, showing
how the parallelization of the kernel affects performance.

In Chapter 6, we use application benchmarks to compare different instrumentation
techniques. The application benchmarks measure the aggregate behavior of the SPEC
applications during the entire run. We measure the number of instructions executed,
cache accesses and misses as well as branches and branch prediction misses. The mea-
surements were performed on real hardware.

Chapter 7 and Chapter 8 use multiple different benchmarks to show different char-
acteristics. The Mediabench benchmark suite [81] is used to compare the performance
of Cibyl to execution on the native host machine (i.e., the overhead of translated C
code compared to native C). We also evaluate two custom written benchmarks, an A*
implementation and Game of life, with which we compare native Java to the Cibyl-
translated binary. Finally, a real-world benchmark, a GPS navigation application, is
used to examine the impact of Cibyl optimizations.

1.5.2 Development Effort Measurement

Development effort has primarily been evaluated through working hours and lead time.
Chapters 3, 4 and 5 contain this kind of evaluations. The evaluation reports the number
of developers involved, and the time it took to perform the design and implementation.

To give further indications of development effort and code complexity, McCabe cyclo-
matic complexity has been used. McCabe cyclomatic complexity measures the possible
number of paths through a function, which is a measure of how complex the function
is to understand and analyze. Generally, the fewer paths through a function, the fewer
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test cases are needed to test the function [36]. The McCabe cyclomatic complexity has
been measured with the Pmccabe tool [14].

The number of source code lines can also give an indication of the development effort.
Except where otherwise stated, the sloccount [145] tool by David A. Wheeler, which
counts comment-free lines of source code in many languages, has been used.

1.6 Contributions of this thesis

In this section, the papers in the thesis are discussed together with the contributions
made in each paper.

1.6.1 Chapter 2 (Paper I)

Chapter 2 presents an investigation of scalability and development effort for operating
system kernels. The purpose of this paper is to explore the tradeoff between these two
quality attributes in the context of operating system kernels, specifically when porting a
uniprocessor kernel to multiprocessor hardware. In this paper, we identify seven technical
approaches for performing a multiprocessor port and discuss these in the context of
performance and development effort. Further, we perform a case study of how Linux
multiprocessor support has evolved in terms of performance and development effort for
four different versions of the Linux kernel.

The main contribution of this paper is the categorization of technical approaches for
operating system kernels and also a discussion of the scalability and development effort
for these. In the paper, we argue that the technical approach has a significant effect
on the development effort, ranging from approaches with very low effort such as the
approach we present in Paper IV to complete reimplementations with very high imple-
mentation complexity. In the same way, the achieved performance will vary according
to the chosen approach, and generally the expected pattern of higher development effort
correlating with higher scalability holds. We base the results on a substantial literature
study and a case study of the Linux operating system.

This paper connects directly to the main research question, regarding the perfor-
mance and development effort tradeoff in multiprocessor operating system ports, with
the paper discussing different technical approaches to operating system porting. Further,
it also relates to research questions 1 and 2, traditional and alternative multiprocessor
organizations, on a higher level, since it gives an overview of both traditional and alter-
native systems. The paper is also a foundation for papers II-IV, which discuss these two
more specific research questions.
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1.6.2 Chapter 3 (Paper II)

In Chapter 3, the design and implementation of multiprocessor support for a large in-
dustrial operating system kernel using a traditional porting approach is presented. The
main purpose of this paper is to discuss the design options and issues faced when doing
the initial port of a full-scale operating system kernel to multiprocessor hardware. The
port is implemented using a “giant” lock which serializes kernel execution. In the pa-
per, we present implementation details, an initial evaluation of the implementation, and
experiences we gained from the implementation.

There are two main contributions in this paper. First, we illustrate technical solutions
to common problems found in multiprocessor ports. For example, we use an approach for
processor-local data based on virtual memory mapping which makes it possible to keep
most of the uniprocessor code unchanged. This approach has a few problems related
to multithreaded processes, and the paper presents a solution to these problems with
minimal changes to the original kernel. The second contribution is a discussion of the
experiences we gained from the implementation. Although we chose a simple approach,
the implementation still required around two years, which was more time than we had
expected. The main reason for this is the large code-base, which meant that we had
to spend a lot of time understanding the structure and implementation of the system.
Further, the system is highly specialized and employs a complex configuration process
which required us to spend time on getting the environment to work.

With this paper, we discuss the traditional research question (research question
1). The paper provides implementation experiences from a traditional port, which was
harder to implement than we had expected. The paper also connects to the main research
question.

1.6.3 Chapter 4 (Paper III)

The next paper presents an incremental improvement to the results presented in Paper II.
This paper describes further work on the multiprocessor port where the locking scheme
is relaxed to use coarse-grained subsystem locks together with fine-grained locks for core
data structures. While the work builds on Paper II, it was implemented with a larger
development team.

The main contribution of this paper is a description of the problems faced when
moving from a multiprocessor port with serialized kernel execution to one where the
kernel is parallelized. The paper also details solutions to the design challenges and
illustrates difficulties in porting operating system kernels to multiprocessor architectures.
This implementation required less time than the giant-locked prototype, which can be
attributed to the larger development team and reuse of the work done on the previous
prototype.
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In this paper, the traditional research question (research question 1) is again illus-
trated. The main research question also connects to this work.

1.6.4 Chapter 5 (Paper IV)

The traditional approaches we used in Paper II and Paper III allowed us to successfully
port a large industrial operating system kernel, but at the cost of long implementation
time. Chapter 5 presents an alternative approach, the application kernel approach. The
application kernel approach provides a way of adding multiprocessor support without
changing the original uniprocessor kernel. The approach achieves this by running two
kernels in parallel, the original uniprocessor kernel on one processor and a custom kernel
on all other processors. The paper describes an implementation of the application kernel
for Linux, which shows that the approach is feasible in a real-world setting. We need no
changes to neither the Linux kernel nor the applications.

The main contribution from Paper IV is that we show that it is possible and feasible
to add multiprocessor support to an operating system with minimal changes to the
original operating system. We also evaluate the application kernel approach in terms
of performance and implementation complexity, where we show that the application
kernel is comparable in performance to Linux for compute-bound applications. We
therefore conclude that the application kernel approach would be a viable alternative for
multiprocessor ports of complex operating systems focusing on computationally intensive
applications.

Paper IV discusses the research question about alternative organizations, showing
that alternative organizations can provide significant advantages in terms of implemen-
tation effort. It also connects directly to the main research question, focusing on an
approach with low development effort.

1.6.5 Chapter 6 (Paper V)

Chapter 6 describes the LOPI framework for program instrumentation. LOPI is a generic
framework for low overhead instrumentation of program binaries. LOPI allows arbitrary
instrumentation to be added to the program binary, e.g., performance measurements
or path profiling. In LOPI, we provide a number of low-level optimizations to reduce
the perturbation caused by the instrumentation framework. For example, LOPI tries
to improve cache locality by reusing instrumentation code whenever possible. With
these optimizations, LOPI is able to perform significantly better than the Dyninst [20]
instrumentation package.

The main contribution of Paper V is that we show how a number of low-level op-
timizations can be used to improve program instrumentation perturbation. LOPI also
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provides the possibility of automatically adding tests or performance measurements to
large software packages without changing the source code, or even having access to the
source code. We believe that optimizations such as these can improve the accuracy of
measurements and experiments performed using instrumentation.

In this paper, we discuss the research question about application instrumentation,
research question 3. This also connects to the main research question in that support
tools are vital components when working on large software packages such as operating
systems.

1.6.6 Chapter 7 (Paper VI)

In Chapter 7, the design and implementation of Cibyl, a binary translator targeting
J2ME devices is presented. Cibyl targets the problem of porting C and C++ applications
to J2ME devices, which only support a Java runtime environment and therefore makes
it difficult to port code written in other languages. Cibyl overcomes this problem by
using the standard GCC compiler to produce MIPS binaries and thereafter translating
these into Java bytecode.

There are two main contributions of Paper VI. First, the paper shows how binary
translation can be used to target the problem of program portability successfully. Cibyl
has been used to port fairly large applications to J2ME devices with modest performance
overhead in a mostly automated way. Apart from the binary translation, a generated
interface to Java bytecode is used to provide platform support. Second, the paper
illustrates how the MIPS ABI and extensions to the MIPS ISA can be used to provide
more efficient translation.

This paper discusses the binary translation research question (research question 4),
focusing on the technology and design choices made. The primary research question also
relates to this paper from side of language boundaries.

1.6.7 Chapter 8 (Paper VII)

Chapter 8 is an extension of the work performed in Paper VI. This paper discusses
optimizations performed in the Cibyl binary translator and provides a more extensive
performance study than in Paper VI. It also presents a set of new optimizations not
present in Paper VI.

The main contribution of this paper is to illustrate how optimizations can improve the
performance of translated code. Since the high-level code is already optimized, the focus
of Cibyl optimizations is to reduce the overhead of translation. Constant propagation
of register values, function co-location and a peephole optimizer are used to this effect.
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The second contribution of this paper is a performance study where Cibyl is compared
to NestedVM [2] and native Java. Cibyl performance is found to be close to native Java
for the cases we target, and optimizations improve performance significantly.

As Paper VI, this paper discusses the binary translation research question (research
question 4) but focusing on the performance side of it. It also connects to the main
research question from the side of language porting.

1.7 Validity of the Results

This section presents a number of threats to the validity of the studies. The discussion
is centered around threats to the generalizability (or external validity) and the internal
validity.

1.7.1 Generalizability, External Validity

External validity refers to the possibility of generalizing the study results in a setting
outside of the actual study [118, page 106]. There are two threats to the generalizability
of the work which are applicable to all papers in this thesis. One dimension is hardware,
i.e., if the results are generalizable to larger hardware configurations or portable to
entirely different platforms. The other dimension is software, i.e., if the results are
generalizable to other software platforms.

The hardware generalizability is addressed in several ways. First, Paper V describes
low-level optimizations which are closely tied to the target hardware and therefore hard
to port and generalize. In this case, this is inherent in the approach since the optimiza-
tions are intentionally system dependent. Paper IV, Paper II, and Paper III, describe
multiprocessor ports of two operating system kernels, both targeting Intel IA-32. While
many low-level aspects of these ports are architecture-specific, e.g., startup of secondary
processors, most of the code (locking, etc.) is common between architectures which
makes most of the results valid for other architectures as well. The application kernel
approach presented in Paper IV poses a set of requirements on the architecture, e.g.,
processor-local interrupt handlers. These requirements are discussed for different archi-
tectures, and in most cases these are trivially fulfilled. It is therefore likely that the
application kernel can be easily ported to a large set of hardware platforms.

Hardware scalability threats has been further addressed by using the Simics full-
system simulator [90] to simulate hardware configurations with between one and eight
processors. Simics gives the possibility to test larger configurations than the available
hardware, and is used to examine the scalability in Paper I and Paper IV. Further,
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Simics has been used in Paper V to study detailed application behavior, which is hard
or impossible using traditional hardware measurements.

To improve the software generalizability, standard benchmarks such as SPEC CPU
2000, SPLASH 2, and Postmark have been employed in Paper I, Paper IV and Paper V.
Using standard benchmarks allow the studies to be replicated and also to be compared
with other similar studies. It is also shown that the application kernel approach is fairly
independent of the original uniprocessor kernel, since most of the code from an in-house
kernel implementation could be reused for the Linux port of the application kernel.
This suggests that the application kernel approach should be possible to reuse mostly
unmodified for ports to other operating systems.

The specialized benchmarks used in Paper II, Paper VI and Paper VII are harder to
generalize. Still, since the benchmark in Paper II is very basic, measuring the paralleliza-
tion of the operating system kernel, it is still possible to compare to similar benchmarks
on other operating systems. However, since it was not possible to run full-scale applica-
tions, it is difficult to generalize the performance results to a production environment.

In Paper VII, two specialized benchmarks are used, one being an implementation
of the A* algorithm and the other FreeMap [126], a GPS navigation software. The
A* algorithm implementation is used to be able to compare the same software across
different languages (C and Java) since it is implemented in the same way on both places.
The A* implementation also allows comparison between different data structure layouts.
FreeMap is used to provide performance characteristics of a real-world benchmark. The
A* benchmark provides an indication of performance limits of the Cibyl implementation
while the FreeMap benchmark should be generalizable to the same class of graphical
applications.

1.7.2 Internal Validity

Internal validity refers to how well a study can establish the relationship between cause
and effect [118, page 103]. For example, in a performance comparison between two
versions of a multiprocessor operating system kernel (which was done for the Linux
kernel in Paper I), a finding might be that the later version of the kernel has better
performance. However, it is not possible to draw the conclusion that this is because
of improved multiprocessor support in the newer version since other factors such as a
better file system implementation, optimized virtual memory handling, etc., also affects
performance. In Paper I, the Linux kernel performance results is therefore normalized
against a baseline of uniprocessor performance in the 2.0 kernel. The benchmark also
shows that the performance, even on the uniprocessor, is around three times higher on
2.6 than on 2.0 for the same benchmark.
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One validity concern for the work is the use of a full-system simulator compared to
real hardware. If the simulator is not accurate enough, the results will diverge from
real hardware. There are two aspects of this. First, the Intel IA-32 instruction set is
very complex to simulate accurately, compared to many RISC architectures. On current
processors, IA-32 instructions are split up in RISC-like micro instructions [58] before
they are executed, and the actual microcode implementation can vary greatly between
different implementations of the architecture. Although Simics simulates microcode
for the Pentium 4, the available hardware at the time of the experiments (Pentium Pro,
Pentium II, and Pentium III) is quite different from Pentium 4 and microcode simulation
was therefore not employed.

The second aspect is cache simulation. Since main memory is several magnitudes
slower than the processor, caches that store frequently used data are needed to hide
memory latency [50]. A miss in the cache can stall the processor for significant dura-
tions. For multiprocessors, another source of latency is traffic to keep the cache contents
on different processors coherent. Simics can simulate the complete memory hierarchy in-
cluding caches and coherence traffic. In Paper V, memory hierarchy simulation has been
used to show detailed behavior of the instrumentation of SPEC applications (Section 6.5
in Paper V), whereas measurements on real hardware were used to get aggregate values.

In Paper IV, the memory hierarchy was not simulated since the purpose of the simula-
tions have been to show scalability limits. There are known performance issues with the
application kernel prototype related, e.g., to memory layout, which are not implemented
and would give a disproportionally large disadvantage in the cache simulation.

The benchmarks in Paper VI and VII targeting J2ME devices are performed in
an emulated environment, the Sun J2ME emulator which builds on the Sun K virtual
machine [136]. Since the target domain is mobile phones, there can be some differences
compared to running on actual hardware which may run other JVMs and have different
implementations of support libraries. Where possible, the benchmarks have therefore
been run on a set of different JVMs, which have different performance characteristics.
The general tendency is possible to discern from these tests, although actual numbers
will vary between devices.

Reproducibility, the ability of other researchers to reproduce the results, is another
important aspect. For the papers in this thesis, this has been adressed in two ways.
First, there are detailed descriptions in each paper of how the experiments have been
performed. Second, the source code for the work in Papers IV, V, VI and VII is freely
available for download and inspection.
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1.8 Related work

The related work has been divided after the subsidiary research questions. Since Paper I
contains both traditional multiprocessor ports and alternative organizations, this paper
is discussed in the context of the corresponding subsidiary questions.

1.8.1 Traditional Multiprocessor Ports

The traditional giant locking organization used in Paper II has been used in a number
of other systems. For example, early versions of Linux and FreeBSD both used a giant
locking approach [17, 83]. Similarly, many operating systems have gone through phases
with subsystem locks like in Paper III, including Linux. As discussed in Paper I, the
giant locking approach is a feasible approach for initial multiprocessor ports since it is
relatively straightforward to implement and also possible to incrementally enhance by
making the locks more fine-grained.

The system used in Paper II and Paper III is a cluster operating system kernel running
on IA-32 hardware, and there exists other similar systems. While generic operating
system kernels such as Linux [19], Windows NT [100] and Sun Solaris [135] have been
used to build cluster systems, there are fewer dedicated operating system kernels for
clusters. One example of such a system is Plurix [43]. Plurix is a kernel which, like
the system presented in Papers II and III, employs distributed objects which are kept
coherent through a transaction-based scheme. However, Plurix only runs on uniprocessor
nodes and is also based on Java, whereas the multiprocessor port in Papers II and III
supports both Java and C++ development.

1.8.2 Alternative Multiprocessor Operating System Organizations

The work in Paper IV has several connections to other work. First, there is other
work done related to employing restricted knowledge in systems. For example, Arpaci-
Dusseau et al. [9] propose a method where “gray-box” knowledge about algorithms and
the behavior of an operating system is used to acquire control and information about the
system without explicit interfaces or operating system modification. This idea is similar
to Paper IV in that it restricts the information needed about the kernel to knowledge
about the algorithms, but it differs in the intended purpose: controlling operating system
behavior compared to adding multiprocessor support. Zhang et al. [151], have done work
where the operating system kernel is modified to provide quality of service guarantees to
large unmodified applications. This work takes the opposite approach to Paper IV: the
kernel is explicitly modified to suit applications while the approach in Paper IV avoids
modifying the kernel and actually needs no modifications to the applications either.
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Second, the technical approach described in Paper IV is related to older operating
system kernels organized as master-slave systems and to certain distributed systems. For
example, Goble and Marsh [42] describe the hardware and software implementation of a
master-slave VAX multiprocessor. Because of the emergence of heterogeneous multipro-
cessors, there has been renewed interest in master-slave systems recently [125]. Paper IV
uses the same structure as master-slave systems in that it restricts kernel operations to
one processor. However, master-slave systems modify the original kernel to add the mul-
tiprocessor support whereas the application kernel approach adds the support outside of
the original kernel.

The MOSIX distributed system [15], which provides support for distributing standard
applications transparently on a cluster, also uses an approach similar to the application
kernel. MOSIX redirects kernel operations to the “unique home node” of an application
to provide a single-system image cluster. The approach in Paper IV works the same way,
but on a multiprocessor computer instead of a cluster.

1.8.3 Program Instrumentation

There are several instrumentation tools which share properties with LOPI. First, there
are a number of tools which directly employ binary rewriting similar to LOPI. For
example, Etch [119] is a tool for rewriting Windows binaries on the IA-32 architecture,
which like LOPI has to deal with the complexities of an instruction set with variable-sized
instructions. EEL [80] and ATOM [6] also rewrite binaries, but have been constructed
for the SPARC and Alpha architectures, respectively, which use fixed-sized instructions
and are therefore better adapted to instrumentation. Both EEL and ATOM provide
frameworks to build tools to instrument programs, unlike LOPI which only provides
basic instrumentation since the purpose of LOPI is to provide low-level support for
building instrumentation tools.

Dyninst [20], Valgrind [108] and Pin [89] use a different approach than LOPI for
the instrumentation. These tools allow programs to be dynamically instrumented, i.e.,
adding instrumentation to the program in-memory after the program has been started.
Valgrind works by dynamically translating all instructions of the program, inducing a
high overhead but being general and allowing many program transformation. Although
LOPI only instruments binaries, the optimizations performed by LOPI is applicable to
dynamic instrumentation as well.

1.8.4 Binary translation

Binary translation, as used in Cibyl, is also closely related to the binary instrumentation
in LOPI. Of other related work, NestedVM [2] (which has been discussed earlier) is
clearly the most similar to Cibyl, also being a static off-line binary translator targeting
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Java bytecode. Valgrind [108] is a dynamic binary translator which targets debugging
and inspection support, e.g., through a heap management checker, and uses similar
techniques as Cibyl.

A traditional problem in static binary translators is separating code from data [3],
i.e., detecting if a part of the binary executes as code or is data. Cibyl does not have
this problem by virtue of being a development environment: Cibyl requires the source
code and compiles binaries with symbol and relocation data retained.

Dynamic binary translators [51, 12, 20] get around the code vs data problem by
performing the translation at runtime and therefore only translates code as it executes.
However, since Cibyl is targeting an embedded system, runtime memory and code size
overhead which can result from doing runtime translation is a problem. Java virtual
machines also do not allow loading dynamically generated code with a smaller than class
granularity [86], which would mean a large overhead when calling generated code.

Another approach to the problem of executing C or C++ applications on a Java
virtual machine is to provide a compiler backend generating Java bytecode. This has
been done in the Axiomatic solutions [10] multi-platform C compiler and as a part of
the University of Queensland Binary Translator project [29]. Both these are based on an
old version of GCC, and both face the problem of keeping the port updated with GCC
releases, which is done automatically with the Cibyl approach (being independent of
GCC version). Cibyl also automatically benefits from GCC optimization improvements
with new versions. The benchmarks also show that the translation of MIPS binaries can
be done with relatively low overhead, reducing the potential performance advantage of
writing a targeted compiler backend.

1.9 Conclusions

The primary goal of this thesis has been to look into the tradeoff between performance
and development effort for porting of software systems to new environments. I have
investigated this tradeoff both for operating system porting from uniprocessors to multi-
processors and porting of C/C++ applications to Java environments. Operating system
porting was studied in Paper I-IV and C/C++ porting to JVMs was studied in Pa-
per VI-VII. Paper V presents a tool for program instrumentation which can be used
during the development of large software systems in general, covering both major topics.

The primary research question has been discussed in all papers in the thesis. For
multiprocessor operating systems, Paper II and Paper IV present two radically different
approaches to an initial port to a multiprocessor. In Paper II, a traditional kernel
parallelization effort is described, which was found to be time consuming and difficult to
scale. The application kernel approach in Paper IV implements multiprocessor support
for Linux with minimal changes to the uniprocessor kernel. The application kernel
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approach also has limited scalability, but requires less knowledge and modifications of the
original kernel. The approach in Paper II still has advantages, however. First, it balances
processing among all CPUs, which the asymmetric application kernel approach does not
do. Second, it provides a base for further incremental improvements, which was done
in Paper III. These three papers illustrate the different tradeoffs between performance
and development effort, ranging from the application kernel approach which focuses on
development effort to the coarse-grained implementation in Paper III where a large effort
was spent to achieve scalability.

Papers VI and VII focuses on the language boundary part of the primary research
question. The Cibyl approach is placed between the three extremes of re-implementing
the source code in Java, implementing a full compiler backend to produce Java bytecode
(both of which should give better performance) or providing pure emulation, which
requires less implementation at the cost of lower performance. With the optimizations
made, Cibyl is a viable alternative to the full compiler backend at lower maintenance cost
(automatically benefiting from new GCC releases). Between the two other main topics,
Paper V about the LOPI binary instrumentation framework deals with tool support to
facilitate development, and also uses similar techniques as Cibyl.

Papers II and III also discuss research question 1 about the cost of a traditional sym-
metric lock-based multiprocessor port. The findings indicate that there is a significant
cost associated with the traditional porting methods. For the first giant-locked port,
a large proportion of the time was spent to grasp the functionality of the uniproces-
sor code, which was required to parallelize execution. For the coarse-grained port, the
largest obstacles has instead been the move from completely serialized kernel execution
(as in both the uniprocessor and the giant locked kernel) to a parallelized kernel. This
brings along many ordering and timing issues which are not otherwise present. The
larger team and experience gained from the prototype in Paper II meant that this work
still required less time than the prototype.

As a contrast to the first research question, research question 2 about alternative
multiprocessor organizations is investigated in Paper IV. In this paper, we show that
alternative asymmetric organizations such as the application kernel approach can provide
shorter porting time at a cost of some overhead for kernel-bound tasks. The paper also
shows that it is feasible to add multiprocessor support to an operating system kernel
without modifications of the uniprocessor kernel.

Research questions 3 and 4 are answered in Papers V, VI and VII. The LOPI pa-
per shows techniques which can be employed to reduce perturbations of instrumented
programs and illustrates the importance of architecture-dependent techniques to reduce
perturbation. The two Cibyl papers in turn show that static binary translation is a fea-
sible approach to provide portability of C and C++ programs to Java virtual machines
with adequate performance in real-life settings and low maintenance cost.
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Chapter 2
Paper I

Scalability vs. Development Effort for Multiprocessor Operating
System Kernels

Simon K̊agström, H̊akan Grahn, Lars Lundberg

Submitted for journal publication, March 2008

2.1 Introduction

With the advent of multicore and simultaneous multithreaded processors, shared memory
multiprocessors are becoming very common. This makes operating system support for
multiprocessors increasingly important. Some operating systems already include support
for multiprocessors, but many special-purpose operating systems still need to be ported
to benefit from multiprocessor computers. To get good multiprocessor support, a number
of challenges involving concurrency issues, have to be solved, and how these are handled
affect the engineering time needed for the multiprocessor implementation.

There are a number of possible technical approaches when porting an operating
system to a multiprocessor, e.g., introducing coarse or fine grained locking of shared
resources in the kernel, introducing a virtualization layer between the operating system
and the hardware, or using the master-slave and other asymmetric approaches.

The development effort and lead time for porting an operating system to a multi-
processor vary depending on the technical approach used. The technical approach also
affects multiprocessor performance. The choice of technical approach depends on a num-
ber of factors; two important factors are the available resources for doing the port and
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the performance requirements on the multiprocessor operating system. Consequently,
understanding the performance and development cost implications of different technical
solutions is crucial when selecting a suitable approach.

In this paper we identify seven technical approaches for doing a multiprocessor port.
We also provide an overview of the development time and multiprocessor performance
implications of each of these approaches. We base our results on a substantial literature
survey, and also provide a case study concerning the development effort and multiproces-
sor performance (in terms of scalability) of different versions of Linux. We have limited
the study to operating systems for shared memory multiprocessors.

The rest of the paper is structured as follows. Section 2.2 describes the challenges
faced in a multiprocessor port. In Section 2.3 we present a categorization of porting
methods, and Section 2.4 then categorizes a number of existing multiprocessor systems.
In Section 2.5, we describe our Linux case study, and finally discuss our findings and
conclude in Section 2.6.

2.2 Multiprocessor Port Challenges

A uniprocessor operating system needs to be changed in a number of ways to support
multiprocessor hardware. Some data structures must be made CPU-local, like for exam-
ple the currently executing process. The way CPU-local data structures are implemented
varies. One approach is to replace the affected variables with vectors that are indexed
with the CPU number. Another is to cluster the CPU-local data structures in a virtual
memory region and map this region to different physical memory pages for each CPU.

In a uniprocessor kernel where processes cannot be preempted in-kernel, the only
source of concurrency issues is interrupts, and disabling interrupts is then enough for
protection against concurrent access. On multiprocessors, disabling interrupts is not
enough as it only affects the local processor. Also, multiple processors accessing shared
memory at the same time can cause conflicts even outside interrupt context. A locking
scheme is therefore needed. Locking can be implemented in different ways, e.g., through
spinlocks or semaphores. Spinlocks are implemented by letting the processor do a busy
wait for a held lock. Acquiring a semaphore usually involves a context switch to let other
processes execute, and is therefore better suited if the lock is held for a long time. Kernels
which support in-kernel process preemption (i.e., involuntarily suspending threads within
the kernel) need protection of shared data structures even on uniprocessors.

Locking affect both performance and development time of multiprocessor operating
systems. A held spinlock means that another processor cannot enter a section of code
or access a region of data, which locks the processor out from useful work. At the same
time, race conditions can occur if data is not properly protected by locks, and careful
examination of dependencies between locks etc. adds to the development time.
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(a) Giant lock (b) Coarse-grained (c) Fine-grained

(d) Master-slave (e) The Application kernel (f) Piglet

Figure 2.1: Continued on next page

Many modern processors employ memory access reordering to improve performance.
Therefore, memory barriers are sometimes needed to prevent inconsistencies. For exam-
ple, a structure needs to be written into memory before the structure is inserted into a list
for all processors to see the updated data structure. Further, debugging, which is hard
even in uniprocessor operating systems, become more difficult when several processors
execute in the kernel at the same time.

2.3 Categorization

We have categorized the porting approaches into the following implementation ap-
proaches: giant locking, coarse-grained locking, fine-grained locking, lock-free, asymmet-
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(g) Cache-kernel (h) Virtualization (i) K42

Figure 2.1: Multiprocessor operating system organizations. Thick lines show locks and
the flash symbol denote system calls or device interrupts. The figure shows both
categories and examples of systems.

ric, virtualization, and reimplementation. Other surveys and books [107, 123] use other
categorizations, e.g., depending on the structuring approach (microkernels and mono-
lithic kernels). In this section we describe the properties of each of these implementation
methods.

2.3.1 Locking-based schemes

Giant Locking

With giant locking (Figure 2.1a), a single spin lock protects the entire kernel from con-
current access. The giant lock serializes all kernel accesses, so most of the uniprocessor
semantics can be kept. Giant locking requires small changes to the kernel apart from
acquiring and releasing the lock, e.g., processor-local pointers to the currently executing
process. Performance-wise, scalability is limited by having only one processor executing
in the kernel at a time.

Giant locking presents only a minor risk for deadlocks and race conditions since
the kernel access is serialized. The number of places the giant lock needs to be taken
corresponds to the number of entry points into the kernel, which greatly simplifies the
implementation. In terms of porting, the giant locking approach provides a straightfor-
ward way of adding multiprocessor support since most of the uniprocessor semantics of
the kernel can be kept. However, the kernel also becomes a serialization point, which
makes scaling very difficult for kernel-bound benchmarks. As a foundation for further
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improvements, giant locking still provides a viable first step because of its relative sim-
plicity.

Coarse-grained Locking

Coarse-grained locks protect larger collections of data or code, such as entire kernel
subsystems as shown in Figure 2.1b. Compared to giant-locking, coarse-grained locks
open up for some parallel work in the kernel. For example, a coarse-grained kernel can
have separate locks for the filesystem and network subsystems, allowing two processors
to concurrently execute in different subsystems. However, inter-dependencies between
the subsystems can force an effective serialization similar to giant locking. If subsystems
are reasonably self-contained, coarse-grained locking is fairly straightforward, otherwise
complex dependencies might cause data races or deadlocks.

Fine-grained Locking

Fine-grained locking (Figure 2.1c), restricts the locking to individual data structures
or even parts of data structures. Fine-grained locking allows for increased parallelism
at the cost of more lock invocations and more complex engineering. Even fine-grained
implementations will sometimes use coarse-grained locks, which are more beneficial for
uncontended data.

Finer granularity of the locks at makes the implementation more prone to errors such
as race conditions and deadlocks, especially compared to the giant locking approach.

2.3.2 Lock-free Approaches

Using hardware support, it is possible to construct lock-free operating systems. Lock-free
algorithms rely on instructions for atomically checking and updating a word in memory
(compare-and-swap, CAS), found on many CPU architectures. However, for efficient
implementation of lock-free algorithms, a CAS instruction capable of updating multiple
locations is needed, e.g., double CAS (DCAS). Simple structures such as stacks and lists
can be implemented directly with CAS and DCAS, while more complex structures use
versioning and retries to detect and handle concurrent access. [95]

A completely lock-free operating system relies on these specialized data structures.
Lock-free data structures are sometimes hard to get correct and can be inefficient with-
out proper hardware support [33], which limits the scalability of completely lock-free
approaches. Also, transforming an existing kernel to lock-free operation requires a ma-
jor refactoring of the kernel internals, so the development costs of a lock-free kernel is
likely to be high.
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2.3.3 Asymmetric Approaches

It is also possible to divide the work asymmetrically among the processors. Asymmetric
operating systems assign processors to special uses, e.g., compute processors or I/O
handling processors. Such a system might be beneficial for cases where there is a high
I/O load, or to simplify operating system ports (as discussed in Section 2.4.5).

Since asymmetric systems can be very diverse, both the implementation cost and
scalability of these systems will vary.

2.3.4 Virtualization

A completely different method is to partition the multiprocessor machine into a virtual
cluster, running many OS instances on shared hardware (Figure 2.1h). This category
can be further subdivided into fully virtualized and paravirtualized systems, where the
latter employs operating system modifications and virtual extensions to the architec-
ture to lower virtualization overhead or handle hardware limitations which makes full
virtualization hard to achieve [117].

The virtualizing layer, called a Hypervisor, runs at a higher privilege level than
the operating system kernel. The Hypervisor performs handling and multiplexing of
virtualized resources, which makes the Hypervisor less demanding to implement than a
full operating system kernel. As virtualization also allows existing uniprocessor operating
systems to run with small or no modifications, the development costs of a port is limited.

As discussed above, not all processor architectures are well suited for full virtualiza-
tion. Recent processors therefore have hardware support for virtualization [143, 1], e.g.,
through providing an extra set of privilege levels and trapping on access to privileged
instructions. With this hardware extensions, unmodified operating systems can run on
top of a Hypervisor, although the performance will be limited by emulation of hardware
devices.

2.3.5 Reimplementation

A final approach is to reimplement the core of the kernel for multiprocessor support and
provide API/ABI compatibility with the original kernel. While drastic, this can be an
alternative for moving to large-scale multiprocessors, when legacy code might otherwise
limit the scalability.
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2.4 Operating System Implementations

In this section, we discuss different implementations of multiprocessor ports represent-
ing the different porting approaches presented. Table 2.1 provides a summary of the
discussed systems.

2.4.1 Giant-locking Implementations

Many multiprocessor ports of uniprocessor operating systems are first implemented with
a giant locking approach, e.g., Linux 2.0 [17], FreeBSD [83], and other kernels [74]. Later
releases relaxes the locking scheme with a more fine-grained approach. We discuss the
Linux giant locking more in detail in Section 2.5. The industrial kernel described in [74]
uses a giant locking approach for the first version of the port. The performance of the
port was found to be limited due to a large proportion of in-kernel time. This port was
shown to be difficult due to a large code size and a single-person development team.

The QNX Neutrino microkernel [114] also protects the kernel with a giant lock.
Latency for QNX is limited by the small amount of code actually executed within the
kernel. However, as most operating system functionality are handled by server processes,
the parallelization of these are more important than the actual kernel.

2.4.2 Coarse-grained locking implementations

A special case of coarse-grained locking is funnels used in DEC OSF/1 [31], and Mac OS X [41].
In OSF/1, code running inside a funnel always executes serialized on a “master” proces-
sor, similar to master-slave systems.

Mac OS X started out with what was effectively a giant lock (a funnel for the entire
BSD portion of the kernel), but thereafter evolved into a more coarse-grained implemen-
tation with separate funnels for the filesystem and network subsystems. Mac OS X does
not restrict the funnel to a single processor. Instead the funnel acts as a subsystem lock,
which is released on thread rescheduling. Currently, Mac OS X is reworked to support
locking at a finer granularity.

2.4.3 Fine-grained locking implementations

AIX [30] and DEC OSF/1 3.0 [31] were released with fine-grained locking from the start.
In both cases, the SMP port was based on a preemptible uniprocessor kernel, which
simplified porting since disabling of preemption correspond to places where a lock is
needed in the multiprocessor version.
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During the development of OSF/1, funneling was used to protect the different sub-
systems while core parts like the scheduler and virtual memory management were par-
allelized. Solaris [68] and current versions of Linux [88] and FreeBSD also implement
fine-grained locking.

2.4.4 Lock-free Implementations

To our knowledge, there exists only two operating system kernels which rely solely on
lock-free algorithms; Synthesis [95] and the Cache Kernel [28]. Synthesis uses a tradi-
tional monolithic structure but restricts kernel data structures to a few simple lock-free
implementations of e.g., queues and lists.

The Cache Kernel [28] (Figure 2.1g) provides basic kernel support for address spaces,
threads, and application kernels. Instead of providing full implementations of these con-
cepts, the Cache Kernel caches a set of active objects which is installed by the application
kernels. For example, the currently running threads are present as thread objects hold-
ing the basic register state, while an application kernel holds the complete state. The
Cache Kernel design caters for a very small kernel which can be easily verified and im-
plemented in a lock-free manner. Note, however, that the application kernels still need
to be parallelized to fully benefit from multiprocessor operation. Both Synthesis and the
Cache Kernel were implemented for the Motorola 68k CISC architecture, which has ar-
chitectural support for DCAS. Implementations for other architectures which lack DCAS
support might be more difficult.

2.4.5 Asymmetric Implementations

The most common asymmetric systems have been master-slave systems [42], which em-
ploy one master processor to run kernel code while the other (“slave”) processors only
execute user space applications. The changes to the original OS in a master-slave port
mainly consist of the introduction of separate queues for master and slave jobs, as shown
in Figure 2.1d. Like giant locks, the performance of master-slave systems is limited by
allowing only one processor in the kernel.

The Application kernel approach [77] (Figure 2.1e) allows keeping the original unipro-
cessor kernel as-is. The approach runs the original unmodified kernel on one processor,
while user-level applications run on a small custom kernel on the other processors. All
processes are divided in two parts, one application thread and one bootstrap thread.
The application threads run the original application. Kernel interaction by the appli-
cation threads are handled in the application kernel, which simply sets a flag for the
bootstrap thread. The bootstrap thread then forwards system calls, page faults etc., to
the uniprocessor kernel, which handles them as before.
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Table 2.1: Continued on next page.

System Method Focus

Linux 2.0 [17] Giant General purpose
FreeBSD 4.9 [83] Giant General purpose
QNX [114] Giant Real-time
Linux 2.2 Coarse General purpose
Mac OS X [41] Coarse General purpose
OSF/1 [31] Fine General purpose
Linux 2.4 Fine General purpose
Linux 2.6 [88] Fine General purpose
AIX [30, 139] Fine General purpose
Solaris [68] Fine General purpose
FreeBSD 5.4 Fine General purpose
Synthesis [95] Lock-free General purpose
Cache kernel [28] Lock-free Application specific
Dual VAX 11/780 [42] Asymmetric General purpose
Application kernel [77] Asymmetric Low effort
Piglet [106] Asymmetric I/O intensive
Cellular Disco [44] Virtualized Hardware sharing, fault tolerance
VMWare ESX [121] Virtualized Hardware sharing
L4Linux [144] Virtualized Hardware sharing
Adeos [149] Virtualized Hardware sharing
Xen [16] Virtualized Hardware sharing
K42 [8] Reimpl. Scalability

Since the application kernel approach requires an extra round-trip for kernel interac-
tion, the latency of kernel operations increases. The application kernel approach can still
provide good speedup for compute-bound applications at a low implementation cost.

Piglet [106] (Figure 2.1f) dedicates the processors to specific operating system func-
tionality. Piglet allocates processors to run a Lightweight Device Kernel (LDK), which
normally handles access to hardware devices but can perform other tasks. The LDK is
not interrupt-driven, but instead polls devices and message buffers for incoming work. A
prototype of Piglet has been implemented to run beside Linux 2.0.30, where the network
subsystem (including device handling) has been offloaded to the LDK, and the Linux
kernel and user-space processes communicate through lock-free message buffers with the
LDK.

2.4.6 Virtualization

There are a number of virtualization systems. VMWare ESX server [121] is a fully
virtualized system which uses execution-time dynamic binary translation to handle vir-
tualization problems of the IA-32 platform. Cellular disco [44] is a paravirtualized system
created to use large NUMA machines efficiently. The underlying Hypervisor is divided
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Table 2.1: Summary of the categorized multiprocessor operating systems. The code
lines refer to the latest version available and the development time is the time between
the two last major releases.

Performance Effort
System Latency Scalability Code lines Devel. time

Linux 2.0 [17] High Low 955K 12 months
FreeBSD 4.9 [83] High Low 1.9M ?
QNX [114] Low ? ? ?
Linux 2.2 Medium Low 2.5M 18 months
Mac OS X [41] High Low ? ?
OSF/1 [31] Low High ? ?
Linux 2.4 Medium Medium 5.2M 11 months
Linux 2.6 [88] Low High 6.1M 11 months
AIX [30, 139] Low High ? 18 months
Solaris [68] Low High ? ?
FreeBSD 5.4 Low High 2.4M ?
Synthesis [95] Low ? ? ?
Cache kernel [28] Low ? 15k ?
Dual VAX 11/780 [42] High Low ? ?
Application kernel [77] High Low 3,600 5 weeks
Piglet [106] As UP Dep. on UP ? ?
Cellular Disco [44] As Guest As Guest 50k ?
VMWare ESX [121] As Guest As Guest ? ?
L4Linux [144] As Guest As Guest ? ?
Adeos [149] As Guest As Guest ? ?
Xen [16] As Guest As Guest 75k+38k ?
K42 [8] Low High 50k ?

into isolated cells, each handling a subset of the hardware resources to provide fault
containment.

Xen [16] uses a paravirtualized approach for the Intel IA-32 architecture currently
capable of running uniprocessor Linux and NetBSD as guest operating systems. The
paravirtualized approach allows higher performance than a fully virtualized approach on
IA-32. For example, the real hardware MMU can be used instead of software lookup
in a virtual MMU. The Xen hypervisor implementation consists of around 75,000 lines
of code while the modifications to Linux 2.6.10, mostly being the addition of a virtual
architecture for Xen, is around 38,000 lines of code. A larger portion of this is drivers
for virtual devices. The Adeos Nanokernel [149] also works similar to Xen, requiring
modifications to the guest kernel’s (Linux) source code.

As an example of a reimplementation, K42 [8] (Figure 2.1i) is ABI-compatible with
Linux but implemented from scratch. K42 is a microkernel-based operating system with
most of the operating system functionality executing in user-mode servers or replaceable
libraries. K42 avoids global objects and instead distributes objects among processors and
directs access to the processor-local objects. Also, K42 supports runtime replacement of
object implementations to improve performance for various workloads.
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2.5 Linux Case Study

In order to provide more insight into the trade-offs between performance and develop-
ment effort, we have conducted a case study of the evaluation of multiprocessor support
and locking in the Linux kernel. Linux evolved from using a giant locking approach in
the 2.0 version, through a coarse-grained approach in 2.2 to using a more fine-grained
approach in 2.4 and 2.6. Multiprocessor support in Linux was introduced in the stable
2.0.1 kernel, released in June 1996. 18 months later, in late January 1999, 2.2.0 was
released. The 2.4.0 kernel came 11 months later, in early January 2001, while 2.6.0 was
released in late December 2003, almost 12 months after the previous release.

We have studied how three parameters have evolved from kernel versions 2.0 to 2.6.
First, we examined the locking characteristics. Second, we examined the source code
changes for multiprocessor support, and third, we measured performance for both a
kernel-bound benchmark and a compute-bound benchmark.

We chose to compare the latest versions at the time of writing of each of the stable
kernel series, 2.0.40, 2.2.26, 2.4.30, and 2.6.11.7. We examined files in kernel/, mm/,
arch/i386/, include/asm-i386/, i.e., the kernel core and the IA-32-specific parts. We
also include fs/ and fs/ext2. The ext2 filesystem was chosen since it is available in all
compared kernel versions. We exclude files implementing locks, e.g, spinlocks.c, and
generated files.

To see how SMP support changes the source code, we ran the C preprocessor on the
kernel source, with and without __SMP__ and CONFIG_SMP defined. The preprocessor ran
on the file only (without include-files). We also removed empty lines and indented the
files with the indent tool to avoid changes in style affecting the results.

2.5.1 Evolution of Locking in Linux

In the 2.0 versions, Linux uses a giant lock, the “Big Kernel Lock” (BKL). Interrupts
are also routed to a single CPU, which limits the scalability. On the other hand, multi-
processor support in Linux 2.0 was possible to implement without major restructuring
of the uniprocessor kernel.

Linux 2.2 relaxed the giant locking scheme to adopt a coarse-grained scheme. 2.2 also
added general-purpose basic spinlocks and spinlocks for multiple-readers / single-writer
(rwlocks). The 2.2 kernels has subsystem locks, e.g., for block device I/O requests, while
parts of the kernel are protected at a finer granularity, e.g., filesystem inode lists and
the runqueue. However, the 2.2 kernel still uses the giant lock for many operations, e.g.,
file read and write.
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Table 2.2: Number of locks in the Linux kernel.
Number of locks

Version BKL spinlock rwlock seqlock rcu sema
2.0.40 17 0 0 0 0 49
2.2.26 226 329 121 0 0 121
2.4.30 193 989 300 0 0 332
2.6.11.7 101 1,717 349 56 14 650

The 2.4 version of the kernel further relaxes the locking scheme. For example, the
giant lock is no longer held for virtual file system reads and writes. Like earlier versions,
2.4 employs a single shared runqueue from which all processors take jobs.

Many improvements of the multiprocessor support were added in the 2.6 release. 2.6
introduced seqlocks, read-copy update mutual exclusion [96], processor-local runqueues,
and kernel preemption. Kernel preemption allows processes to be preempted within the
kernel, which reduces latency. A seqlock is a variant of rwlocks that prioritizes writers
over readers. Read-copy update (rcu), finally, is used to defer updates to a structure
until a safe state when all active references to that structure are removed, which allows
for lock-free access. The safe state is when the process does a voluntary context switch
or when the idle loop is run, after which the updates can proceed.

2.5.2 Locking and Source Code Changes

Table 2.2 shows the how the lock usage has evolved throughout the Linux development.
The table shows the number of places in the kernel where locks are acquired and released.
Semaphores (sema in the table) are often used to synchronize with user-space, e.g., in
the system call handling, and thus have the same use on uniprocessors.

As the giant lock in 2.0 protects the entire kernel, there are only 17 places with BKL
operations (on system calls, interrupts, and in kernel daemons). The coarse-grained
approach in 2.2 is significantly more complex. Although 2.2 introduced a number of
separate spinlocks, around 30% (over 250 places) of the lock operations still handle the
giant lock. The use of the giant lock has been significantly reduced in 2.4, with around
13% of the lock operations handle the giant lock. This trend continues into 2.6, where less
than 5% of the lock operations handled the giant lock. The 2.6 seqlocks and read-copy
update mutual exclusion are still only used in a few places in the kernel.

Table 2.3 shows the results from the C preprocessor study. From the table, we
can see that most files have no explicit changes for the multiprocessor support. In
terms of modified, added, or removed lines, multiprocessor support for the 2.0 kernel is
significantly less intrusive than the newer kernels, with only 541 source lines (1.19% of
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Table 2.3: Lines of code with and without SMP support in Linux.
Lines

Version Files Changed No SMP SMP Modified/
Files new/

removed
2.0.40 173 22 45,392 45,770 541
2.2.26 226 36 52,294 53,281 1,156
2.4.30 280 38 64,293 65,552 1,374
2.6.11.7 548 49 104,147 105,846 1,812

the uniprocessor source code) modified. In 2.2 and 2.4, around 2.2% of the lines differ
between the uniprocessor and multiprocessor kernels, while the implementation is closer
again in 2.6 with 1.7% of the lines changed.

2.5.3 Performance Evaluation

We also did a performance evaluation to compare the different Linux kernel versions in
the Postmark benchmark [67] and the SPLASH-2 FFT benchmark[148]. The purpose
of the performance evaluation is to show the scalability differences between the versions
with two benchmarks with different characteristics. We use a simulated environment
in order to get access to larger configurations than the hardware we have at hand.
The results from the simulated environment shouldn’t be directly compared to actual
hardware, but it should make the scalability properties of the different kernels clear.

We compiled the 2.0 and 2.2 kernels with GCC 2.7.2 whereas 2.4 and 2.6 were com-
piled with GCC 3.3.5. All kernels were compiled with SMP-support enabled, which is
a slight disadvantage on uniprocessors. The system is a minimal Debian GNU/Linux
system which uses the ext2 filesystem which is available in all kernel versions. We ran 8
Postmark processes in parallel and measured the time used for all of them to complete.
The benchmark was executed in the Simics full-system simulator [90], which was con-
figured to simulate between 1 and 8 processors. Simics simulates a complete computer
system including disks, network, and CPUs including the memory hierarchy modeled
after the Pentium 4.

The Postmark benchmark models the file system behavior of Internet servers for elec-
tronic mail and web-based commerce, focusing on small-file performance. This kernel-
bound benchmark requires a highly parallelized kernel to exhibit performance improve-
ments (especially for the file and block I/O subsystems). We ran Postmark with 10,000
transactions, 1,000 simultaneous files and a file size of 100 bytes.
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Figure 2.2: Postmark benchmark running on different versions of Linux.

The FFT benchmark is a computationally intensive benchmark that performs Fourier
transformations. The benchmark ran with 8 parallel threads (created with pthreads)
for all configurations. We compare the time needed to complete the entire benchmark.

Figure 2.2 presents the scalability results for the Postmark benchmark while Fig-
ure 2.3 shows the scalability of the SPLASH FFT benchmark. Both results are normal-
ized to uniprocessor execution time in Linux 2.0.

In the Postmark benchmark we can see that the absolute uniprocessor performance
has increased, with 2.4 having the best performance. Linux 2.0 and 2.2 do not scale
at all with this benchmark, while 2.4 shows some improvement over uniprocessor mode.
On the other hand, 2.6 scales well up to 8 processors. Since the 2.0 kernel uses the
giant locking approach, it is not surprising that it does not scale in this kernel-bound
benchmark. Since much of the file subsystem in 2.2 still uses the giant lock and no
scalability improvement is shown. The file subsystem revision in 2.4 gives it a slight
scalability advantage, although it does not scale beyond 3 processors. It is not until the
2.6 kernel that Linux manages to scale well for the Postmark benchmark. Linux 2.6 has
a very good scalability, practically linear up to 7 processors.

For the compute-bound FFT benchmark, the scalability is similar between all ver-
sions of Linux. An interesting observation is that while the 2.6 kernel offers better
performance on the postmark benchmark, it is slightly behind the earlier versions for
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Figure 2.3: SPLASH FFT benchmark running on different versions of Linux.

the FFT benchmark. The 2.6 kernel clearly focuses more on I/O scalability, which
appears to be a slight disadvantage for compute-bound tasks.

2.6 Discussion

Figure 2.4 shows an approximation of the trade-off between scalability and development
effort of the different approaches presented. It should be noted that when porting a
uniprocessor kernel to a multiprocessor, it is not always possible to freely select the
porting approach. For example, employing the Xen hypervisor is only possible if the
uniprocessor kernel is written for one of the architectures which Xen supports.

The giant locking approach provides a straightforward way of adding multiproces-
sor support since most of the uniprocessor semantics of the kernel can be kept. How-
ever, the kernel also becomes a serialization point, which makes scaling very difficult for
kernel-bound benchmarks. As a foundation for further improvements, giant locking still
provides a viable first step because of its relative simplicity.

Coarse-grained locking is more complex to introduce than giant locking, as seen in
the Linux case study. Fine-grained locking further adds to the complexity, but also
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Figure 2.4: The available design space.

enables better scalability. The AIX and OSF/1 experiences indicates that a preemptible
uniprocessor kernel simplifies multiprocessor porting with finer granularity locks.

Since asymmetric systems are very diverse, both scalability and effort will vary de-
pending on the approach. In one extreme, the application kernel provides a generic
porting method with low effort at the cost of limited scalability for kernel-bound ap-
plications. Master-slave systems require more modifications to the original kernel, but
have slightly better performance than the application kernel because of the extra kernel
interaction round-trip. More complex asymmetric systems, such as Piglet, can have good
scalability on I/O-intensive workloads.

Because of complex algorithms and limited hardware support, completely lock-free
operating systems require high effort to provide good scalability for ports of existing
uniprocessor systems. Lock-free algorithms are still used in many lock-based operating
systems, e.g., the read-copy update mechanism in Linux.

For certain application domains, paravirtualized systems can provide good scalabil-
ity at relatively low engineering costs. Virtualization allows the uniprocessor kernel to
be kept unchanged for fully virtualized environments or with small changes in paravir-
tualized environments. For example, the Xen hypervisor implementation is very small
compared to Linux, and the changes needed to port an operating system is fairly limited.
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However, hardware support is needed for fault tolerance, and shared-memory applica-
tions cannot be load-balanced across virtual machines.

Reimplementation enables the highest scalability improvements but at the highest
effort. Reimplementation should mainly be considered if the original operating system
would be very hard to port with good results, or if the target hardware is very different
from the current platform.

2.7 Conclusions

We have presented a categorization of multiprocessor structuring of operating systems.
We identified seven different approaches, giant locking, coarse-grained locking, fine-
grained locking, lock-free, asymmetric, virtualization, and reimplementation. These cat-
egories have different performance and implementation complexity characteristics, with
giant locking and asymmetric systems providing the lowest effort and lowest perfor-
mance, and reimplementation and fine-grained locking providing the best performance
at a high implementation cost.

The Linux case study illustrates the evolution of multiprocessor support in a kernel.
The 2.0 giant lock implementation was kept close to the uniprocessor. The implementa-
tion then adopted a more coarse-grained locking approach, which became significantly
more complex and also diverged more from the uniprocessor kernel. The more fine-
grained approaches in 2.4 and 2.6 do not increase the complexity as compared to 2.2,
which suggests that the implementation converges again as it matures.
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3.1 Introduction

A current trend in the computer industry is the transition from uniprocessors to various
kinds of multiprocessors, also for desktop and embedded systems. Apart from traditional
SMP (Symmetric MultiProcessor) systems, many manufacturers are now presenting chip
multiprocessors or simultaneous multithreaded CPUs [63, 93, 137] which allow more
efficient use of chip area. The trend towards multiprocessors requires support from
operating systems and applications to take advantage of the hardware.

While there are many general-purpose operating systems for multiprocessor hard-
ware, it is not always possible to adapt special-purpose applications to run on these
operating systems, for example due to different programming models. These applica-
tions often rely on support from customized operating systems, which frequently run on
uniprocessor hardware. There are many important application areas where this is the
case, for example in telecommunication systems or embedded systems. To benefit from
the new hardware, these operating systems must be adapted.

We are working on a project together with a producer of large industrial systems in
providing multiprocessor support for an operating system kernel. The operating system

41



is a special-purpose industrial system primarily used in telecommunication systems. It
currently runs on clusters of uniprocessor Intel IA-32 (32-bit Intel Architecture) comput-
ers, and provides high availability and fault tolerance as well as (soft) real-time response
time and high throughput performance. The system can run on one of two operating
system kernels, either the Linux kernel or an in-house kernel, which is an object-oriented
operating system kernel implemented in C++.

The in-house kernel offers higher performance while Linux provides compatibility
with third-party libraries and tools. As a cluster, the system scales through adding more
nodes to the cluster, whereas a traditional multiprocessor system scales by adding more
CPUs to the computer. The goal with the addition of multiprocessor support is to allow
single nodes in the cluster to be SMPs instead of uniprocessors. With multiprocessor
hardware becoming cheaper and more cost-effective, a port to multiprocessor hardware
is becoming increasingly interesting to harvest the performance benefits of the in-house
kernel.

In this paper, we describe the design and implementation of initial multiprocessor
support for the in-house kernel. We have also conducted a set of benchmarks to evaluate
the performance, and also profiled the locking scheme used in our implementation. Some
structure names and terms have been modified to keep the anonymity of our industrial
partner.

The rest of the paper is structured as follows. Section 3.2 describes the structure
and the programming model for the operating system. Section 3.3 thereafter describes
the design decisions made for the added multiprocessor support. Section 3.4 outlines
the method we used for evaluating our implementation, and Section 3.5 describes the
evaluation results. We thereafter discuss some experiences we made during the imple-
mentation in Section 3.6, and describe related and future work in Section 3.7. Finally,
we conclude in Section 3.8.

3.2 The Operating System

Figure 3.1 shows the architecture of the operating system. The system exports a C++
or Java application programming interface (API) to programmers for the clusterware.
The clusterware runs on top of either the in-house kernel or Linux and provides access
to a distributed RAM-resident database, cluster management that provides fail-safe op-
eration, and an object broker (CORBA, Common Object Request Broker Architecture)
that provides interoperability with other systems.

A cluster consists of processing nodes and gateway machines. The processing nodes
handle the workload and usually run the in-house kernel. Gateway machines run Linux
and act as front-ends to the cluster, forwarding traffic to and from the cluster. The
gateway machines further provide logging support for the cluster nodes and do regular
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backups to hard disk of the database. The cluster is connected by redundant Ethernet
connections internally, while the connections to the outside world can be either SS7 [60]
(Signaling System 7) or Ethernet. Booting a node is performed completely over the
network by PXE [57] (Preboot Execution Environment) and TFTP [127] (Trivial File
Transfer Protocol) requests handled by the gateway machines.

Figure 3.1: The architecture of the operating system.

3.2.1 The Programming Model

The operating system employs an asynchronous programming model and allows applica-
tion development in C++ and Java. The execution is event-based and driven by callback
functions invoked on events such as inter-process communication, process startup, termi-
nation, or software upgrades. The order of calling the functions is not specified and the
developer must adapt to this. However, the process will be allowed to finish execution of
the callbacks before being preempted, so two callbacks will never execute concurrently
in one process.

In the operating system, two types of processes, static and dynamic, are defined.
Static processes are restarted on failure and can either be unique or replicated in the
system. For unique static processes, there is only one process of that type in the whole
system, whereas for replicated processes, there is one process per node in the system. If
the node where a unique process resides crashes, the process will be restarted on another
node in the system. Replicated static processes allow other processes to communicate
with the static process on the local node, which saves communication costs.

Dynamic processes are created when referenced by another process, for example by a
static process. The dynamic processes usually run short jobs, for instance checking and
updating an entry in the database. Dynamic processes are often tied to database objects
on the local node to provide fast access to database objects. In a telecommunication
billing system for example, a static process could be used to handle new calls. For each
call, the static process creates a dynamic process, which, in turn, checks and updates
the billing information in the database.
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3.2.2 The Distributed Main-Memory Database

The operating system employs an object-oriented distributed RAM-resident database
which provides high performance and fail-safe operation. The database stores persistent
objects which contain data and have methods just like other objects. The objects can be
accessed transparently across nodes, but local objects are faster to access than remote
ones (which is the reason to tie processes to database objects).

For protection against failures, each database object is replicated on at least two
nodes. On hardware or software failure, the cluster is reconfigured and the database
objects are distributed to other nodes in the cluster.

3.2.3 The Process and Memory Model

The operating system bases user programs on three basic entities: threads, processes,
and containers. The in-house kernel has kernel-level support for threading, and threads
define the basic unit of execution for the in-house kernel. Processes act as resource
holders, containing open files, sockets, etc., as well as one or more threads. Containers,
finally, define the protection domain (an address space). Contrary to the traditional
UNIX model, the in-house kernel separates the concepts of address space and process,
and a container can contain one or more processes, although there normally is a one-to-
one correspondence between containers and processes.

To allow for the asynchronous programming model and short-lived processes, the in-
house kernel supplies very fast creation and termination of processes. There are several
mechanisms behind the fast process handling. First, each code package (object code) is
located at a unique virtual address range in the address space. All code packages also
reside in memory at all times, i.e., similar to single-address space operating systems [25,
49]. This allows fast setup of new containers since no new memory mappings are needed
for object code. The shared mappings for code further means that there will never be
any page faults on application code, and also that RPC can be implemented efficiently.

The paging system uses a two-level paging structure on the IA-32. The first level on
the IA-32 is called a page directory and is an array of 1024 page directory entries, each
pointing to a page table mapping 4MB of the address space. Each page table in turn
contains page table entries which describe the mapping of 4KB virtual memory pages to
physical memory pages. During kernel initialization, a global page directory containing
application code and kernel code and kernel data is created, and this page directory
then serves as the basis for subsequent page directories since most of the address space
is identical between containers. The address space of the in-house kernel is shown in
Figure 3.2.
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Figure 3.2: The in-house kernel address space on Intel IA-32 (simplified).

The in-house kernel also keeps all data in-memory at all times, so there is no overhead
for handling pageout to disk. Apart from reducing time spent in waiting for I/O, this
also reduces the complexity of page fault handling. A page fault will never cause the
faulting thread to sleep, and this simplifies the page fault handler and improves real-time
predictability of the page fault latency.

The memory allocated to a container initially is very small. The container process
(which will be single-threaded at startup time), starts with only two memory pages
allocated, one containing the page table and the other the first 4KB of the process
stack. Because of this, the container can use the global page directory, replacing the
page directory entry for the 4MB region which contains the entire container stack, the
global variables, and part of the heap. Any page fault occurring in this 4MB region can
be handled by adding pages to the page table. For some processes, this is enough, and
they can run completely in the global page directory.

Figure 3.3 shows the container address space handling in the operating system. In
Figure 3.3a, the situation right after process startup is shown. The container first uses
the global page directory, with two pages allocated: one for the stack page table and
one for the process stack. This situation gradually evolves into Figure 3.3b, where the
process has allocated more pages for the stack, the heap or global variables, still within
the 4MB area covered by the stack page table. When the process accesses data outside
the stack page table, the global page directory can no longer be used and a new page
directory is allocated and copied from the global as shown in Figure 3.3c.
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Figure 3.3: Handling of container address spaces in the in-house kernel

3.3 Design of the Multiprocessor Support

In this section, we discuss the design of multiprocessor support for the in-house kernel.
We describe the locking scheme we adopted, the implementation of CPU-local data, and
optimizations made possible by the special properties of the in-house kernel.

3.3.1 Kernel Locking and Scheduling

For the first multiprocessor implementation, we employ a simple locking scheme where
the entire kernel is protected by a single, “giant” lock (see Chapter 10 in [123]). The
giant lock is acquired when the kernel is entered and released again on kernel exit. The
advantage of the giant locking mechanism is that the implementation is kept close to the
uniprocessor version. Using the giant lock, the uniprocessor semantics of the kernel can
be kept, since two CPUs will never execute concurrently in the kernel. For the initial
version, we deemed this important for correctness reasons and to get a working version
early. However, the giant lock has shortcomings in performance since it locks larger
areas than potentially needed. This is especially important for kernel-bound processes
and multiprocessors with many CPUs. Later on, we will therefore relax the locking
scheme to allow concurrent access to parts of the kernel.

We also implemented CPU-affinity for threads in order to avoid cache lines being
moved between processors. Since the programming model in the operating system is
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based on short-lived processes, we chose a model where a thread is never migrated from
the CPU it was started on. For short-lived processes, the cost of migrating cache lines
between processors would cause major additional latency. Further, load imbalance will
soon even out with many short processes. With fast process turnaround, newly created
processes can be directed to idle CPUs to quickly even out load imbalance.

3.3.2 CPU-local Data

Some structures in the kernel need to be accessed privately by each CPU. For example,
the currently running thread, the current address space, and the kernel stack must be
local to each CPU. A straightforward method of solving this would be to convert the
affected structures into vectors, and index them with the CPU identifier. However,
this would require extensive changes to the kernel code, replacing every access to the
structure with an index-lookup. It would also require three more instructions (on IA-32)
for every access, not counting extra register spills etc.

This led us to adapt another approach instead, where each CPU always runs in a
private address space. With this approach, each CPU accesses the CPU-local data at the
same virtual address without any modifications to the code, i.e., access of a CPU-local
variable is done exactly as in the uniprocessor kernel. To achieve this, we reserve a 4KB
virtual address range for CPU-local data and map this page to different physical pages
for each CPU. The declarations of CPU-local variables and structures are modified to
place the structure in a special ELF-section [142], which is page-aligned by the boot
loader.

The CPU-local page approach presents a few problems, however. First, some CPU-
local structures are too large to fit in one page of memory. Second, handling of multi-
threaded processes must be modified for the CPU-local page, which is explained in the
next section. The kernel stack, which is 128KB per CPU, is one example of a structure
which is too large to store in the CPU-local page. The address of the kernel stack is
only needed at a few places, however, so we added a level of indirection to set the stack
pointer register through a CPU-local pointer to the kernel stack top. The global page
directory (which needs to be per-CPU since it contains the CPU-local page mapping) is
handled in the same manner.

3.3.3 Multithreaded Processes

The CPU-local page presents a problem for multithreaded containers (address spaces).
Normally, these would run in the same address space, which is no problem on a unipro-
cessor system. In a multiprocessor system, however, using a single address space for
all CPUs would cause the CPU-local virtual page to map to the same physical page
for all CPUs, i.e., the CPU-local variables would be the same for all CPUs. To solve
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this problem, a multithreaded container needs a separate page directory for every CPU
which executes threads in the container. However, we do not want to compromise the
low memory requirements for containers by preallocating a page for every CPU.

Since multithreaded containers are fairly rare in the operating system, we chose a
lazy method for handling the CPU-local page in multithreaded containers. Our method
allows singlethreaded containers to run with the same memory requirements as before,
while multithreaded containers require one extra memory page per CPU which executes
in the container. Further, the method requires only small modifications to the kernel
source code and allows for processor affinity optimizations without changes.

Figure 3.4: Handling of container address spaces in the in-house kernel for multiprocessor
computers

Figure 3.4 shows the handling of multithreaded containers on multiprocessors in
the in-house kernel. The figure shows the container memory data structure, which has
a container page directory pointer and an initial page directory entry as before (see
Figure 3.3 and Section 3.2.3), but has also been extended with an array of per-CPU
page directory pointers.

When the process starts up it will have only one thread and the situation is then as in
Figure 3.4a. The process initially starts without a private address space and instead uses
the global address space (which is CPU-local). The global page directory is modified
with a page table for the process stack, global variables and part of the heap. As long
as the process is singlethreaded and uses moderate amounts of heap or stack space, this
will continue to be the case.

When the process becomes multithreaded the first time, as shown in Figure 3.4b, a
new container page directory is allocated and copied from the global page directory1.

1Note that a new page directory can be allocated for singlethreaded processes as well, if they access
memory outside the 4MB area of the stack page table.
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The current CPU will then be set as the owner of the container page directory. The
CPU-local entry of the page directory is thereafter setup to point to the CPU-local
page table of the CPU that owns the container page directory. Apart from setting the
owner, this step works exactly as in the uniprocessor version. Since the thread stacks
reside outside the 4MB process stack area, multithreaded processes will soon need a
private address space, so there is no additional penalty in setting up the address space
immediately when the process becomes multithreaded.

As long as only one CPU executes the threads in the process, there will be only
one page directory used. However, as soon as another CPU schedules a thread in the
process, a single page directory is no longer safe. Therefore, the container page directory
is copied to a new CPU-local page directory which is setup to map the CPU-local page
table. This is shown in Figure 3.4c. Note that apart from the CPU-local page table,
all other page tables are identical between the CPUs. When scheduling the thread, the
CPU-local page directory will be used.

One complication with this scheme is page fault handling. If two or more CPUs
run in a container, a page fault will be generated for the CPU-local page directory. We
therefore modified the page fault handler to always update the container page directory
beside the CPU-local page directory. However, there can still be inconsistencies between
page directories if the owner of the container page directory causes a page fault, which
would only update the container page directory. A later access on the same page from
another CPU will then cause a spurious page fault. We handle this situation lazily by
checking if the page was already mapped in the container page directory, in which case
we just copy the entry to the faulting page directory. Note that this situation is fairly
uncommon since it only affects faults on unmapped page directories, i.e., 4MB areas.
Faults on 4KB pages will be handled transparently of our modifications since the page
tables are shared by all CPUs.

We also handle inconsistencies in the address translation cache (TLB) lazily. If a page
table entry in a container is updated on one CPU, the TLBs on other CPUs executing
in the container can contain stale mappings, which is another source of spurious page
faults. Spurious page faults from a inconsistent TLB can be safely ignored in the in-house
kernel since pages are never unmapped from a container while the process is running.
This saves us from invalidating the TLBs on other CPUs, which would otherwise require
an inter-processor interrupt.

3.4 Evaluation Framework

We have performed an initial evaluation of our multiprocessor implementation where we
evaluate contention on our locking scheme as well as the performance of the multipro-
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cessor port. We ran all performance measurements on a two-way 300MHz Pentium II
SMP equipped with 128MB SDRAM main memory.

For the performance evaluation, we constructed a benchmark application which con-
sists of two processes executing a loop in user-space which at configurable intervals
performs a system call. We then measured the time needed (in CPU-cycles) to finish
both of these processes. This allows us to vary the proportion of user to kernel execution,
which will set the scalability limit for the giant locking approach. Unfortunately, we were
not able to configure the operating system to run the benchmark application in isolation,
but had to run a number of system processes beside the benchmark application. This
is incorporated into the build process for applications, which normally need support for
database replication, logging etc. During the execution of the benchmark, around 100
threads were started in the system (although not all were active).

We also benchmarked the locking scheme to see the proportion of time spent in hold-
ing the giant lock, spinning for the lock, and executing without the lock (i.e., executing
user-level code). The locking scheme was benchmarked by instrumenting the acquire
lock and release lock procedures with a reading of the CPU cycle counter. The lock
time measurement operates for one CPU at a time, in order to avoid inconsistent cy-
cle counts between the CPUs and to lessen the perturbation from the instrumentation
on the benchmark. The locking scheme is measured from the start of the benchmark
application until it finishes.

3.5 Evaluation Results

In this section we present the evaluation results for the locking scheme and the application
benchmark. We also evaluate our CPU-affinity optimization and the slowdown of running
the multiprocessor version of the operating system on a uniprocessor machine. Consistent
speedups are only seen when our benchmark application executes almost completely in
user-mode, so the presented results refer to the case when the benchmark processes run
only in user-mode.

Executing the benchmark with the multiprocessor kernel on a uniprocessor gives a
modest slowdown of around 2%, which suggests that our implementation has compara-
tively low overhead and that the multiprocessor kernel can be used even on uniprocessor
hardware. Running the benchmark on the multiprocessor gives a 20% speedup over the
uniprocessor kernel, which was less than we expected. Since the two benchmark pro-
cesses run completely in user-mode and does not interact with each other, we expected
a speedup close to 2.0 (slightly less because of interrupt handling costs etc.).

Table 3.1 shows the lock contention when the benchmark application run completely
in user-mode, both the uniprocessor and the multiprocessor. For the uniprocessor, ac-
quiring the lock always succeeds immediately. From the table, we can see that the
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Table 3.1: Proportion of time spent executing user and kernel code.
User-mode Kernel Spinning

UP 64% 36% < 0.1%
SMP 55%-59% 20%-22% 20-23%

uniprocessor spends around 36% of the time in the kernel. On the multiprocessor, all
times are shared between two CPUs, and we see that 20%-23% of the time is spent
spinning for the giant lock. Since the in-kernel time is completely serialized by the giant
lock, the theoretically maximum speedup we can achieve on a dual processor system is
36+64
36+ 64

2

≈ 1.47 according to Amdahl’s law [5].

There are several reasons why the speedup is only 1.2 for our benchmark. First, the
benchmark processes do not execute in isolation, which increases the in-kernel time and
consequently the time spent spinning for the lock. Second, some heavily accessed shared
data structures in the kernel, e.g., the ready queue cause cache lines to be transferred
between processors, and third, spinning on the giant lock effectively makes the time
spent in-kernel on the multiprocessor longer than for the uniprocessor.

CPU-affinity does not exhibit clear performance benefits, with the benchmark fin-
ishing within a few percent faster than without affinity. This is likely caused because
of the high proportion of in-kernel execution. We also tried some other optimizations
such as prioritizing the benchmark processes over other processes and different time slice
lengths, but did not get any significant benefits over the basic case.

3.6 Implementation Experiences

The implementation of multiprocessor support for the in-house kernel was more time
consuming than we first had expected. The project has been ongoing part-time for two
years, during which a single developer has performed the multiprocessor implementation.
Initially, we expected that a first version would be finished much sooner, in approximately
six months. The are several reasons for the delay.

First, the development of a multiprocessor kernel is generally harder then a uniproces-
sor kernel because of inherent mutual exclusion issues. We therefore wanted to perform
the development in the Simics full-system simulator [90], and a related project investi-
gated running the operating system on Simics. It turned out, however, that it was not
possible at that time to boot the system on Simics because of lacking hardware support
in Simics. Second, we performed most of the implementation off-site, which made it
harder to get assistance from the core developers. Coupled to the fact that the system
is highly specialized and complex to build and setup, this led us to spend a significant
amount of time on configuration issues and build problems. Finally, the code base of
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the operating system is large and complex. The system consists of over 2.5 million lines
totally, of which around 160,000 were relevant for our purposes. The complexity and
volume of the code meant that we had to spend a lot of time to grasp the functionality
of the code. Most of the first year was spent in analyzing the code and in implementing
functionality largely separate from the operating system kernel (e.g., processor startup),
which could be done without an in-depth knowledge of the kernel internals.

In the end, we wrote around 2,300 lines of code in new files and modified 1,600
existing lines for the implementation. The new code implement processor startup and
support for the locking scheme whereas the modified lines implement CPU-local data,
acquiring and releasing the giant lock etc. The changes to the original code is limited to
around 1% of the total relevant code base, which shows that it is possible to implement
working multiprocessor support with a relatively modest engineering effort. We chose
the simple giant lock to get a working version fast and the focus is now on continuous
improvements which we discuss in Section 3.7.

3.7 Related and Future Work

The operating system studied in this paper has, as mentioned before, a number of
properties that are different from other cluster operating systems. It provides a general
platform with high availability and high performance for distributed applications and an
event-oriented programming environment based on fast process handling. Most other
platforms/programming environments are mainly targeted at high performance and/or
parallel and distributed programming, e.g., MPI [97] or OpenMP [110]. These systems
run on networked computer nodes running a standard operating system, and are not
considered as cluster operating systems.

There exists some distributed operating systems running on clusters of Intel hard-
ware. One such example is Plurix [43], which has several similarities with the oper-
ating system. Plurix provides a distributed shared memory where communication is
done through shared objects. The consistency model in Plurix is based on restartable
transactions coupled with an optimistic synchronization scheme. The distributed main
memory database in the operating system serves the same purpose. However, to the best
of our knowledge, Plurix only runs on uniprocessor nodes and not on multiprocessors
in a cluster. Plurix is also Java-based whereas the operating system presented in this
paper supports both C++ and Java development.

Many traditional multiprocessor operating systems have evolved from monolithic
uniprocessor kernels, e.g., Linux and BSD. Such monolithic kernels contain large parts
of the actual operating system which make multiprocessor adaptation a complex task.
Early multiprocessor operating systems often used coarse-grained locking, for example
using a giant lock [123]. The main advantage with the coarse-grained method is that
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most data structures of the kernel can remain unprotected, and this simplifies the multi-
processor implementation. For example, Linux and FreeBSD both initially implemented
giant locks [17, 83].

For systems which have much in-kernel time, the time spent waiting for the kernel lock
can be substantial, and in many cases actually unnecessary since the processors might
use different paths through the kernel. Most evolving multiprocessor kernels therefore
moves toward finer-grained locks. The FreeBSD multiprocessor implementation has for
example shifted toward a fine-grained method [83] and mature UNIX systems such as
AIX and Solaris implement multiprocessor support with fine-grained locking [30, 68], as
do current versions of Linux [88].

Like systems which use coarse-grained locking, master-slave systems (refer to Chap-
ter 9 in [123]) allow only one processor in the kernel at a time. The difference is that
in master-slave systems, one processor is dedicated to handling kernel operations (the
“master” processor) whereas the other processors (“slave” processors) run user-level ap-
plications and only access the kernel indirectly through the master processor. Since all
kernel access is handled by one processor, this method limits throughput for kernel-bound
applications.

In [78], an alternative porting approach focusing on implementation complexity is
presented. The authors describe the application kernel approach, whereby the original
uniprocessor kernel is kept as-is and the multiprocessor support is added as a loadable
module to the uniprocessor kernel. This allows the uniprocessor kernel to remain es-
sentially unchanged, avoiding the complexity of in-kernel modifications. The approach
is similar to master-slave systems performance-wise since all kernel operations are per-
formed by one processor in the system. Neither the master-slave approach nor the
application kernel approach provide any additional performance benefit over our giant
lock, and incrementally improving the giant locking with finer-grained strategies is easier.

The in-house kernel uses a large monolithic design. The kernel contains very much
functionality such as a distributed fault-tolerant main-memory database and support
for data replication between nodes. Therefore, adding multiprocessor support is a very
complex and challenging task. In the operating system, a large portion of the execution
time is spent in the kernel, making it even more critical when porting the kernel to
multiprocessor hardware. As described earlier in this paper we chose a giant lock solution
for our first multiprocessor version of the in-house kernel in order to get a working version
with low engineering effort. As a result of the single kernel-lock and the large portion of
kernel time, this locking strategy resulted in rather poor multiprocessor performance.

Future work related to the multiprocessor port of the in-house kernel will be focused
around the following. The speedup is low when running on more than one CPU because
of the giant lock and kernel-bound applications. Therefore, one of our next steps is to
implement a more fine-grained locking structure. As an example, we are planning to use
a separate lock for low-level interrupt handling to get lower interrupt latency. Further,
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we will also identify the parts of the kernel where the processor spend most time, which
could be good candidates for subsystem locks. Another area of possible improvements is
the CPU scheduler were we will investigate dividing the common ready queue into one
queue per processor, which is done in for example Linux 2.6 [88].

Finally, we would like to further explore CPU-affinity optimizations for short-lived
processes. For example, although the processes currently will not move to another pro-
cessor, it might be started on another processor the next time it is created. Depending
on the load on the instruction cache, keeping later processes on the same processor might
be beneficial by avoiding pollution of the instruction caches.

We expect that the relaxing of the locking scheme to e.g., subsystem locks will require
less effort than the initial giant-locking implementation. This is because the locking
infrastructure is in place and CPU-local variables and the memory management can be
kept the same. We estimate the initial relaxing of the giant lock to require development
time in the order of months.

3.8 Conclusions

In this paper, we have described the design decisions behind an initial multiproces-
sor port of an in-house cluster operating system kernel. The in-house kernel is a high
performance fault-tolerant operating system kernel targeted at soft real-time telecom-
munication applications.

Since our focus was to get an initial version with low engineering effort, we chose a
simple “giant” locking scheme where a single lock protects the entire kernel from con-
current access. The giant locking scheme allowed us to get a working version without
making major changes to the uniprocessor kernel, but it has some limitations in terms
of performance. Our model where CPU-local variables are placed in a virtual address
range mapped to unique physical pages on different CPUs allowed us to keep most ac-
cesses of private variables unchanged. We also show how this method can be applied to
multithreaded processes with a very small additional memory penalty.

The evaluation we made shows that there is room for performance improvements,
mainly by relaxing the locking scheme to allow concurrent kernel execution. The current
implementation will likely not scale beyond two CPUs without relaxed kernel locking.
Our experience illustrates that refactoring of a large and complex industrial uniprocessor
kernel for multiprocessor operation is a major undertaking, but also that it is possible to
implement multiprocessor support without intrusive changes to the original kernel (only
changing around 1% of the core parts of the kernel).
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Implementation issues and evolution of a multiprocessor operating
system port

Simon K̊agström, Balázs Tuska, H̊akan Grahn, Lars Lundberg

Submitted for publication

4.1 Introduction

During the last couple of years, multicore and multithreaded CPUs have become prac-
tically ubiquitous in computer systems from most major manufacturers [4, 56]. While
many server and desktop operating systems have had multiprocessor support for many
years, this trend makes multiprocessor ports even of special-purpose operating systems
more and more important.

We are working with a major vendor of industrial systems in Sweden in porting a
uniprocessor operating system kernel to multiprocessor hardware in a symmetric multi-
processor (SMP) configuration. The operating system is a cluster system for telecom-
munication applications offering high availability and soft real-time characteristics and
currently runs on uniprocessor 32-bit hardware. The operating system supports two
kernels, Linux and an in-house kernel implemented in C++. Linux provides compati-
bility with third-party applications while the in-house kernel offers higher performance
and better real-time characteristics. A distributed in-RAM database is used to store
persistent data such as billing information. Applications for the operating system can
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be implemented in either C++ or Java, and the programming model encourages fast
process turnaround with many short-lived processes.

In an earlier paper [74], we described a prototype implementation which employed
a “giant” lock (see Chapter 10 in [123]) to serialize kernel execution. In this paper, we
describe a relaxation of the giant locking scheme which is based on our earlier prototype.
The relaxation implements a coarse-grained approach with subsystem locks and fine-
grained locks in the lower-level support layers. The main motivation for the locking
relaxation is to improve performance and reduced latency of kernel-bound tasks, which
were found to be shortcomings of the giant locking approach.

The main contributions of this paper is a description of software experiences from
the technology transition from uniprocessor to multiprocessor hardware, problems and
solutions for the uniprocessor semantics in the current kernel and differences between
the giant lock prototype and the coarse-grained implementation. We also benchmark
the coarse-grained approach against the uniprocessor and the giant lock implementation
in a kernel-bound task. We have changed some terms and names of data structures to
keep the anonymity of our industrial partner.

The rest of the paper is structured as follows. Section 4.2 describes the imple-
mentation of the uniprocessor, giant locked and coarse-grained kernels. Section 4.3 then
describes problems we encountered in the coarse-grained implementation and Section 4.4
outlines our solutions to these problems. We evaluate the coarse-grained approach in
Section 4.5 and describe related work in Section 4.6 and finally concludes in Section 4.7.

4.2 Implementation

4.2.1 The uniprocessor kernel

The uniprocessor implementation of the kernel mostly follows that of mainstream mono-
lithic kernels. The operating system is preemptively multitasking, but threads executing
in the kernel are always allowed to finish before being interrupted by other threads. The
kernel implements basic protection through CPU protection rings, split in supervisor
and user, and separate address spaces. Apart from traditional subsystems in monolithic
kernels such as process handling, device drivers and inter-process communication, the
database also resides in the kernel.

A three-level structure is used to organize user programs: threads, processes and
containers. Threads and processes are similar to the corresponding UNIX concepts, and
containers denote address spaces. For C++ applications, there is a 1-1 mapping between
processes. In Java applications, multiple processes can co-exist in one since Java provides
language-level protection to enforce separation.
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The system is built for IA-32 hardware [59] and as such uses a two-level non-
segmented virtual memory structure. The first level is called page directory, and splits
the 4GB address space into 4MB parts. Each part is represented by a page table, which
splits the 4MB area into 1024 4KB pages. Address translation is performed in hardware
by walking this structure to lookup the physical page for a given virtual page.

Figure 4.1: Address space layout for the operating system

The kernel partially uses the single address space OS [26] concept, with code for all
applications being mapped at unique addresses and readable for all processes. Stacks,
heaps and read/write global data are private for each container. The address space layout
is shown in Figure 4.1. The address space layout allows an important optimization to
reduce address space switching overhead. At container startup, the global page address
space is reused and only 8KB is allocated - a page table and a stack page. The initial
page table also contains part of the heap, and only when that is filled up, a private page
directory is allocated for the process. When switching to a thread in another address
space, the kernel does not switch page directory unless needed, and instead only updates
the global page directory with the container-local page table. This scheme makes starting
new processes very cheap in terms of memory and also allows fast switching between
processes.

There are three execution contexts for the kernel: user, kernel, and interrupt and
the current execution context is kept track of through a state variable. The uniprocessor
kernel uses a two-level interrupt handling scheme where the first-level handler typically
just queues a job for the second-level handler called supervisor signal which is executed
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in the kernel level. This allows the interactions between the interrupt context and the
normal kernel context to be minimal, and synchronization is handled through interrupt
disabling. The second level handlers are executed before the kernel returns to user space
or enters the idle loop, which means that a second-level interrupt handler can never
execute while executing other kernel code and this simplifies implementation. In the
same way, other work can also be deferred to run as supervisor signals, which has been
valuable in the multiprocessor port.

4.2.2 Giant lock implementation

We base our work on a prototype multiprocessor port of the operating system [74] which
uses a giant locking approach. With the giant locking approach, a single lock protects
the entire kernel and limits execution in the kernel to one CPU at a time. This approach
simplifies the initial porting since most of the uniprocessor semantics can be kept. The
largest changes in terms of code for the prototype port are related to CPU startup. Apart
from that, we also changed interrupt handling, making timer-interrupts CPU-local, while
other interrupts are tied to a single CPU. We made a set of structures CPU-local (such as
the currently running thread and current execution context), and modified the scheduler
to avoid moving threads between CPUs. We also made some changes to kernel relocation
to handle CPU-local variables.

The prototype uses a MMU-based approach for CPU-local data. A section of virtual
memory maps to different physical pages on different CPUs. This allows fewer changes
to the code since CPU-local variables only need changing at the definition and not at
each use. However, it also complicates handling of multithreaded processes, which need
separate address spaces for each CPU executing in the container to uphold the CPU-local
page.

Since multithreaded processes are fairly uncommon in the system, we use a lazy
method to handle CPU-local data. Our method also avoids increasing the memory
requirements for single-threaded processes, while using one extra page per CPU executing
in the process for multithreaded processes. The basic ideas is to extend the container
with a CPU-private page directory when it first enters the container. We use this method
for the coarse-grained implementation as well.

The implementation for multithreaded processes is illustrated in Figure 4.2. We
handle single-threaded processes (a) exactly as in the uniprocessor case, with an update
of the global page directory. When a process becomes multithreaded in (b), the global
page directory is copied to a CPU-local one, and the current CPU is set as the owner
of the page directory. This step is done also in the uniprocessor case since thread stacks
are located outside the initial page directory. As other CPUs enter the process in (c),
they copy the owner page directory and setup a private CPU-local page.
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Figure 4.2: Handling of multithreaded containers in the multiprocessor implementation

On page faults, CPUs update both their local page directory and the owner one.
This approach can lead to spurious page faults though, so CPUs always check the owner
page directory when handling page faults to copy pages faulted in by another CPU. Since
pages are never unmapped before the process terminates in the operating system (there
is no swapping to disk), this is safe to do.

4.2.3 Coarse-grained approach

The implementation of the coarse-grained approach has been based on the giant lock-
ing prototype, which was implemented by a single developer at an external site. The
coarse-grained implementation has been implemented by an internal team of between
6-8 developers (the number has varied over time). The project will run during a bit
more than one year and has come more than half-way. The multiprocessor project runs
in parallel with other development activity in the operating system with regular code
merges which prolongs the implementation.

The coarse-grained implementation uses subsystem locks and protect common kernel
resources with separate fine-grained locks. Our locking framework supports three kinds
of locks: normal spinlocks, recursive spinlocks (that can be taken multiple times) and
multiple reader/single writer locks, which allow multiple concurrent readers but prioritize
writers over readers. The recursive spinlocks are only used by the giant lock and are
discouraged as they can mask deadlocks.

We have introduced separate locks for the inter-processor communication subsystem
and the in-RAM database (currently ongoing), which together were shown to constitute
a majority of the in-kernel execution time in a prestudy before the project start. The
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heap, interrupt handling, low-level memory management, timer handling and thread
blocking/unblocking uses fine-grained locking to avoid the need of the giant lock for
these resources. The giant lock is still kept for parts of the kernel, for example a third-
party networking stack and the scheduler.

To prevent ordering problems, the general rule is that the subsystem locks should
be taken and held over an entire kernel call (or subsystem invocation). Because of this,
we protect common kernel resources such as scheduler-related functionality, timers, the
heap and low-level memory management with separate fine-grained locks.

We also support uniprocessors with our multiprocessor kernel, and the locks are
inactivated on uniprocessor systems. We have also made some other changes compared
to the giant lock prototype, e.g., we now have full balancing of interrupts.

During the development, we have used the Qemu emulator [18] to provide an envi-
ronment where it is possible to debug with the GNU debugger (GDB). This setup has
allowed us to debug some difficult problems in a standard debugger, but due to timing
in the Qemu SMP implementation, Qemu is unable to reproduce many of the problems
encountered on real hardware. We therefore also implemented an event log, with which
we can log different types of events with a global time stamp and the CPU number
(for example spinlock operations). These logs have been invaluable when debugging
deadlocks and other difficult timing-related problems.

We have also implemented a deadlock detector which is similar to the Linux lock
validator. It works by instrumenting locks and keeping track of the get and release order
between as well as a stack of currently held locks. On taking a lock, it will check the list
of currently held locks and for each held lock assert that the current lock has not been
taken before the other lock. Similarly, the lock stack is used to checked on lock releases
to assert that the lock is on the stack top. The deadlock detector therefore allows us to
find potential deadlocks by executing code, even if it is done on a uniprocessor.

4.3 Problems with uniprocessor semantics in the coarse-
grained implementation

During the development of the coarse-grained approach, we have encountered various
problems with the current uniprocessor semantics. Most of these are caused by ordering
issues which are not present on the uniprocessor or the giant locking approach.

The problems presented here are the problems we spent most time to implement
solutions to, and that affected performance most. Our solutions to these problems are
presented in Section 4.4.
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4.3.1 Termination of multithreaded processes

One issue we’ve had is caused by true multithreading in the kernel. If a thread in a
multithreaded container executes e.g., an illegal instruction in userspace, this will cause
a trap into the kernel and result in the termination of the entire container. This causes no
ordering issues on the uniprocessor or with the giant lock since only a single thread can
execute in-kernel at the time - there will be no half-finished system calls on other CPUs.
With the coarse-grained approach, however, it is possible that one thread is executing
a system call while another causes a container termination. Since this is unhandled in
the current kernel, it can cause the system call thread to access freed memory as the
container is removed on the other CPU.

Figure 4.3: CPU 1 unblocks a thread blocked on CPU 0, and thereafter loads the context
before CPU 0 has saved it

4.3.2 Thread context saving

Threads can be suspended in system calls for various reasons, e.g., blocking on a semaphore.
The uniprocessor version implements this by setting a flag and then blocking the thread
on system call return. The thread state is then saved on when the system call returns.
This works well on a uniprocessor and on the giant locked kernel, but presents a prob-
lem for the coarse-grained approach. Albeit unlikely, it is possible for the thread to be
unblocked and scheduled before its state has been saved and the thread will then run
with an invalid register context.
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Figure 4.4: CPU 0 adds a timer, which is subsequently run and deleted on CPU 1. CPU
0 thereafter cancels the (now non-existing) timer

Figure 4.3 shows this problem. CPU 0 does a system call, which at kernel entry
temporarily will save the register context on the stack. During the kernel call, the
thread is suspended for example because of blocking on a semaphore. This semaphore is
then immediately unblocked by another CPU and put back into the ready queue. The
context is saved to the thread control block just before the system call returns, and the
kernel has scheduled another thread on CPU 0. If CPU 1 takes the thread from the
ready queue before CPU 0 has finished the system call, it will schedule a thread with
invalid thread context. Our experience with stress-testing the system has shown that
this problem occurs in practice.

4.3.3 Timer handling

Timer handling in the kernel has been implemented with several assumptions which
are only true on a uniprocessor. On the uniprocessor, the implementation upholds two
invariants when a timer is canceled: first, the timer handler will not have been executed
before the cancel, and second, the timer will not be run after being cancelled. The
uniprocessor implementation also guarantees that if a timer is added during a kernel call,
it will not be executed until the kernel call exits. These invariants also trivially holds
for the giant locking implementation since timers are called from the thread dispatcher
in the system call or interrupt return path and the giant lock restricts the kernel to one
CPU.
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With the coarse-grained implementation, these invariants cannot be upheld any
longer. Figure 4.4 illustrates the situation on the coarse-grained implementation. CPU
0 adds and cancels a timer during a kernel call and thereafter runs expired timers before
it returns to user-space. Since the timer is canceled, we know that the timer handler will
not have been executed since it was canceled later in the system call. However, CPU 1
in the right part of the figure might execute timers at any time during the system call on
CPU 0, and in the coarse-grained implementation the timer might be executed between
adding it and cancelling it, thus breaking the invariant.

4.3.4 Heap locking

Initial tests showed that the Java virtual machine (JVM) scaled badly on the coarse-
grained implementation. The problem at first sight seemed to be a semaphore contention
issue as there was a very high frequency of semaphore operations. We therefore broke
the semaphore implementation out of the giant lock and protected them with private
locks, but this did not improve performance. After closer inspection we saw that the
problem was actually a heap issue: a semaphore was used to protect the user-space heap
from concurrent access from several threads, and this semaphore was heavily contended
on the multiprocessor but basically uncontended in the uniprocessor case.

Figure 4.5 illustrates the heap locking problem. On the uniprocessor, each thread is
allowed to consume it’s time-slice without interruption assuming no thread with higher
priority becomes ready. Even if a higher priority thread becomes available, it will still
run until the next timer interrupt before a switch occurs. Since the threads on the
uniprocessor are not truly concurrent, the only place where the heap semaphore can
block is if a thread switch occurs during the relatively short time the heap is accessed.

On the multiprocessor, the situation is radically different. Because of true thread
concurrency, the probability that the multiprocessor will execute two heap operations
concurrently is much higher as shown in the right part of the figure. We measured
the proportion of semaphore claims that block, and on the uniprocessor, the percentage
is close to zero, while on a 4-core multiprocessor, over 80% of claims in a high-load
situation blocked. Because of the additional overhead on blocking, this meant that
the multiprocessor deteriorated to uniprocessor performance since the execution was
effectively serialized by the heap semaphore.

4.3.5 Idle loop

The idle loop in the uniprocessor system simply executes an instruction to halt the
processor and wait until the next interrupt arrives. This works well on the uniprocessor
since the idle loop would not have been entered if there was any userspace job to execute.
On the multiprocessor, however, a job can be inserted into the ready queue from another
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Figure 4.5: Heap locking problem. On the uniprocessor, a thread is rarely interrupted
while holding a semaphore which leads to few blocking operations. On the multiprocessor
with true multithreading, blocking on semaphores is common which leads to deteriorated
performance.

CPU and this could then lead to idle CPUs while there is still jobs to do if the CPUs
are in the halted state.

4.4 Solving the problems with uniprocessor semantics

4.4.1 Termination of multithreaded processes

We solve the problem with multithreaded termination through delaying container termi-
nation until all threads have exited the kernel. We implement this through keeping track
of the number of threads executing in a given container and using a container-specific
flag to signal termination. When the container terminates, the flag will be set and the
CPU switched to execute another thread. When the last thread in the container leaves
the kernel, the container resources will be reclaimed. Threads performing a system call
in a terminated container will be halted and the CPU will select another thread.
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4.4.2 Thread context saving

To solve the problem of loading an unsaved context, we have added code that waits for
the context to be produced in the (unlikely) event that a thread with unsaved context is
scheduled. Note that the, perhaps more straightforward, method of saving the context on
kernel entry (i.e., before the thread can be inserted into the ready queue) is not possible
to use since system calls save the return value in the context just before returning.

4.4.3 Timer handling

We solve the timer problem with a set of changes. First, we relax the requirement
on timer cancelling. By waiting on the timer handler to finish if the timer queue is
executing on another CPU, cancelling now only guarantees that the timer handler will
not be executed after cancel has been called. We also revoke the guarantee that the
handler will not execute before the system call has finished. Both changes has required
modifications to the usage of timers in the kernel.

One common usage of timers delete the object with the timer on execution of the
handler, and we modify these to be kept alive until it can no longer be referenced. We
do this by delaying the delete with a supervisor signal, which is guaranteed to run after
the timer handling has finished (both are protected by the giant lock). If the object is
deleted before the signal executes, e.g., in the system call code, we mark it as deleted
and do nothing in the signal handler. This was straightforward to implement since this
particular timer use is implemented in a base class which is inherited by users. All the
changes are therefore localized to the base class.

4.4.4 Heap locking

For the heap locking problem for multithreaded processes, we have worked around the
problem by introducing a lock-free heap allocator based on Maged M. Michael’s allo-
cator [99]. The programming model in the system encourages single-threaded C++
applications, so this is mainly a problem for the JVM. We have therefore decided to use
the lock-free heap only for the JVM to avoid changing the characteristics of the current
heap for single-threaded applications.

4.4.5 Idle loop

To solve the problem with idle CPUs in the idle loop, we use an inter-processor interrupt
(IPI) to awake CPUs when something is inserted into the ready queue. We keep track
of idle CPUs and only interrupt those that are waiting in the idle loop.
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Figure 4.6: Performance results for the three kernel versions for C++ traffic.

An alternative we first explored was to avoid halting the CPUs in the idle loop and
allow the CPUs to directly enter the scheduler. However, this causes a great contention
on the giant lock, which reduces the efficiency on systems with more than two CPUs.
An optimization is to poll the ready queue and only take the giant lock when something
arrives, but both solutions increase the power consumption and heat generation of the
system by not halting idle cores.

4.5 Evaluation

We use a traffic generator application to measure the performance. The traffic generator
simulates incoming phone calls, which triggers the creation of a short-lived process and
database updates. The traffic generator can be setup to generate both C++ and Java
traffic, with the Java traffic being implemented by threads instead of processes at a lower
level. The traffic generator is setup to generate a specific number of calls per second.
The traffic generator is a difficult case for the multiprocessor port since it spends a large
proportion of the execution time in-kernel with process spawning and database updates.

We measure at what level of calls per second the load of the system reaches 100%,
i.e., at what level the system cannot accept more work. The results are anonymized
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Figure 4.7: Performance results for the three kernel versions for Java traffic. The left
part of the figure shows the standard heap and the right shows the lock-free heap

and shows the speedup compared to uniprocessor operation. The test runs with two
kernels, one which holds the giant lock for all operations and one which uses the coarse-
grained locking implementation. The uniprocessor version runs with all locks inactive,
but contains the same memory management implementation. The tests were performed
on a 4-CPU machine with two dual-core 2.8GHz AMD Opterons.

The results for C++ traffic are shown in Figure 4.6. As the figure shows, the im-
provement compared to the uniprocessor is around 20% for the 2-core case with the
giant lock and 48% for the 4-core case. For the coarse-grained locking, the performance
improvement compared to the uniprocessor is almost 23% and 61% for the 2 and 4-core
cases, which shows that the coarse-grained approach gives some benefits over the pure
giant lock. We expect that these numbers will improve when the database has been
separated to use it’s own locks.

Figure 4.7 shows the results for Java traffic with and without the lock-free heap for
the uniprocessor and the coarse-grained implementation. As the left part of the figure
shows, the heap problems makes performance deteriorate on multiprocessor configura-
tions. Since threads are almost always blocking on the heap semaphores, threads are
effectively serialized and multiple CPUs will only cause overhead. There is also no scal-
ing when going from two to four cores, which is also caused by the serialized threads.
The right part of the figure shows the results with the lock-free heap. As can be seen in
this figure, there is an improvement both in the two- and four core cases, albeit not as
much as with C++ traffic. The results also scale between the two- and four core case.
Again, we expect that the performance will improve with the database lock.
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4.6 Related work

The cluster-based operating system we are working with is perhaps most similar to
the Plurix operating system [43]. Plurix is a Java-based operating system which pro-
vides distributed shared memory with communication through shared objects. The
distributed in-RAM database in the operating system serves a similar purpose, but is
not implemented through distributed shared memory. Also, the Plurix kernel only runs
on uniprocessor hardware and only supports a Java runtime environment whereas we
support multiprocessors and C++ as well and use a kernel written in C++.

There have been several ports of uniprocessor kernels targeting multiprocessor sys-
tems. AIX [30, 139] was ported to multiprocessor PowerPC hardware around 10 years
ago. The port lasted around 18 months [139] and totally involved more than 100 people,
although this includes other work for the next AIX release. Similar to our implementa-
tion, the AIX developers used a mix between fine-grained and coarse-grained locks, with
some subsystems being locked by coarse-grained locks and more performance critical
ones using fine-grained locks. A difference is the AIX kernel already allowed in-kernel
thread preemption, which means that the uniprocessor base already deals with some
of the problems we encountered. AIX locks can also block threads so that the CPU
switches to another thread. This is not possible in general with our kernel since it does
not allow kernel thread preemption.

Solaris [68], Linux [17], FreeBSD [83] have also been ported to multiprocessor systems.
For Linux and FreeBSD, the initial versions used a giant locking scheme similar to
our prototype. Their locking schemes have later been refined to implement more fine-
granular approaches, starting with coarse-grained locks and gradually moving to fine-
grained locking. The Solaris implementation immediately moved to a fairly fine-grained
locking approach.

The problem with heap allocators on multiprocessor platforms has been studied
in several earlier articles [47, 53, 52, 99]. For applications which does frequent heap
allocations, introducing a multithreaded or lock-free heap can give significant advantages.
Our experience validates this observation and also illustrates behavioral differences in
multithreaded programs on uniprocessors and multiprocessors.

There are also some alternative approaches to multiprocessor porting. For example,
the application kernel approach [78] describes a method where a small application kernel
is installed as a loadable module beside the regular kernel, and handles all CPUs except
the boot CPU. Applications thereafter run on the application kernel, but system calls
are forwarded to the boot CPU and handled by the original kernel. This approach
allows a multiprocessor port without changing the original kernel, but limits scalability
of kernel-bound work and is therefore unlikely to provide good results for the operating
system we are targeting. Virtualization is another possible approach to benefit from
a multiprocessor. Cellular Disco [44] partitions a large multiprocessor into a virtual
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cluster, and runs multiple IRIX instances in parallel. However, virtualization would
require the high availability framework for the operating system to change in order to
avoid co-location of database objects on the same node. We also investigated a port to
the paravirtualized Xen system [16], but for technical reasons it turned out to be difficult
to implement.

4.7 Conclusions

In this paper, we have described experiences from porting an operating system kernel
to multiprocessor hardware. We have outlined the implementation of coarse-grained
locking for the kernel, which is based on a prototype with a giant lock that serializes
kernel execution. We have also described the most important problems which arose and
our solutions to these. Our evaluation shows that the coarse-grained approach improves
on the giant locking approach for the kernel-bound workload we target.

The prototype giant lock implementation has many similarities with the uniprocessor
implementation. Processes executing in the kernel are never interrupted, so the original
uniprocessor semantics are mostly kept unmodified. The changes for the implementation
were mostly related to CPU startup and CPU-local data and the implementation of
multithreaded address spaces. After the initial implementation, correctness was therefore
not a big problem with the giant locking approach.

For the coarse-grained implementation, the changes to the uniprocessor base are
much larger. With multiple CPUs executing concurrently in the kernel, many of the
assumptions made in the uniprocessor implementation are no longer true. While some of
these problems were found and analyzed during the prestudy-phase, e.g., the problems
with multithreaded termination, others were not found until we started prototyping
the implementation. For example, we first made the idle loop immediately enter the
scheduler again to keep CPUs busy, but since this was shown to cause a high contention
on the giant lock we revised the implementation. The heap locking problem, which
actually occurs in user-space, was similarly unexpected and was caused as an indirect
effect of true multithreading.

Our experiences illustrates the diversity of problems associated with multiprocessor
ports of operating system kernels. Since the changes affect large parts of the code base,
with parallelization of many parts of the kernel, this type of port requires thorough
knowledge of a large set of modules in the kernel. In general, the difficult problems have
occurred in parts of the code that were not directly changed by the multiprocessor port.
For example, most of the timer code is not directly affected by the multiprocessor port,
yet it has caused several difficult indirect problems in code that uses the timers.

While we’ve had a set of difficult problems during the implementation of the coarse-
grained locking approach, the duration of the project have still been shorter than the
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giant lock prototype, which took almost two years [74]. The primary reason is that the
prototype was implemented by a single developer without previous experience with the
operating system working part-time at a remote site, while the coarse-grained approach
was implemented by a team of experienced designers working on-site. Another reason is
simply that we could start from the already working giant locking implementation and
work incrementally from that, which has enabled the development to continue in small
steps. A third reason has been the improved tool support, primarily the use of GDB
through Qemu, which was not available when the giant lock prototype was developed.
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5.1 Introduction

For performance reasons, uniprocessor computers are now being replaced with small
multiprocessors. Moreover, modern processor chips from major processor manufacturers
often contain more than one CPU core, either logically through Symmetric MultiThread-
ing [34] or physically as a Chip MultiProcessor [48]. For instance, current Intel Pentium 4
and Xeon processors contain two logical processors [93] and several other manufacturers
are in the process of introducing on-chip multiprocessors [63, 128]. With multiproces-
sors becoming prevalent, good operating system support is crucial to benefit from the
increased computing capacity.

We are currently working on a project together with a major developer of industrial
systems. The company has over the last 10 years being developing an operating system
kernel for clusters of uniprocessor IA-32 computers. The operating system has interesting
properties such as fault tolerance and high performance (mainly in terms of throughput).
In order to take advantage of new shared-memory multiprocessors, a multiprocessor
version of the kernel is being developed [74]. However, we were faced with the problem
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that it was very difficult and costly to make the needed modifications because of the size
of the code, the long time during which the code had been developed (this has led to
a code structure which is hard to grasp), and the intricate nature of operating system
kernels.

The situation described above illustrates the fact that making changes to large soft-
ware bodies can be very costly and time consuming, and there has also been a surge of
interest in alternative methods lately. For example, as an alternative to altering operat-
ing system code, Arpaci-Dusseau et al. [9] propose a method where“gray-box” knowledge
about algorithms and the behavior of an operating system are used to acquire control
and information over the operating system without explicit interfaces or operating sys-
tem modification. There has also been some work where the kernel is changed to provide
quality of service guarantees to large unmodified applications [151].

For the kernel of our industrial partner, it turned out that the software engineer-
ing problems when adding multiprocessor support were extremely difficult and time-
consuming to address using a traditional approach. Coupled to the fact that the target
hardware would not scale to a very large number of processors during the foreseeable fu-
ture (we expect systems in the range of 2 to 8 processors), this led us to think of another
approach. In our approach, we treat the existing kernel as a black box and build the
multiprocessor adaptations beside it. A custom kernel called the application kernel, of
which the original kernel is unaware, is constructed to run on the other processors in the
system while the original kernel continues to run on the boot processor. Applications
execute on the other processors while system calls, page faults, etc., are redirected by the
application kernel to the uniprocessor kernel. We expect the application kernel approach
to substantially lower the development and maintenance costs compared to a traditional
multiprocessor port.

In this paper, we describe the application kernel approach and evaluate an imple-
mentation for the Linux kernel. With this implementation, we demonstrate that it is
possible to implement our approach without changing the kernel source code and at the
same time running unmodified Linux applications. We evaluate our approach both in
terms of performance and implementation complexity. The evaluation results show that
the implementation complexity is low in terms of lines of code and cyclomatic complexity
for functions, requiring only seven weeks to implement. Performance-wise, our imple-
mentation performance-levels comparable to Linux for compute-bound applications.

The application kernel implementation for Linux is available as free software li-
censed under the GNU General Public License (GPL) at http://www.ipd.bth.se/ska/
application_kernel.html. This paper builds on our previous work where we imple-
mented the application kernel approach for a small in-house kernel [77].

The rest of the paper is structured as follows. We begin with discussing related
work in Section 5.2. In Section 5.3 we describe the ideas behind our approach and
Section 5.4 then discusses our implementation for the Linux kernel. We describe our
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evaluation framework in Section 5.5, and then evaluate the implementation complexity
and performance of the application kernel in Section 5.6. Finally, we conclude and discuss
future extensions to the approach in Section 5.7.

5.2 Related Work

The implementation of a multiprocessor operating system kernel can be structured in a
number of ways. In this section, we present the traditional approaches to multiprocessor
porting as well as some alternative methods and discuss their relation to our approach.

5.2.1 Monolithic Kernels

Many multiprocessor operating systems have evolved from monolithic uniprocessor ker-
nels. These uniprocessor kernels (for example Linux and BSD UNIX) contain large
parts of the actual operating system, making multiprocessor adaptation a complex task.
In-kernel data structures need to be protected from concurrent access from multiple pro-
cessors and this requires locking. The granularity of the locks, i.e., the scope of the code
or data structures a lock protects, is an important component for the performance and
complexity of the operating system. Early multiprocessor operating systems often used
coarse-grained locking, for example the semaphore-based multiprocessor version of UNIX
described by Bach and Buroff [11]. These systems employ a locking scheme where only
one processor runs in the kernel (or in a kernel subsystem) at a time [123]. The main
advantage with the coarse-grained method is that most data structures of the kernel can
remain unprotected, and this simplifies the multiprocessor implementation. In the most
extreme case, a single “giant” lock protects the entire kernel.

The time spent in waiting for the kernel locks can be substantial for systems domi-
nated by in-kernel execution, and in many cases actually unnecessary since the processors
might use different paths through the kernel. The obvious alternative is then to relax the
locking scheme and use a more fine grained locking scheme to allow several processors to
execute in the kernel concurrently. Fine-grained systems allow for better scalability since
processes can run with less blocking on kernel-access. However, they also require more
careful implementation, since more places in the kernel must be locked. The FreeBSD
SMP implementation, which originally used coarse-grained locking, has shifted toward
a fine-grained method [82] and mature UNIX systems such as AIX and Solaris imple-
ment multiprocessor support with fine-grained locking [30, 68], as do current versions of
Linux [88].
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5.2.2 Microkernel-based Systems

Another approach is to run the operating system on top of a microkernel. Microkernel-
based systems potentially provide better system security by isolating operating system
components and also better portability since much of the hardware dependencies can be
abstracted away by the microkernel. There are a number of operating systems based on
microkernels, e.g., L4Linux [54], a modified Linux kernel which runs on top of the L4
microkernel [84]. The Mach microkernel has been used as the base for many operating
systems, for example DEC OSF/1 [31] and MkLinux [32]. Further, QNX [114] is a
widely adopted microkernel-based multiprocessor operating system for real-time tasks.
However, although the microkernel implements lower-level handling in the system, a
ported monolithic kernel still needs to provide locks around critical areas of the system.

An alternative approach is used in multiserver operating systems [23, 120]. Multi-
server systems organize the system as multiple separated servers on a microkernel. These
servers rely on microkernel abstractions such as threads and address spaces, which can in
principle be backed by multiple processors transparently to the operating system servers.
However, adapting an existing kernel to run as a multiserver system [40, 115] requires
major refactoring of the kernel. Designing a system from scratch is a major undertaking,
so in most cases it is more feasible to port an existing kernel.

5.2.3 Asymmetric Operating Systems

Like systems which use coarse-grained locking, master-slave systems (refer to Chapter
9 in [123]) allow only one processor in the kernel at a time. The difference is that
in master-slave systems, one processor is dedicated to handling kernel operations (the
“master” processor) whereas the other processors (“slaves”) run user-level applications.
On system calls and other operations involving the kernel, master-slave systems divert
the execution to the master processor. Commonly, this is done through splitting the
ready queue into one slave queue and one master queue. Processes are then enqueued
in the master queue on kernel operations, and enqueued in the slave queue again when
the kernel operation finishes. Since all kernel access is handled by one processor, this
method limits throughput for kernel-bound applications.

The master-slave approach is rarely used in current multiprocessor operating systems,
but was more common in early multiprocessor implementations. For example, Goble
and Marsh [42] describe an early tightly coupled VAX multiprocessor system, which was
organized as a master-slave system. The dual VAX system does not split the ready queue,
but instead lets the slave processor scan the ready queue for processes not executing
kernel code. Also, although both processors can be interrupted, all interrupt handling
(except timer interrupts) are done on the master processor. Our approach is a modern
refinement of the master-slave approach, where the source code of the original system
(“master”) remains unchanged.
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An interesting variation of multiprocessor kernels was presented in Steven Muir’s
PhD. thesis [106]. Piglet [106] dedicates the processors to specific operating system
functionality. Piglet allocates processors to run a Lightweight Device Kernel (LDK),
which normally handles access to hardware devices but can also perform other tasks.
The LDK is not interrupt-driven, but instead polls devices and message buffers for
incoming work. A prototype of Piglet has been implemented to run beside Linux 2.0.30,
where the network subsystem (including device handling) has been off-loaded to the
LDK, and the Linux kernel and user-space processes communicate through lock-free
message buffers with the LDK. A similar approach has also been used to offload the
TCP/IP stack recently [116]. These approaches are beneficial if I/O-handling dominates
the OS workload, whereas it is a disadvantage in systems with much computational work
when the processors would serve better as computational processors. It can also require
substantial modification of the original kernel, including a full multiprocessor adaption
when more than one processor is running applications.

5.2.4 Cluster-based Approaches

Several approaches based on virtualized clusters have also been presented. One example
is the Adeos Nanokernel [149] where a multiprocessor acts as a cluster with each processor
running a modified version of the Linux kernel. The kernels cooperate in a virtual high-
speed and low-latency network. The Linux kernel in turn runs on top of a bare-bones
kernel (the Adeos nanokernel) and most features of Linux have been kept unchanged,
including scheduling, virtual memory, etc. This approach has also been used in Xen [16],
which virtualizes Linux or NetBSD systems.

Another cluster-based method is Cellular Disco [44], where virtualization is used
to partition a large NUMA multiprocessor into a virtual cluster which also provides
fault-containment between the virtualized operating systems. The virtualized systems
provide characteristics similar to our approach in that they avoid the complexity issues
associated with a traditional parallelization approach. However, they also require a
different programming model than single-computer systems for parallel applications.
Cluster-based approaches are also best suited for large-scale systems where scalability
and fault tolerance are hard to achieve using traditional approaches.

MOSIX [15] is a single system image distributed system which redirects system calls
to the “unique home node” of the process, thereby utilizing the central idea behind
master-slave systems. MOSIX can distribute unmodified Linux applications throughout
a cluster of asymmetric hardware. MOSIX is similar to our approach in that it redi-
rects system calls, but has a different goal (providing a single-system image distributed
system).
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5.3 The Application Kernel Approach

All of the approaches presented in the last section require, to various degrees, extensive
knowledge and modifications of the original kernel. We therefore suggest a different
approach, the application kernel approach, which allows adding multiprocessor support
with minimal effort and only basic knowledge about the original kernel. In this section
we describe the general ideas behind the application kernel approach and an overview
of how it works.

5.3.1 Terminology and Assumptions

Throughout the paper, we assume that the implementation platform is the Intel IA-32
although the approach is applicable to other architectures as well. We will follow the
Intel terminology when describing processors, i.e., the processor booting the computer
will be called the bootstrap processor while the other processors in the system are called
application processors.

Also, we use a similar naming scheme for the two kernels: the original uniprocessor
kernel is called the bootstrap kernel, i.e., the Linux kernel in the implementation described
in this paper, whereas the second kernel is called the application kernel . Further, in
order to not complicate the presentation, we will assume single-threaded processes in
the discussion, although multi-threaded processes are also supported using the same
technique.

5.3.2 Overview

The basic idea in our approach is to run the original uniprocessor kernel as it is on the
bootstrap processor while all other processors run the application kernel. Applications
execute on both kernels, with the application kernel handling the user-level part and
the bootstrap kernel handling kernel-level operations. One way of describing the overall
approach is that the part of the application that needs to communicate with the kernel
is executed on a single bootstrap processor while the user-level part of the program is
distributed among the other processors in the system, i.e., similar to master-slave kernels.

Figure 5.1 shows an overview of the application kernel approach. The upper boxes
represent user processes and the lower shows the bootstrap kernel and the application
kernel. Each process has two threads, a bootstrap thread and an application thread . The
bootstrap thread executes on the bootstrap kernel, i.e., Linux, while the application
threads are handled by the application kernel. An application thread runs the actual
program code whereas the bootstrap thread serves as a proxy forwarding kernel calls
to the bootstrap kernel. Note that the application kernel and the bootstrap kernel use
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Figure 5.1: Overview of the application kernel approach.

unique interrupt and trap handlers to enable the application kernel to catch traps and
faults caused by the application.

The two threads in the process’ communicate through a shared area in the process
address space. The bootstrap monitors the shared area to detect new system calls etc.
Applications run as before, except when performing operations involving the kernel. On
such events, the application thread traps into the application kernel, which then enters
a message in the communication area. The actual event will be handled at a later stage
by the bootstrap thread, which performs the corresponding operation. We will describe
trap handling in detail in Section 5.3.4.

With the application kernel approach, we can add multiprocessor support to an
existing operating system without neither doing modifications to the original operating
system kernel, nor do we have to do any changes to the applications (not even recompiling
them). There are a few special cases that might require kernel source changes, but those
were not needed for our research prototype. Section 5.4.1 describes these special cases.

Compared to the other porting methods, our approach tries to minimize the effort
needed to implement a multiprocessor port of a uniprocessor operating system. The focus
is therefore different from traditional porting methods. Master-slave kernels, which are
arguably most similar to our approach, place most of the additional complexity in the
original kernel whereas we put it into two separate entities (the application kernel and the
bootstrap thread). In a sense, our approach can be seen as a more general revitalization
of the master-slave idea. The Cache Kernel [46, 28] employs a scheme similar to ours

79



on redirecting system calls and page faults, but requires a complete reimplementation
of the original kernel to adapt it to the cache kernel. We can also compare it to the
MOSIX system [15] which also redirects system calls, although MOSIX is used in a
cluster context and has different goals then the application kernel.

5.3.3 Hardware and Software Requirements

The application kernel approach places some restrictions (often easy to fulfill) on the
processor architecture and the bootstrap kernel. The architecture must support at least
the following:

1. Binding of external interrupts to a specific processor and at the same time allow
CPU-local timer interrupts.

2. Retrieving the physical page table address of the currently running process.

3. Interrupt and trap handlers must be CPU-local.

The first requirement must be fulfilled since only the bootstrap kernel handles all
external interrupts except for timer interrupts. Timer interrupts need to be CPU-local
for scheduling to take place on the application kernel. On the IA-32 this is possible to
implement with the APIC (Advanced Programmable Interrupt Controller), which has a
per-processor timer. MIPS uses a timer in the coprocessor 0 on the processor chip [103]
and PowerPC has a decrementer register [55] which can be used to issue interrupts. The
interrupt handlers must be private for different processors, which is directly possible on
IA-32 processors through the Interrupt Descriptor Table, IDT. For architectures where
the interrupt handlers reside on fixed addresses, e.g., MIPS, instrumentation of the
interrupt handlers are needed.

Our approach also places two requirements on the bootstrap kernel. First, it must be
possible to extend the kernel with code running in supervisor mode. This requirement
is satisfied in most operating systems, e.g., through loadable modules in Linux. Second,
the bootstrap kernel must not change or remove any page mappings from the application
kernel. The application kernel memory needs to be mapped to physical memory at all
times, since revoking a page and handing it out to a process (or another location in the
kernel) would cause the application kernel to overwrite data for the bootstrap kernel or
processes.

5.3.4 Application Kernel Interaction

Figure 5.2 shows how the kernel interaction works in the application kernel approach.
Kernel interaction requires 8 steps, which are illustrated in the Figure. In the discussion,
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Figure 5.2: System call/trap handling in the application kernel approach

we assume that the operation is a system call, although page faults and other operations
are handled in the same way.

1. The application (i.e., the application thread running on one of the application
processors) issues a system call and traps down to the application kernel. This is
handled by the CPU-local trap vector.

2. The application kernel enters information about the call into the shared area, and
thereafter schedules another thread for execution.

3. At a later point, the bootstrap thread wakes up and finds a message in the shared
area.

4. The bootstrap thread then parses the message and performs the corresponding
operation (i.e., issuing the same system call in this case).

5. The bootstrap kernel will thereafter handle the system call from the bootstrap
thread and return control to the bootstrap thread.

6. After this, the bootstrap thread must tell the application kernel that the applica-
tion thread can be scheduled again. Since the application kernel runs as a loadable
module within the bootstrap kernel, it must do this through the driver interface
of the bootstrap kernel, issuing the application kernel apkern activate thread
call.
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7. The application kernel driver, running on the bootstrap processor, enters the ap-
plication thread into the ready queue again.

8. Finally, the application thread is scheduled at a later point in time on one of the
application processors.

The clone and fork system calls are handled slightly different then other calls, and
are described in detail in Section 5.4.2. Further, the exit system call and exceptions that
cause process termination (for example illegal instructions) are different than page faults
and other system calls. This is because the bootstrap kernel is unaware of the application
thread and will terminate the process without notifying the application kernel. If this
is not handled, the application kernel will later schedule a thread which runs in a non-
existing address space. For this case, step 2 of the algorithm above is modified to clean
up the application thread (i.e., free the memory used by the thread control block and
remove the thread from any lists or queues).

Another special case is when the information flows the opposite way, i.e., when the
kernel asynchronously activates a process (for instance in response to a signal in Linux).
In this case, the handler in the bootstrap thread will issue the apkern activate thread
call directly, passing information about the operation through the shared area. The ap-
plication kernel will then issue the same signal to the application thread, activating it
asynchronously. Our current implementation does not support asynchronous notifica-
tions, but it would be achieved by registering signal handlers during the bootstrap thread
startup phase.

5.3.5 Exported Application Programming Interface

The application kernel API is only available via driver calls to the bootstrap kernel.
There is no way to call the application kernel directly via system calls in the application
thread since the trap handling matches that of the bootstrap kernel and only forwards
the events through the shared area. A straightforward way of allowing direct calls to
the application kernel would be to use a different trap vector than the Linux standard,
which could be used e.g., to control application kernel scheduling from applications. The
exported interface consists of six calls:

• apkern init: This routine is called once on system startup, typically when the
application kernel device driver is loaded. It performs the following tasks:

– It initializes data structures in the application kernel, for example the ready-
queue structure and the thread lookup table.

– It starts the application processors in the system. On startup, each processor
will initialize the interrupt vector to support system calls and exceptions. The
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processor will also enable paging and enter the idle thread waiting for timer
interrupts.

• apkern thread create: This function is called from the bootstrap thread when
the process is started. The function creates a new thread on the application kernel.
The thread does not enter the ready queue until the apkern thread start call is
invoked.

• apkern thread ex regs: Sometimes it is necessary to update the register con-
tents of a thread (for example copying the register contents from parent to child
when forking a process), and the application kernel therefore has a call to “ex-
change” the register contents of a thread.

• apkern thread get regs: This function returns in the current register context of
a thread (also used with fork).

• apkern thread start: Place a thread in the ready queue.

• apkern thread activate: Thread activation is performed when the bootstrap
thread returns, e.g., from a system call, to wake up the application thread again.
The call will enter the application thread back into the ready queue and change
its state from blocked to ready .

5.4 Implementation

We implemented the application kernel as a loadable kernel module for Linux. The
module can be loaded at any time, i.e., the application kernel does not need to be
started during boot but can be added when it is needed. Since modules can be loaded
on demand, the application kernel can also be started when the first process uses it. It
is further not necessary to recompile applications to run on the application kernel, and
applications running on the application kernel can coexist seamlessly with applications
running only on the bootstrap processor.

The layout of the shared memory area for the Linux implementation is shown in
Figure 5.3. The shared area data type, apkern_comm_entry_t has a union with the
different types of messages, with page faults and system calls shown in the figure and a
variable (bootstrap_has_msg) which is used by the application kernel to signal to the
bootstrap thread. There is always a one to one mapping between application threads
and bootstrap threads, i.e., multithreaded processes will have several bootstrap thread.
The bootstrap thread does not respond to system calls etc., through the shared area,
but invokes the application kernel driver instead. Since the shared area is a one-way
communication channel, it needs no explicit protection.

The application kernel is initialized, i.e., processors are booted etc., when the kernel
module is loaded. The application kernel is thereafter accessible through a normal Linux
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typedef struct {

volatile bool_t bootstrap_has_msg;

volatile apkern_comm_nr_t nr;

volatile addr_t pc;

union {

struct {

volatile addr_t addr;

volatile bool_t write;

} PACKED pagefault;

struct {

volatile uint_t nr;

volatile uint_t arg1;

...

volatile uint_t arg6;

volatile uint_t ret;

} PACKED syscall;

...

} u;

} apkern_comm_entry_t;

Figure 5.3: Shared area layout

device file, and a process that wants to run on the application kernel opens the device file
on startup and closes it when it exits (this can be done automatically and is described in
Section 5.4.3). All interactions with the application kernel, apart from open and close,
are done using ioctl calls, through which the exported interface is available.

Figure 5.4 illustrates the application kernel driver (a char-type device) structure and
an apkern activate thread call. The call from the bootstrap thread enters through
the Linux system call handler which forwards it to the ioctl entry point for the device
driver. The ioctl handler in turn updates the thread control block for the activated
thread, locks the application kernel ready queue, and enters the thread control block
into the ready queue. In the rest of this section, we will discuss details related to paging,
forking and application startup from the Linux implementation of the application kernel.

5.4.1 Paging

All page faults are handled in the bootstrap thread by setting the stack pointer to the
address of the page fault and touching that memory area. Although this seems like
an unnecessary step instead of just accessing the memory directly, it is needed as a
workaround since Linux terminates the program if stack access is done below the current
stack pointer.
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Figure 5.4: Application kernel device driver structure

The paging implementation also illustrates the one case where the application kernel
approach might require kernel modifications. The problem (which is general and affects
other approaches as well) occurs in multi-threaded processes on page table updates,
when the translation lookaside buffer (TLB) contents for different processors running in
the same address space will be inconsistent1. For example, if processor 0 and 1 execute
threads in the same address space, and processor 0 revokes a page mapping, the TLB of
processor 1 will contain an incorrect cached translation. To solve this, an inter-processor
interrupt is invoked to invalidate the TLB of the other processors, which requires changes
to the page fault handling code. In our prototype, we ran without disk swap and the
inter-processor interrupts are therefore not needed and have not been implemented.

5.4.2 clone/fork System Calls

The Linux clone and fork system calls require special handling in the application kernel.
Both calls start a new process which inherits the context of the invoking thread. The
difference is that clone allows for sharing the address space with the parent (creating
a new thread), while fork always separate the address spaces (creating a new process).
clone also requires the invoker to specify a callback function that will be executed
by the cloned thread. In Linux, fork is simply a special case of clone, although the
implementation of fork predates clone.

1On architectures with tagged TLBs, e.g., MIPS, this could occur even in single-threaded processes
since the TLB is not necessarily flushed on page table switches.
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Figure 5.5: Handling of the clone system call

We illustrate the steps needed in a clone or fork call in Figure 5.5. If we would just
issue the system call directly, the bootstrap thread would run the cloned thread itself.
Therefore we first clone the bootstrap thread, then let the cloned bootstrap thread create
a new application kernel thread (i.e., handling the original clone), and finally enters a
loop waiting for messages from the application kernel. This effectively splits the clone
call in two, creating a new thread pair. The fork call works the same way, but has
different return semantics, i.e., it returns “twice” instead of using a callback.

5.4.3 Running Applications

Our implementation allows running dynamically linked applications directly, without
modifying or even recompiling them. It is also possible to run a mixed system, with some
applications running on the application kernel whereas others are tied to the bootstrap
processor.

We achieve this by applying some knowledge about application startup under Linux.
In Linux, applications are started by a short assembly stub which in turn calls __libc_start_main.
This function, provided by GNU libc, starts the main function. The __libc_start_main
function is dynamically linked into the executable and can therefore be overridden. We
override __libc_start_main with the startup routine for the application kernel, which
can be done as long as the application is dynamically linked against libc. To run a
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Figure 5.6: Application startup. The dashed lines shows the original execution while
the solid lines show the overridden execution path.

process on the application kernel, we simply set the LD_PRELOAD environment variable
to preload a library with the bootstrap thread implementation.

The overriding process is illustrated in Figure 5.6. The overridden __libc_start_main
will just invoke the original __libc_start_main, but with apkern_thread instead of
main as starting function. This function in turn will either, depending on if the NOAPP-
KERN environment variable is set, invoke the original main and thereby bypassing the
application kernel, or start the bootstrap thread.

5.5 Experimental Setup and Methodology

We have conducted an evaluation of the application kernel approach where we evaluate
both latency and throughput. First, we measure single-process performance in order to
estimate the extra latency caused by the application kernel. Second, we measure scala-
bility of multiprogramming and parallel benchmarks. In the evaluation, we use standard
UNIX tools, the SPLASH 2 [148] benchmarks and the SPEC CPU2000 [130] benchmark
suite. Further, we have also evaluated the implementation size and complexity of our
approach, which was performed by counting the physical lines of code in the application
kernel and calculating the McCabe cyclomatic complexity [36] which gives the number
of independent code paths through a function. The code lines were counted with the
sloccount tool [145] by David A. Wheeler and the cyclomatic complexity was measured
by the pmccabe tool by Paul Bame [14].
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5.5.1 Evaluation Environment

We performed our performance evaluation using the Simics full system simulator [90]
and real hardware. We setup Simics to simulate a complete IA-32 system with 1 to 8
processors. Our hardware is a 200MHz dual Pentium Pro with 8KB first-level instruction
and data caches, and a 256KB per-processor L2 cache. The Simics simulator allows us to
use unmodified hard disk images, containing the complete operating system. Compared
to real hardware, our simulated setup does not simulate caches in the system, and
some other performance issues relevant in multiprocessor systems [38], such as costs
associated with data alignment, cross-processor cache access etc., are not accounted for
in our simulations. Our prototype also has known performance issues, e.g., we have not
optimized the memory layout for efficient use of the cache. However, the fundamental
limitation of the application kernel approach is that the bootstrap thread at some point
will be a scalability bottleneck. We believe that the simulated measurements give a good
indication of when this bottleneck is reached for various usage patterns.

The execution on hardware serves to validate the correctness of our implementation
in a real setting, and is also used to establish the latency for kernel operations with the
application kernel. We successfully ran all the benchmarks on our hardware as well as
on the simulated system.

We benchmarked uniprocessor Linux with the application kernel module against mul-
tiprocessor Linux, running the 2.4.26 version of the kernel, henceforth referred to as SMP
Linux. Our experiments report the time required to execute the benchmarks in terms of
clock cycles on the bootstrap processor. Our system was a minimal Debian GNU/Linux
3.1 (“Sarge”)-based distribution, which ran nothing but the benchmark applications.

5.5.2 Benchmarks

For the performance evaluation, we conducted three types of performance measurements.
First, we ran a number of single-process benchmarks to evaluate the overhead caused by
the system call forwarding used by the application kernel approach. These benchmarks
run one single-threaded process at a time and should therefore be unaffected by the
number of processors. Second, we also ran a set of multithreaded parallel applications,
which shows the scalability of compute-bound applications. Third, we also evaluated
a multiprogramming workload. In the multiprogramming benchmark, we ran a set of
programs concurrently and measured the duration until the last program finished. This
benchmark should be characteristic of a loaded multi-user system.

The programs we used are a subset of the SPEC CPU2000 benchmarks, a subset
of the Stanford SPLASH 2 benchmarks, and a set of standard UNIX tools. For SPEC
CPU2000, we used the Minnespec reduced workloads [69] to provide reasonable execu-
tion times in our simulated environment. The SPLASH 2 benchmarks were compiled
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Table 5.1: The benchmarks used in the performance evaluation

Benchmark Command Description

Single-process benchmarks
find find / List all files in the system

(13,946 files and directo-
ries)

SPEC2000 gzip 164.gzip lgred.log Compression of a logfile,
computationally intensive.

SPEC2000 gcc 176.gcc smred.c-iterate.i SPEC 2000 C-compiler.
-o a.s

Parallel benchmarks
SPLASH2
RADIX

RADIX -n 8000000 -p8 Sort an array with radix
sort, 8 threads.

SPLASH2 FFT FFT -m20 -p8 Fourier transform, 8
threads.

SPLASH2 LU
(non-contiguous)

LU -p 8 -b 16 -n 512 Matrix factorization, 8
threads.

Multiprogramming benchmarks
176.gcc 176.gcc smred.c-iterate.i SPEC2000 C-compiler

-o a.s
find find / List all files in the system

(13,946 files and directo-
ries).

grep grep "linux" System.map Search for an expression in
a file. System.map has
150,000 lines.

find and grep find / | grep "data" List all files in the system
and search for a string in
the results.

SPLASH2 FFT FFT -m10 -p8 Fourier transform, 8
threads.

SPLASH2 LU LU -p 8 -b 16 -n 512 Matrix factorization, 8
threads.

89



Table 5.2: getpid latency in Linux and the application kernel

Linux Application Kernel
PPro 200MHz 970 5,700
Simics 74 860

with a macro package which uses clone for the threading implementation and pthread
primitives for mutual exclusion. The SPLASH SPEC benchmarks were compiled with
GCC version 3.3.4 (with optimization -O2) and the UNIX applications were unmodified
Debian binaries. The benchmark applications are summarized in Table 5.1.

5.6 Experimental Results

In this Section, we describe the results obtained from our measurements. Table 5.3
and 5.4 show the speedup vs. uniprocessor Linux for SMP Linux and the application
kernel. For the parallel and multiprogramming benchmarks, the speedup is also shown
in Figure 5.7. The results from the getpid evaluation is shown in Table 5.2.

5.6.1 Performance Evaluation

On our hardware, issuing a getpid call takes around 970 cycles in Linux on average (the
value fluctuates between 850 and 1,100 cycles) whereas the same call requires around
5,700 cycles with the application kernel as shown in Table 5.2. In Simics, the cost of
performing a getpid call is 74 cycles in Linux and around 860 cycles with the application
kernel. Since getpid performs very little in-kernel work, the cost for Linux is dominated
by the two privilege level switches (user mode to kernel and back). For the application
kernel, there are five privilege level switches (see Figure 5.2). First, the application
thread traps down into the application kernel, which updates the shared area. The
bootstrap thread thereafter performs another trap for the actual call and upon return
invokes the application kernel driver through an ioctl call, i.e., performing another three
privilege level switches. Finally, the application thread is scheduled again, performing
the fifth privilege level switch. In our simulated system, each instruction executes in one
cycle and there is no additional penalty for changing privilege mode and therefore the
getpid cost is dominated by the number of executed instructions. This explains why
the application kernel overhead is proportionally larger in the simulated system than on
real hardware.

In the computationally intensive single-process gcc and gzip benchmarks from SPEC
CPU2000, the application kernel performs almost on-par with SMP Linux (the differ-
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Table 5.3: Speedup for the single-process benchmarks.

Speedup vs. uniprocessor Linux
Find 176.gcc 164.gzip

CPUs Linux Appkern Linux Appkern Linux Appkern

2 0.9803 0.7844 1.0015 0.8976 1.0008 0.9461
3 0.9795 0.8284 1.0033 0.9125 1.0012 0.9461
4 0.9807 0.8641 1.0047 0.9218 1.0014 0.9462
5 0.9804 0.8690 1.0053 0.9230 1.0016 0.9462
6 0.9800 0.8748 1.0047 0.9244 1.0016 0.9462
7 0.9795 0.8784 1.0050 0.9252 1.0017 0.9462
8 0.9776 0.8831 1.0055 0.9260 1.0017 0.9462

Table 5.4: Speedup for the parallel and multiprogramming benchmarks.

Speedup vs uniprocessor Linux
RADIX FFT LU Multiprogramming

CPUs Linux Appkern Linux Appkern Linux Appkern Linux Appkern

2 2.0433 1.0834 1.6916 1.0401 1.9217 1.2662 1.5049 0.9705
3 3.3758 2.5174 2.2930 1.8654 2.9430 2.0795 1.6627 1.1375
4 4.0885 3.7227 2.5090 2.3235 3.5053 2.9941 1.6850 1.1779
5 5.1898 4.8200 2.8456 2.6323 4.0857 3.8009 1.6782 1.1878
6 5.9562 5.5736 2.9927 2.8626 4.7706 5.0445 1.6845 1.1962
7 6.9355 6.1934 3.1732 3.0188 5.3277 5.1628 1.6803 1.2059
8 8.0009 6.0924 3.3272 3.0745 6.0084 1.6839

ence is between 5 and 10%) as shown in Table 5.3. Further, we can also see that as
more processors are added, the gap decreases because there is a higher probability of a
processor being free to schedule the thread when the bootstrap thread has handled the
call.

A weak spot for the application kernel shows in the filesystem-intensive find bench-
mark. Here, the overhead associated with forwarding system calls prohibit the applica-
tion kernel to reach SMP Linux performance levels. However, since application kernel
applications can coexist seamlessly with applications tied to the bootstrap kernel, it is
easy to schedule these applications on the bootstrap kernel.

The selected computationally intensive parallel benchmarks from the Stanford SPLASH
2 suite exhibit good scalability both in SMP Linux and for the application kernel (see
Table 5.4 and Figure 5.7). The results for the application kernel are close to those
for SMP Linux, especially considering that the application kernel excludes one of the
processors (the bootstrap processor) for computation. This shows that the application
kernel is a feasible approach for computationally intensive applications, where the kernel
interaction is limited.

91



Figure 5.7: Speedup for the parallel and multiprogramming benchmarks vs. uniprocessor
Linux.
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Table 5.5: Comment-free lines of code

Category Lines of code
Application kernel 2,400
Linux driver 360
Libraries 920
Bootstrap thread 260

The multiprogramming benchmark, also shown in Table 5.4 and Figure 5.7, contains
a mix of applications which have different behavior in terms of user/kernel execution.
For this benchmark, we see that running all applications on the application kernel places
a high strain on the bootstrap kernel, which hampers the scalability compared to SMP
Linux. For general multiprogramming situations, it is probably better to divide the
processes so that kernel-bound processes run on the bootstrap processor while the rest
are executed on the application kernel.

5.6.2 Implementation Complexity and Size

The application kernel was ported from the implementation presented in [77], and most
of the internals of the kernel are completely unchanged. Apart from some restructuring
and the loadable Linux kernel module, the only changes to the actual application kernel is
some low-level handling of system calls (i.e., the used trap vector and parameter passing).
One single developer spent seven weeks part-time implementing the application kernel
support for Linux. The previous implementation took about five weeks to finish, and
was also done by a single developer.

The number of physical code lines (not counting empty and comments) in the ap-
plication kernel is 3,600. Of these, the Linux driver module takes up around 250 lines,
roughly equally split in initialization and handling of ioctl calls. Only around 400 lines
of the implementation were changed from our previous implementation. Libraries, a
small part of libc and malloc, list, stack and hash table implementations, account for
another 920 lines of code. The user-level library which contains the bootstrap thread
consists of 260 lines of code. Roughly one third of these are needed for the handling of
clone and fork while around 70 lines are needed for startup. The rest is used in the
implementation of page fault and system call handling (excluding clone and fork). The
code lines are summarized in Table 5.5.

The source consists of around 360 lines of assembly code and the rest being C-code.
The high proportion of assembly code, almost 10%, stems from the fact that a fairly large
part of the code deals with startup of the application processors and low-level interrupt
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Figure 5.8: Histogram of McCabe cyclomatic complexity for the Application Kernel,
Linux 2.4.26, FreeBSD 5.4 and the L4/Pistachio 0.4 microkernel.

handling. If we disregard the library code (which is independent of the application
kernel), the assembly portion increases to 17%.

A histogram of the McCabe cyclomatic complexity for the application kernel (without
the library implementation), and the kernel core and the IA-32-specific parts of Linux
2.4.26, FreeBSD 5.4 and L4/Pistachio 0.4 [66] is shown in Figure 5.8. As the figure
indicates, the cyclomatic complexity of the application kernel implementation is fairly
low (a value below 10 is generally regarded as indicative of simple functions). Compared
to the other kernels, we can see that the application kernel has a larger proportion of
functions with low cyclomatic complexity than especially Linux and FreeBSD.

5.7 Conclusions and Future Work

In this paper we have presented the application kernel, an alternative approach for adding
SMP support to a uniprocessor operating system. Our approach has lower implemen-
tation complexity then traditional approaches, often without changes to the original
uniprocessor kernel, while at the same time providing scalable performance. In this
sense, the application kernel approach can be seen as a modern revitalization of the
master-slave approach. There are also similarities with approaches used in distributed
systems.

We have evaluated a prototype implementation of the application kernel approach
for a uniprocessor Linux kernel, where the results show that our approach is a viable
method to achieve good performance in computationally intensive applications. We also
show that the implementation is quite straightforward, with a low cyclomatic complex-
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ity compared to other operating system kernels and a small size (around 3,600 lines)
requiring only seven weeks to implement.

There are several advantages with our approach. First, we do not need to modify
the large and complex code of the uniprocessor kernel. Second, the development of the
uniprocessor kernel can continue as usual with improvements propagating automatically
to the multiprocessor version. Our evaluation also shows that a large portion of the effort
of writing the application kernel can be reused for other uniprocessor kernels which leads
us to believe that our approach and implementation is fairly generic and reusable for
other kernels.

There are a number of optimizations possible for the application kernel approach.
For instance, some threads could run entirely on the bootstrap kernel, which would
mainly be interesting for kernel-bound applications. A migration scheme similar to that
in MOSIX could then be used to move kernel-bound threads to the bootstrap processor
during runtime. Further, some system calls should be possible to implement directly
on the application kernel, providing the semantics of the system calls are known. For
example, sleeping, yielding the CPU and returning the process ID of the current process
can easily be implemented in the application kernel.
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6.1 Introduction

Program instrumentation is a technique used in many and diverse areas. Instrumen-
tation is often added to programs in order to investigate performance aspects of the
applications [101, 119] as a complement to statistical profiling such as gprof [45], Intel
VTune [147], or the Digital Continuous Profiling framework [7]. Instrumentation is also
useful in many other areas not directly related to performance analysis, for instance call
graph tracing [132], path profiling [13], reversible debugging [27], code coverage analysis,
and security [102].

Often, instrumentation is added manually by annotating the source code with instru-
mentation points. This task, however, is time-consuming, repetitive and error-prone, and
it is both tied to the high-level language and access to source code. Over the years, there
has therefore been a number of proposals to alleviate this situation. Today, there ex-
ists several libraries, e.g., ARM [109] and PAPI [87], which allows code-reuse for the
instrumentation. There are also packages that provide graphical interfaces to select
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instrumentation-points and several tools for patching program binaries or relocatable
object files [101, 80].

Another problem with program instrumentation is program behavior perturbations
caused by the instrumentation [92, 104]. Regardless of how instrumentation is imple-
mented, it always adds extra work for the program by affecting compiler optimizations
(changed register allocation, reduced inlining possibilities etc.), altering the data refer-
ence patterns, and changing the execution flow. Taken together, these perturbations
can cause the instrumented program to exhibit a substantially different behavior than
the uninstrumented program. This problem is especially severe for performance instru-
mentation since the instrumented program should accurately reflect the uninstrumented
program, and it is therefore important to measure and minimize the instrumentation
overhead. The measurement itself can also be a problem, however. Although it is easy
to measure the aggregate overhead of instrumenting a program, observing the detailed
behavior of the instrumentation is harder since any performance measurement affects the
program execution. Taken together, these problems lead us to we believe that it is im-
portant to explore optimizations for instrumentation, especially for frequently performed
operations.

In this paper, we present the LOPI (LOw Perturbation Instrumentation) framework
that provides a generic and easily used framework for instrumenting programs. In LOPI,
we try to optimize for common instrumentation patterns in order to provide low pertur-
bation on the program behavior. LOPI rewrites binary ELF-files for GNU/Linux on the
IA-32 architecture in order to instrument an application. The current implementation
instruments function entry and exit, but the approach is expandable to instrument most
points in the code.

We provide measurements of the instrumentation perturbation using both real hard-
ware and full-system simulations of seven SPEC CPU2000 benchmarks. We compare
the LOPI framework to Dyninst[20] and regular source-based instrumentation. We find
that source-based instrumentation usually has the lowest instrumentation overhead, on
average executing 13% more instructions (5% inlined) for the studied applications, but
with more tedious work for instrumenting the code. Comparing LOPI and Dyninst we
find that LOPI has lower instruction overhead then Dyninst, on average 36% instruc-
tion overhead compared to 49% for Dyninst. Comparing the total execution times, we
find that source-based instrumentation has 6% overhead, LOPI has 22% overhead, and
Dyninst 28% overhead as compared to an uninstrumented application.

The rest of the paper is organized as follows. In Section 6.2 we provide an overview of
program instrumentation, which is followed by an introduction of the LOPI framework in
Section 6.3. In Section 6.4 we present the measurement methodology and in Section 6.5
we provide the measurement results. Finally, we discuss related work in Section 6.6 and
conclude our findings in Section 6.7.
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6.2 Background

6.2.1 Instrumentation approaches

Instrumentation packages can be grouped into three broad categories with different char-
acteristics: source-based instrumentation, binary rewriting, and memory image rewrit-
ing . There are some special cases, for instance instrumentation at the assembly level,
but these can normally be generalized into one of the above (assembly-level instrumen-
tation is similar to binary rewriting except that it avoids some issues with relocatable
code). Also, some completely different approaches exist. Valgrind [108], for instance,
allows instrumentation of unmodified programs. Valgrind works by running programs in
a virtual machine, translating IA-32 binary code to a intermediate language, applying
instrumentation, and then translated back to IA-32 code again. Valgrind allows instru-
menting unmodified programs, but also imposes a high runtime overhead due to the code
translation. Another approach is to run the application in a simulator, which gives no
perturbation to the actual application, but has issues with accuracy and speed. Next,
we will briefly describe the different approaches.

1. Source-based instrumentation: Source-based instrumentation works by insert-
ing instrumentation calls as statements in the application source code. This allows
the compiler to optimize the instrumented code, but it also inherently produces
a different behavior compared to the non-instrumented code because of disturbed
register allocation, inlining, etc. Further, this approach is dependent on the high-
level implementation language as well as direct access to the source code.

This category encompasses both libraries for instrumentation, i.e., where instru-
mentation is inserted manually into the source code [87], mixed solutions [39], and
tools with source-to-source conversion from a graphical interface [131].

2. Binary rewriting: By patching the executable or the relocatable files, the high-
level source code of the application can remain untouched. This prevents the com-
piler from optimizing the instrumentation code in the context of the application
source code, but this should also give a closer correspondence to the uninstru-
mented application. This approach is also independent of the high-level language
of the application and can in principle be used on applications for which the source
code is unavailable.

Many instrumentation packages work this way, for instance ATOM [6] and EEL [80]
for UNIX-based systems, Etch [119] and PatchWrx [24] for Windows NT systems,
and the LOPI framework presented here.

3. Memory image rewriting A final approach is to patch the application in-core,
i.e., after the program has been loaded into memory. This approach, used by
Dyninst [20, 101], allows instrumentation to be added to and removed from the
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Figure 6.1: Overview of the instrumentation process. The functions and the files to
instrument are given on the command line.

program during runtime. The characteristics is similar to binary rewriting but
memory image rewriting allows instrumentation to be dynamically removed when
it is no longer needed, which can reduce unnecessary overhead.

Memory image rewriting also adds some other interesting possibilities. Some pro-
grams, for instance operating system kernels cannot readily be restarted in order
to have the instrumentation take effect. For these cases, memory image rewriting
provides the only realistic alternative, and it has also been used for instrumentation
of the Solaris [140] and Linux [112] kernels.

Each of these methods will cause perturbation to the application. Next we present
an introduction to the various types of perturbation caused by instrumentation.

6.2.2 Instrumentation perturbation

Instrumentation perturbation is heavily dependent on the type of instrumentation ap-
plied. For performance instrumentation, the instrumentation might read a set of of
hardware performance counters whereas call graph tracing requires significantly more
complex operations [132]. Some parts are very common however. At the very basic end,
instrumentation always causes more instructions to be executed, accesses more data in
the memory, and can also cause register spills. Further, there might be kernel invoca-
tions, device access or inter-process communication. The perturbation also varies over
different phases of the program execution:

• Initialization: Most instrumentation packages have some sort of initialization
phase. This can include, e.g., the initialization of hardware performance counters,
creation of data structures, or memory image patching. This part can sometimes
be very expensive, but is a one-time event.
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• Startup-phase: During the first invocations of the instrumented code, the system
will run with cold caches and need to bring the code and data into the caches.

• Execution: During the execution of the program, the instrumentation adds la-
tency because more instructions are executed, increased cache pressure, and (po-
tentially) extra kernel invocations.

• End: When the program ends, or the instrumentation is removed, the instru-
mentation package usually performs some cleanup operations (for instance freeing
allocated memory, storing collected data on disk etc.). Like the initialization-
phase, this is potentially expensive but normally has small effects on long-running
programs.

For the execution phase, there are also some indirect effects on the execution that can
arise from instrumentation. For instance, the addresses of data or executed instructions
might change as a side-effect of instrumentation (this is especially likely with source
instrumentation). The changed addresses can cause data or code to be aligned differently
with respect to cache-lines, and also in some cases (albeit unusual) change actual program
behavior [104]. In the LOPI framework, we have tried to minimize these effects by a
number of optimizations, which are described in the next section.

6.3 The LOPI instrumentation framework

We have implemented an instrumentation package that tries to provide low and pre-
dictable overhead and still provide an easy interface to users. The framework uses the
binary rewriting approach, although the ideas are applicable to memory rewriting (such
as used by Dyninst) as well. Although we currently focus on function entry and exit,
the approach is possible to combine with current methods for instrumentation at arbi-
trary points (still keeping the optimized entry/exit techniques). We have developed two
types of performance instrumentations for LOPI, one utilizing the PAPI cross-platform
front-end to performance counters [87] and one simple implementation measuring the
processor cycle counter with the rdtsc instruction.

The process of instrumenting a program with the LOPI framework is shown in Fig-
ure 6.1. Using the LOPI framework adds one step in the compile process - running
the LOPI executable after the relocatable files have been produced. The relocatable
ELF-files are then linked with a library produced by LOPI at runtime, which contains
stubs and the user-implemented instrumentation. Note that selecting the instrumenta-
tion points is done outside the LOPI framework in order to keep the framework general
enough to support different kinds of instrumentation.

Before going into details of the operation, we will first briefly describe the (GCC)
calling convention for the IA-32 architecture. Figure 6.2 shows how caller calls the non-
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Figure 6.2: A non-instrumented function call.

Figure 6.3: A function call instrumented with our approach.

instrumented function callee. On IA-32, the call-instruction pushes the return address
to the stack before switching to the function. On returning with ret, the instruction
pointer is popped from the top of the stack. The IA-32 calling convention specifies that
registers %ebx, %edi, %esi, and %ebp are callee-saved, whereas %eax, %ecx and %edx are
caller-saved. Parameters are passed on the stack and the return value is passed in the
%eax register. The function prologue shown initializes the function stack frame.

A function entry instrumented with the LOPI framework is shown, somewhat sim-
plified, in Figure 6.3. When the program execution reaches an instrumentation point,
our library performs a four step operation. The sequence of events is shown in the figure
and described below.

1. enter_stub is called (from callee) by the overwritten function prologue (which was
replaced by the instrumentation). The call-instruction is immediately followed by
an identifier for the function (func_nr). The function identifier defaults to a 8-bit
value, but if more than 256 functions are instrumented this can be extended to a
16- or 32-bit value at instrumentation time (this has not yet been implemented,
but the extension is simple to make).
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Figure 6.4: An instrumented function return.

2. enter_stub (shown in Figure 6.3) reads the function identifier (which is located
at the return address, i.e., in the callee-prologue). Then, the enter stub calls
instr_func_enter, which is common for all instrumented function entries.

3. The instr_func_enter-function, implemented in C (pseudo code in Figure 6.5),
sets up a return frame to instrument the function return. inst_func_enter there-
after performs the actual instrumentation operation for function entries, which is
implemented by the user of the instrumentation library and can be inlined. Ac-
cess to the return frames is protected by a spinlock for multithreaded programs on
SMPs.

4. After returning to the enter stub, the overwritten instructions of the function
prologue are executed and the control returns to the function prologue (after the
overwritten instructions).

There are some special cases for instrumenting function entry points, which suggest
separate handling. First, we detect the common function prologue where the frame
pointer (the %ebp register) is stored and a new stack frame is setup. This code sequence
only varies with a constant, which gives the size of the new stack frame, and can therefore
easily be represented by a common stub.

pushl %ebp /* Save the old frame pointer */

movl %esp, %ebp /* Set the start of the new frame */

subl $XX, %esp /* Allocate stack space */

In the seven SPEC CPU2000 benchmarks we used (see Section 6.4), almost 80% of
the function prologues had this pattern. This function prologue is represented with a
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struct ret_frame_t {
func_t *p_func

long ret_addr

/* For icache/dcache conflict reduction */

uint8_t padding0[XX]

uint8_t program[16]

uint8_t padding1[XX]

...

}
ret_frame_t ret_frames[]

function instr_func_enter(func_nr, ret_addr) {
/* Setup return frame */

ret_frame = pop_ret_frame()

ret_frame.func = funcs[func_nr]

ret_frame.ret_addr = ret_addr

ret_addr = ret_frame.program

/* Perform the instrumentation */

do_enter_func(func)

}

Figure 6.5: Pseudo code for the instr_func_enter-function.

special stub that stores the stack size XX. In the rare case that the function prologue
is smaller than 6 bytes (the size of the call-instruction plus the function identifier) and
the first basic block at the same time contains a branch target within the first 6 bytes,
patching the function prologue is unsafe because the target instruction is overwritten.
LOPI will detect and mark such areas as unavailable for instrumentation, although this
functionality is only sketched in the prototype implementation.

Function returns are instrumented lazily with the return frames set up in instr_func_enter,
i.e., without patching or adding source lines to the program. The return frame is a data
structure with the original return address (i.e., back to caller in this case), which also
contains a machine code stub, copied to the structure at startup. The padding is needed
since the return frame is accessed both as data and executed as code. Without the
padding, the cache block (the stub is only 16 bytes) would ping-pong between the data
and the instruction cache, degrading performance. The machine code stub acts as a
trampoline for the function return instrumentation. The logic is as follows (refer to
Figure 6.4):

1. The callee function returns with the ret instruction (i.e., exactly as without instru-
mentation). Since the return address was overwritten it will return to the return
frame stub setup in instr_func_enter.
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function instr_func_leave() {
/* This code is contained in the ret_frame */

ret_frame = [return address]-XX

/* Perform the instrumentation */

do_leave_func(ret_frame.func)

push_ret_frame(ret_frame)

/* Found in the ret_frame */

return [original return address]

}

Figure 6.6: Pseudo code for the instr_func_leave-function.

2. The return frame stub calls instr_func_leave. Since the position of the return
frame (and thus the return stub) is unknown at compile-time, we need to do a
register-relative call to instr_func_leave (not shown in the figure).

3. instr_func_leave performs the instrumentation on function exit (again specified
by the user of the library), deallocates the return frame, and returns the original
return address (i.e., to caller in this example). The pseudo code is shown in
Figure 6.6.

For functions which modify the return address themselves, this optimization is un-
safe, and a revert to a more traditional return instrumentation is needed. We reduce
the perturbation of the instrumented application in a number of ways both during the
program patching and during runtime:

Table 6.1: Description of the SPEC CPU2000 benchmarks used in this study.
Benchmark Description Data set size
164.gzip Compression lgred.log
176.gcc Compiler smred.c-iterate.i
181.mcf Combinatorial optimization lgred.in
183.equake Simulation of seismic wave propagation lgred.in
197.parser Grammar analysis lgred.in
256.bzip2 Compression lgred.graphic
300.twolf CAD, Placement and global routing lgred

1. Inlined function identifiers. The function identifier (shown in Figure 6.3) is
placed directly in the instrumented code in order to avoid the need for calling
separate stubs for every instrumentation point. The function identifier also allows
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us to lookup meta data for the instrumentation point by using it as a vector index
instead of performing an expensive hash table lookup.

2. Code reuse. A call-stub is shared for every instrumentation point with the same
overwritten instructions. Also, the stubs are kept as short of possible with most of
the logic in the generic enter and exit functions.

3. Optimize for common cases. We use a special stub for the common stack
frame setup as explained in Section 6.3. This helps down the i-cache miss rate by
reducing the number of instrumentation stubs.

4. Register saving. Our entry stubs does not store any registers for the function
entries since we do not use any callee-saved registers in the stub. The return frame
saves the %eax register since this is used for return values on IA-32.

5. Data reuse. The return frames are allocated in a stack-based scheme where the
most recently used return frame is reused first.

The pollution of the instruction cache is limited by the number of function call stubs
used in the instrumentation and the number of return frames used. The number of
active return frames at a given point of time is equal to the current nesting depth of the
instrumented functions, in most cases a fairly low number (the worst case occurs with
deep recursion).

Taken together, these optimizations significantly reduce the overhead of instrumen-
tation. Further, since the call-stubs are aggressively reused, we expect the perturbation
to be more predictable since less code is added to the program. The next section presents
measurements comparing our approach to the Dyninst tool and basic source-based in-
strumentation.

6.4 Measurement methodology

For our measurements, we have used both real hardware and the Simics full-system
simulator [90]. The machine we used is a Pentium III system running Linux, with a
1 GHz processor and 256 MB RAM. We use the hardware performance counters available
on the Pentium III (through the PAPI [87] library) to capture the measures presented
in Table 6.2, e.g., the number of instructions and cache misses.

As for our simulations, we simulate a complete Pentium III system with caches run-
ning a real operating system for performing the instrumentation measurements. The sim-
ulated system has 16 KB, 4-way set-associative, first-level data and instruction caches,
and a unified 512KB, 8-way set-associative, second-level cache. Simics allows us to
create a complete non-intrusive measurement of the application execution, both for in-
strumented and non-instrumented applications. We can therefore isolate the impact of
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Figure 6.7: Cycles per function call on a subset of the SPEC CPU2000 benchmarks.

instrumentation from the application traces. We use Simics to provide detailed execu-
tion characteristics which were not possible to capture on real hardware, i.e., the figures
in Figure 6.8.

We ran tests with seven applications from the SPEC CPU2000 benchmarks (compiled
with GCC 2.95.4, optimization level -O3) on a minimal Linux 2.4.22-based system. A
short description of the selected benchmarks is presented in Table 6.1. All measurements
ran with the MinneSPEC [69] workloads in order to provide reasonable execution times
in the simulated environment and each of the tests ran to completion. We chose to
instrument the functions that make up 80% of the total execution time (as reported
by gprof). Unfortunately, with Dyninst we were unable to instrument three of the
applications when running on real hardware due to a software upgrade.

The simulator was setup to flush the caches when starting the program (i.e., at
“main”, after the instrumentation package setup) to avoid situations where data was
brought into the caches before the program execution starts (for instance because of the
instrumentation package startup-phase touching the functions). Our accumulated values
for real hardware excludes initialization and cleanup of the instrumentation library, but
does not invalidate the cache contents.

The benchmarks were instrumented with four methods, source-based instrumenta-
tion (split in inlined and non-inlined operation), Dyninst (version 4.0.1 of the Dyninst
API, function instrumentation with tracetool), and our LOPI framework. The source-
based instrumentation was added by hand, a tedious task that required us to add instru-
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Table 6.2: Continued on next page.

Cycles Instructions Branches
Benchmark nr miss pred.

164.gzip src 1.03 1.06 1.06 1.00
src (inline) 1.01 1.02 1.02 1.03
LOPI 1.17 1.16 1.13 1.74
Dyninst 1.25 1.21 1.23 1.00

176.gcc src 1.09 1.13 1.11 1.07
src (inline) 1.02 1.05 1.03 0.99
LOPI 1.37 1.42 1.30 1.51
Dyninst n/a n/a n/a n/a

181.mcf src 1.17 1.46 1.38 1.00
src (inline) 1.04 1.18 1.13 0.90
LOPI 1.43 2.17 1.88 2.16
Dyninst 1.67 2.50 2.51 1.02

183.equake src 1.00 1.00 1.01 1.00
src (inline) 1.00 1.00 1.00 0.99
LOPI 1.01 1.02 1.02 1.03
Dyninst 1.01 1.02 1.03 1.00

197.parser src 1.03 1.07 1.06 1.02
src (inline) 1.01 1.03 1.02 1.01
LOPI 1.11 1.19 1.15 1.36
Dyninst 1.21 1.24 1.25 1.03

256.bzip2 src 1.04 1.08 1.11 0.99
src (inline) 1.02 1.04 1.04 1.00
LOPI 1.21 1.22 1.26 2.47
Dyninst n/a n/a n/a n/a

300.twolf src 1.08 1.12 1.15 1.03
src (inline) 1.01 1.05 1.04 1.01
LOPI 1.25 1.33 1.33 1.34
Dyninst n/a n/a n/a n/a

Average src 1.06 1.13 1.13 1.01
src (inline) 1.02 1.05 1.04 0.99
LOPI 1.22 1.36 1.30 1.66
Dyninst 1.28 1.49 1.50 1.01

mentation points to over 500 places for the largest benchmark (176.gcc). The 176.gcc
benchmark also illustrates the effectiveness of our stub reuse, requiring only two stubs
for 54 instrumented functions. For all 92 instrumentation points (in all benchmarks),
totally 5 different stubs were needed.

To get comparable results, we implemented the same instrumentation for each pack-
age. The instrumentation performs a fairly common instrumentation operation, reading
a 4-byte value at function entry and accumulating it at the function exit, similar for
instance to accumulating a hardware performance counter (the kernel is not accessed).
We exclude the perturbation caused by the OS kernel in our simulated environment by
pausing the measurements on kernel entry and starting them again on kernel entry (the
simulated caches are also disabled when executed kernel code). This was done to avoid
timing behavior to affect the measurements and also to make the measurements more
OS-independent.
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Table 6.2: Aggregate overhead for the SPEC benchmarks. Dyninst average values are
caclulated from the successful benchmarks.

L1 Dcache L1 Icache L2 unified
Benchmark refs misses refs misses refs misses

164.gzip src 1.10 1.01 1.02 1.02 1.01 1.02
src (inline) 1.04 1.01 0.97 0.95 1.01 0.97
LOPI 1.29 1.04 1.12 1.06 1.03 1.20
Dyninst 1.43 1.02 1.23 1.14 1.02 1.16

176.gcc src 1.16 1.06 1.11 1.03 1.03 0.97
src (inline) 1.06 1.05 1.02 1.05 1.05 0.96
LOPI 1.54 1.32 1.46 1.13 1.14 1.08
Dyninst n/a n/a n/a n/a n/a n/a

181.mcf src 1.61 0.99 1.18 1.06 0.99 0.99
src (inline) 1.23 1.00 1.04 1.02 1.00 1.01
LOPI 2.62 1.14 1.43 1.65 1.00 0.99
Dyninst 3.39 0.99 1.69 1.24 0.99 0.98

183.equake src 1.01 1.00 1.00 1.00 1.00 1.00
src (inline) 1.01 1.00 1.00 1.31 1.02 1.00
LOPI 1.02 1.04 1.02 1.04 1.04 1.01
Dyninst 1.03 1.04 1.02 1.00 1.03 1.01

197.parser src 1.08 1.00 1.03 0.97 1.00 1.00
src (inline) 1.03 1.00 1.01 1.01 1.00 1.00
LOPI 1.25 1.02 1.11 1.66 1.02 1.01
Dyninst 1.37 1.01 1.21 1.06 1.01 0.99

256.bzip2 src 1.09 1.00 1.04 1.06 1.00 1.00
src (inline) 1.04 1.00 1.01 1.01 1.00 1.00
LOPI 1.28 1.00 1.20 1.15 1.00 1.00
Dyninst n/a n/a n/a n/a n/a n/a

300.twolf src 1.14 1.02 1.08 1.75 1.03 0.58
src (inline) 1.06 1.01 1.01 1.28 1.02 0.97
LOPI 1.39 0.95 1.25 1.28 0.96 0.75
Dyninst n/a n/a n/a n/a n/a n/a

Average src 1.17 1.01 1.07 1.13 1.01 0.94
src (inline) 1.07 1.01 1.01 1.09 1.01 0.99
LOPI 1.48 1.07 1.23 1.28 1.03 1.00
Dyninst 1.80 1.01 1.29 1.11 1.01 1.03

6.5 Measurement results

Figure 6.7 shows the average number of instructions per function for a subset of the
SPEC CPU2000 benchmarks. The length includes that of called functions (even for
recursive function calls). From the figure, we can get a feeling for the cost of instru-
menting functions, i.e., instrumenting a program with frequent short functions is likely
to be more costly than instrumenting one with longer functions. We observe that for
many applications, e.g., 164.gzip, 176.gcc and 300.twolf, a large proportion of the func-
tions are shorter than 90 instructions (183.equake also show a large proportion of short
instruction, but almost all work is done in a few long-running functions). This indicates
that keeping the cost of instrumenting a function as low as possible is very important
for these programs.

109



183.equake

H
its

: d
iff

er
en

ce
in

st
ru

m
en

te
d−

un
in

st
ru

m
en

te
d

0

100

200

300

400

500

600

Instruction count

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

Cycles
L1 reads
L1 writes
L2 reads
L2 writes
L2 instructions

0

100

200

300

400

500

600

Instruction count

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

M
is

se
s:

 d
iff

er
en

ce
in

st
ru

m
en

te
d−

un
in

st
ru

m
en

te
d

−10

0

10

20

30

40

Instruction count

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

L1 instruction cache misses
L1 data cache read misses
L1 data cache write misses
L2 cache read misses
L2 cache write misses
L2 cache instruction misses

−10

0

10

20

30

40

Instruction count

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

Figure 6.8: Continued on next page.

Table 6.2 provides aggregate execution times/overhead and cache behavior with
source instrumentation (both inlined and not inlined), Dyninst, and the LOPI frame-
work. We see that source instrumentation, particularly inlined, is the approach with
lowest overhead (on average 13% more instructions non-inlined and 5% inlined). This
is an expected result since the source instrumentation can be optimized by the com-
piler. LOPI and Dyninst execute 36% and 49% more instructions, respectively, than an
uninstrumented application. In terms of execution time, we find that LOPI generates
22% longer execution times on average and Dynint 28% longer execution times than an
uninstrumented application.

Analyzing the cache misses we find that LOPI generates fewer first level cache ac-
cesses on average than Dyninst does, but LOPI has more first-level cache misses than
Dyninst. This indicates a higher locality in the Dyninst code. However, when we look
at the second-level cache accesses we find that the number of misses is comparable for
LOPI and Dyninst. One reason for the higher number of data read misses for LOPI is
that the return frames (which are logically code) are allocated as data.
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Figure 6.8: Partial execution profile for 183.equake and 197.parser. LOPI is shown on
the left, Dyninst on the right.

We have identified one performance limitation for LOPI – a high number of miss-
predicted branches. The Pentium III employs a branch predictor for function returns,
which work as long as functions are called in the “normal” manner, i.e., through a
call/ret pair. Since LOPI overwrites the return address with an address in the return
frame, the return branch predictor misses its prediction, resulting in a performance loss.
This problem was not visible in the simulated results.

Figure 6.8 presents a partial execution profile for the 183.equake and 197.parser
SPEC benchmarks. The figure shows the difference between an instrumented and a
non-instrumented run for both LOPI and Dyninst (note that the graph does not show
the absolute values, which start at higher than zero). The profiles are constructed from
a trace of every instruction in the shown code snippet (except for the instrumentation
code), i.e., every point in time in the figure corresponds to one instruction in the non-
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instrumented code. Instrumentation points for function entries are shown as vertical
bars below the x-axis.

The 183.equake profile comes from the execution of a nested execution loop, which
calls three short functions phi0, phi1, and phi2 where phi2 is instrumented. For the
197.parser profile, the instrumented section shows a section with numerous recursive
function calls. As the Figure shows, the return frames cause some pressure on the
caches when the frames cannot be reused on deeper levels of function nesting (because
of the recursion). This is especially visible for L1 read misses that increase with each
additional instrumented call in Figure 6.8.

From the graphs, we can see that the Dyninst instrumentation is more intrusive than
our instrumentation. Our instrumentation is mainly cheaper when instrumenting the
function returns (shown as the second climb in the upper graphs), which shows that the
lazy return instrumentation pays off. We can also see that the number of cache misses is
somewhat higher for Dyninst, although both instrumentation packages primarily cause
cache misses on the first invocation.

6.6 Related work

In this section we discuss some other tools that are similar to our instrumentation frame-
work. We start with those that rewrite binary files in order to instrument an application.
Examples of such tools are PatchWrx [24], Etch [119], ATOM [6], and EEL [80]. We
thereafter discuss Dyninst [20, 101], which rewrites the memory image in order to in-
strument an application.

PatchWrx, ATOM, and EEL works on RISC processors, where it is easier to rewrite
and patch a binary file since all instructions have the same size. In order to patch and
trace an instruction, you simply replace the traced instruction with a branch instruction
to a code snippet where the replaced instruction together with the instrumentation code
reside. In contrast, rewriting a binary file for an IA-32-processor is much harder due to
variable instruction length. Etch and LOPI both works for IA-32-binaries, and Dyninst
is available for both RISC and CISC processors.

PatchWrx [24] is developed for Alpha processors and Windows NT. PatchWrx uti-
lizes the PALcode on the Alpha processor to capture traces, and it can patch, i.e.,
instrument, Windows NT application and system binary images. PatchWrx replaces all
types of branching instructions with unconditional branches to a patch section where
the instrumentation code reside. PatchWrx can also trace loads and stores by replacing
the load or store instruction with an unconditional branch to the instrumentation code,
where also the replaced load or store resides.

112



ATOM [6] is developed for Alpha processors and works under Tru64 UNIX. ATOM is
a general framework for building a range of program analysis tools, e.g., block counting,
profiling, and cache simulation. ATOM allows a procedure call to be inserted before and
after any procedure, basic block, or instruction. The user indicates where the instrumen-
tation points are, and provides analysis routines that are called at the instrumentation
points. ATOM then builds an instrumented version of the application including the
analysis routines.

EEL [80] (Executable Editing Library) is a library for building tools to analyze and
modify executable files. It can be used, e.g., for program profiling and tracing, cache
simulation, and program optimization. EEL runs on SPARC processors under Solaris,
and provides a mostly architecture- and system-independent set of operations to read,
analyze and modify code in an executable file. The user can provide code snippets that
can be inserted at arbitrary places in the binary code. EEL is capable of sophisticated
code analysis, e.g., control-flow graph analysis and live/dead register analysis.

Etch [119] is a general-purpose tool for rewriting Win32 binaries for IA-32-processors.
Etch provides a framework for handling the complexities of both the Win32 executable
format as well as the IA-32 instruction set. Important issues with the Win32 format
that Etch solves are to correctly identify code and data sections, as well as identification
of all dynamically loaded libraries and modules. Etch can be used, e.g., for tracing all
loads and stores, measuring instruction mixes, and code transformation for performance
improvements. There is also a graphical user interface provided with Etch.

Dyninst [20, 101] patches and instruments the application in-core, i.e., after the pro-
gram has been loaded into memory. This approach allows instrumentation to be added
to and removed from the program during runtime. For example, instrumentation can be
added where new hot-spots in the code are detected during runtime, and instrumentation
can be dynamically removed when it is no longer needed, which can reduce unnecessary
overhead. Memory image rewriting also opens up the possibility to instrument operat-
ing system kernels [140], which cannot be restarted in order to have the instrumentation
take effect.

Pin [89, 111] is a tool for dynamic instrumentation of Linux applications available
for IA-32e, ARM, Itanium and IA-32e. It provides an API for inserting function calls
to user-defined measurement functions at arbitrary points in the code. Pin performs the
program instrumentation at run time, using a just-in time compiler to instrument and
translate the application. As a result, Pin can handle shared libraries, multi-threaded
applications, as well as mixed code and data.
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6.7 Conclusions

Program instrumentation is an important technique in many areas, e.g., performance
measurements, debugging, and coverage analysis. To be useful, instrumentation must
be easy to apply and it should perturb the application execution as little as possible. In
this paper we present and evaluate the LOPI framework, which provides a low-overhead
generic solution to program instrumentation. The LOPI framework automatically in-
struments an application by rewriting the binary file(s) by adding one step in the com-
pilation process. LOPI gives low overhead by applying techniques to reduce the number
of added instructions to the program and by using a lazy method for instrumenting
function returns.

We provide detailed measurements of the instrumentation perturbation using hard-
ware and full-system simulations of seven SPEC CPU2000 benchmarks. We compare
the LOPI framework to the state-of-the-art Dyninst package and regular source-based
instrumentation. The measurements show that source-based instrumentation has the
lowest instruction overhead, on average 13%, but requires significantly more tedious
work for instrumenting the code. Comparing LOPI and Dyninst we find that LOPI has
lower instruction overhead than Dyninst, on average 36% as compared to 49%, respec-
tively. In terms of execution time, LOPI increases the execution time by 22% compared
to uninstrumented operation whereas Dyninst adds 28%.

We believe that the LOPI framework is a viable and flexible way for automatic pro-
gram instrumentation with low perturbation. Future work on LOPI involves adding
support for instrumentation at arbitrary program locations, which would require copy-
ing overwritten instruction into the entry stub and saving live registers at the instru-
mentation point. Like Dyninst does, this would require careful handling of replacing
instructions, especially on architectures with variable-length instructions. Another pos-
sibility is to port the framework to other architectures than IA-32, which could require
other optimizations than those explored here.

Availability

LOPI is available as free software licensed under the GNU GPL at http://www.ipd.
bth.se/ska/lopi.html.
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Cibyl - an Environment for Language Diversity on Mobile Devices

Simon K̊agström, H̊akan Grahn, Lars Lundberg

Published in the proceedings of the third ACM/Usenix International conference on
Virtual Execution Environments (VEE), San Diego, USA, pages 13–15, June 2007

7.1 Introduction

The Java 2 Platform, Microedition (J2ME) [133] has become practically ubiquitous
among mobile phones with an estimated installation base of around 1 billion units [124].
J2ME provides a royalty-free development environment where it is possible to extend
the capabilities of mobile phones and other embedded systems through Java. J2ME is
often the only openly available environment for extending mobile phones, and developers
writing software to J2ME-capable embedded devices are therefore locked to the Java
language. When porting existing software written in languages such as C or C++
to J2ME devices, the development environment can require a complete rewrite of the
software package. Developers are then faced with either porting their code to another
language, or use automated tools [94, 21, 91, 61] which may generate code which is
difficult to modify, require manual fixes and can sometimes be inefficient. Even when
implementing new projects for J2ME, Java might not always be the preferred language.
For example, developer language experience, personal preferences, availability of existing
libraries or co-development for other targets might favor new implementations in other
languages.
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In this paper, we present the Cibyl programming environment which allows existing
code written in C and other languages to be recompiled as-is or with small modifications
into Java bytecode and run on J2ME devices. Performance of the recompiled code can
be close to native Java implementations and with modest space overhead. In contrast
to other approaches [10], Cibyl supports the full C language, and support for C++ and
other languages require only library extensions. Cibyl is not a compiler, but instead
relies on the GCC [129] compiler to produce a MIPS binary. Cibyl does a static binary
translation of a MIPS executable into Java bytecode, and provides a runtime library to
support execution in the Java environment. Compared to writing a backend for GCC
which directly generates Java bytecode, the Cibyl approach allows for a lower initial effort
and also removes the burden of long-time maintenance of the backend. Using unmodified
standard tools also means that it automatically benefits from tool improvements.

The main contributions of the paper are the following. First, we show how C pro-
grams can be recompiled into Java bytecode and identify problematic areas. Second,
we show that knowledge about the compiled code and the ABI (Application Binary In-
terface) can be utilized to generate more efficient bytecode. Third, we illustrate how
extensions to the MIPS architecture can be used to provide efficient calls to native Java
methods.

The rest of the paper is structured as follows. Section 7.2 describes the technology
used in Cibyl. Section 7.3 presents an evaluation of the generated code in terms of per-
formance and size. Thereafter, Section 7.4 describes related work, and finally Section 7.5
presents conclusions and future research.

7.2 Technology

Cibyl targets the MIPS I [65], only using instructions available in user-space. Compared
to many other architectures, MIPS provides a number of advantages for efficient binary
translation. First, regular loads and stores are always done on aligned addresses, which
simplifies memory handling in Java. Second, MIPS uses the general-purpose register set
for almost all operations and does not have implicitly updated flag registers, which allows
a straightforward translation of most arithmetic instructions. Third, MIPS only does
partial register updates for the seldom used unaligned memory accesses instructions.

To achieve good performance of the translated binaries, we place a number of soft
restrictions on the generated code and add extensions to the architecture. In particular
we focus on good performance of 32-bit memory accesses and operations on signed 32-bit
values, which are easier to support efficiently since Java has no unsigned types. We have
also made use of extensions to the MIPS ISA, which is possible since the generated code
targets a virtual machine and does not need to run on actual hardware.
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Figure 7.1: The compilation process. Gray boxes show third-party tools and white boxes
are implemented in Cibyl.

Cibyl builds on the GNU toolchain [129], which we use to produce the MIPS binaries
in a translation-friendly format. GCC is used to compile the C source for the MIPS I
instruction set, which is thereafter linked using GNU ld. We use GCC and ld options to
simplify certain operations. For example, we turn off the generation of explicit checks
for integer division by zero, which is not needed in Java bytecode where the instruction
throws a divide-by-zero exception. Further, we always work on static executables and
therefore disable the generation of position-independent code. The data and read-only
data sections from the ELF binary is placed in a file which the runtime system loads
into memory on startup. Cibyl uses five steps to compile C source code into a J2ME
JAR-file, illustrated in Figure 7.1:

1. The C source is compiled and linked with GCC using the Cibyl headers and li-
braries.

2. The API to Java/J2ME (defined in a C header-file) and the compiled program is
passed to another tool that generates a Java source file containing wrappers for
system call stubs. The set of system calls used by a program is known at compile
time by feeding back the compiled program to the tool and only needed stubs are
generated.

3. The cibyl-mips2java tool recompiles the linked program from step 2 into Java
assembly.

4. The Jasmin [98] assembler compiles the Java assembly into a class file

5. The regular Java compiler compiles the generated system call wrappers and run-
time support files

6. Finally, the compiled class-files are preverified and combined by the Java archiver
to a downloadable JAR file. The preverification step is needed for J2ME programs
since the verification capabilities of the mobile JVM is limited.
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7.2.1 Memory Access

We use a linker script to link the text segment high up in the memory and the initialized
and uninitialized data starting at address zero. The translated text segment cannot be
addressed, and is therefore not loaded into memory. Figure 7.2 shows the address space
in Cibyl. During startup, a configurable portion of the Java heap is allocated to the
Cibyl program. The stack pointer is setup to the end of the address space, and the
heap starts after the uninitialized data. The heap manager is a standard malloc/free
implementation written in C.

Figure 7.2: Cibyl address space. The end of the address space depends on the available
memory

We strive to provide efficient 32-bit memory accesses while accepting a performance
cost for 8- and 16-bit accesses. Memory is therefore represented as an integer-vector,
which means that 32-bit loads and stores can be performed by indexing this vector. As
the mapped data starts at address 0 and is contiguous from there, the computed address
can be used directly as an index after right-shifting it by 2. Figure 7.3 shows translation
of memory accesses.

To further improve the performance of 32-bit memory accesses, we allocate extra
registers to optimize multiple memory accesses where the base address register stays the
same. The key is that since the base address is constant, the right-shift performed to
translate the address into a Java vector index need only be done once. The analysis
is done on basic blocks, and replaces registers if there are more than two accesses to a
constant address (shown in the right part of Figure 7.3). With these optimizations, each
32-bit memory access can be done with between 4 and 8 Java bytecode instructions.

8- and 16-bit memory loads and stores also operate on the memory integer-vector, but
require more work. For example, a store byte operation must first load the 32-bit word
from the memory vector, mask out the requested byte, shift the value to be stored to the
correct byte address and perform a bitwise or to update the memory location. Signed
loads (with the MIPS lb and lh instructions) also need sign-extension. 8- and 16-bit
accesses generate between 20-42 bytecode instructions, depending on the sign and size.
To save space, these accesses are performed through functions in the runtime support.
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Figure 7.3: Cibyl memory accesses. The left part shows normal memory accesses and
the right part shows memory accesses using the special memory registers.

7.2.2 Code Generation

The MIPS binaries are translated by the cibyl-mips2java tool to Java bytecode as-
sembly, which is thereafter assembled into bytecode by the Jasmin assembler [98]. The
tool produces one class, which is split up in one method per C function for the recom-
piled code. During parsing, nop instructions and unused functions are discarded and
instructions in delay slots are appended to the branch instruction.

We use local Java variables to store registers to improve JVM optimization [22] and
produce more compact bytecode. The MIPS hi and lo registers, which are used to store
results from multiplications and divisions, are stored in static variables since these must
sometimes be performed in the runtime support. Normal arithmetic instructions require
between 2 and 4 bytecode instructions, but we simplify cases where Java bytecode in-
structions permit a more efficient translation (e.g., addi when used to increase a register
by a constant).

We do a number of optimizations on the recompiled code. First, by retaining the
relocation information in the MIPS executable, we are able to produce a smaller out-
put binary. The relocation information allows discarding of unused functions (functions
which have no entries in the relocation tables), which is not done by the GNU linker.
Second, we use architectural extensions to make calls to native Java functionality effi-
cient, which is described in more detail in Section 7.2.5. Third, by employing knowledge
of the MIPS ABI [122] and the program structure, we are able to translate problematic
instructions more efficiently.
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There are four groups of MIPS instructions that are problematic to translate: in-
structions for unaligned memory access, instructions dealing with unsigned values, 8-
and 16-bit load/stores, and multiplication and division. Unaligned memory access is
uncommon in most programs since it is inefficient also on native hardware. We therefore
handle these instructions by invoking methods in the runtime environment. Operations
on unsigned values are also handled in the runtime where needed, e.g., for multiplications.

Multiplication is problematic because the MIPS mult instruction generates a 64-
bit result split between the special hi/lo registers. In Java, translating mult means
promotion of the argument to the type long, performing a 64-bit multiplication, right-
shifting the high part of the result into a temporary and then converting both results back
to integers and storing in hi and lo. The runtime support for division and multiplication
require 9-38 bytecode instructions. For the common case of signed operations where only
the low 32-bits are used, we can most of the time perform the operation in the same
way as other arithmetic instructions. We do this by omitting the computation of the
hi value for functions which only read the lo value. This can be done because the ABI
specifies that function results are never passed in the hi or lo registers.

typedef union {

float f; uint32_t i;

} float_union_t;

float __addsf3(float _a, float _b) { public static int __addsf3_helper(int _a,

float_union_t a, b, res; int _b) {

float a = Float.intBitsToFloat(_a);

a.f = _a; b.f = _b; float b = Float.intBitsToFloat(_b);

res.i = __addsf3_helper(a.i,b.i);

return Float.floatToIntBits(a + b);

return res.f; }

}

Figure 7.4: Cibyl floating point support. The left part of the figure shows the C runtime
support, the right part shows the Java implementation of the operation

A custom peephole optimizer runs on the translated code to remove optimize some
inefficiencies in the generated bytecode. This primarily helps with removing extra stores
to registers (Java local variables), which are needed in MIPS code but which can be kept
on the Java computation stack in Java bytecode.

7.2.3 Floating point support

Cibyl supports floating point, but does not implement translation of the MIPS floating
point unit instructions. Compared to the general-purpose instruction set, the floating
point instructions are more difficult to translate efficiently. Many of the floating point
instructions have side effects on status registers, and while this can often can be handled
lazily as done in FX!32 [51], it complicates the implementation. A further problem is that
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double-precision operations use pairs of single-precision registers, which makes it difficult
to store registers in Java local variables and instead requires expensive conversion.

Cibyl supports floating point operations through a hybrid approach where we utilize
the GCC software floating point support, but implement it using Java floating point
operations, utilizing hardware support where available. Figure 7.4 illustrates how the
floating point support works in Cibyl. When compiling for softfloats, GCC generates
calls to runtime support functions for floating point operations, e.g., __addsf3 to add two
float’s. The Cibyl implementation of __addsf3 is shown on the left part of Figure 7.4,
and is simply a call to a Java helper function which is shown on the right part of
the figure. The Java implementation will parse the integer pattern as a floating point
number (usually just a move to a floating point register), perform the operation and
return the resulting integer bit-pattern. This structure requires only runtime support
and no changes to the binary translator.

7.2.4 Function calls

MIPS has two instructions for making procedure calls, jal which calls a statically known
target address, and jalr which makes a register-indirect call. Both these instructions
store the return address in the ra register. Cibyl maps C functions to static Java methods
and makes use of the MIPS ABI [122] to provide better performance and smaller size of
the generated code. We disable the GCC optimization of tail calls so that all calls are
either done through jal or jalr instructions. For statically known call targets, Cibyl
will then generate a normal Java call to a static method. As an optimization, we only
pass registers which are actually used by the function and likewise only return values
from functions that modify return registers in the ABI.

Figure 7.5: Handling of indirect function calls in Cibyl
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Keeping the register state in local variables and a one-to-one mapping of C functions
to Java methods provides some benefits. Of the 32 general-purpose MIPS registers, only
at most seven are transfer state between functions with the MIPS ABI. These are the
stack pointer sp, the four argument registers a0–a3 and the two registers for return
values. Other registers are either free to use by the target function or must be preserved.
The storing and restoring of the preserved registers in the function prologue and epilogue
can be optimized away since each Java method has a private local variable scope.

Since Java bytecode does not allow calls to computed targets, we handle the jalr
instruction differently. The register-indirect calls are handled through passing the ad-
dress to a generated static method which looks up the target function address in a
lookup table and invokes the corresponding function. While MIPS branch instructions
with statically known addresses have corresponding Java bytecode instructions, register-
indirect branches (used by GCC for example to optimize switch-statements) pose the
same problem as the jalr instruction. We also solve this problem in the same way, by
a method-local lookup table with possible branch targets in the function. The binary
translator use the relocation information and scans the data segment for possible branch
targets within the function.

Figure 7.5 illustrates how indirect function calls work in Cibyl. The code involves two
functions, main and printf where main calls printf through the register-indirect jalr
instruction. The indirection is handled via the special globaltab method for indirect
calls.

7.2.5 Calls to Native Java Methods

Using extensions to the MIPS architecture, Cibyl allows for efficient invocation of system
calls. In most operating systems, system calls are invoked through a register-indexed
table and uses fixed registers for arguments. This approach is suboptimal for two reasons.
First, the compiler cannot freely schedule registers around the system calls. Second, the
invocation is done through a lookup-table, which takes space in the executable and is
slower than calling statically known addresses. This effect is aggravated in Java since
indirect function calls are not allowed.

We have implemented an efficient scheme to allow native Java functionality to be
invoked with close to zero overhead. We achieve this by using special instruction en-
codings for passing system call arguments and invoking Java methods, which is possible
since we are not bound by the restrictions imposed by the pure MIPS instruction set.
Technically, the implementation uses the ability of GCC inline assembly to emit register
numbers into the generated code.

Figure 7.6 show the extended MIPS instructions generated for a sequence of instruc-
tions which use native Java functionality. Only the return value is fixed to a register
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(v0), otherwise the compiler is able to schedule registers freely. The get_image method
call uses a constant argument, which is assigned to a temporary register. Since the reg-
isters can be chosen freely, the return value of the first method call (in v0) is directly
used as an argument to the second call (new_sprite). The system call invocations are
translated into calls of static Java methods in the generated system call wrappers.

la t0, string_address # image = get_image("/test.png")

syscall_argument t0

syscall_invoke 35 (get_image)

syscall_argument v0 # p->sprite = new_sprite(image);

syscall_invoke 20 (new_sprite)

sw v0,12(a0)

Figure 7.6: System call handling in Cibyl

7.2.6 Runtime Support

To support integration with native Java, Cibyl allows passing Java objects to and from
C code via integer handles. The runtime environment keeps a registry with mappings
between Java objects and handles. Objects are always accessed through the registry.

The C API to access native Java classes is semi-generated, with only the C function
prototype being added manually. The C API is structured so that the Java class name
and method name can be extracted from the name of the prototype and the Cibyl tools
generate accesses to Java objects through the object registry. There are a few cases where
the automatic generation of system call wrappers doesn’t work, e.g., when passing Java
arrays or Java implementations of ANSI C functionality. For these, the Cibyl tools also
support inserting manual implementations of the system call wrappers.

We also implemented a subset of the ANSI C environment with file operations, heap
management, most string operations and floating point functions for trigonometry etc.
Most of this is implemented in plain C, with helper functions in Java. This is provided
as a libc.a library file, but since unused functions are pruned it does not add more to
the binary size than needed.

7.3 Evaluation

The Cibyl tools are written in Python, with support libraries for the compiled programs
written in C, and the runtime environment in Java. Since we have utilized standard
tools whenever possible (e.g., to read and parse ELF files and compile Java assembly
to bytecode), the Cibyl tools themselves are fairly small. The tools totally comprise
around 3200 lines of code including comments, of which 2600 lines implements the binary
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translator and the rest implements the generation of system call wrappers and C headers
for the system calls.

The runtime support consists of 357 lines of Java code (including comments) and less
than 100 lines of C and assembly code (which sets up the environment and calls global
constructors). Most of the runtime code implements support for byte and short-sized
memory access and the object registry. In addition, the ANSI C environment is currently
1297 lines of C code 368 lines of Java and the soft-float implementation consists of 357
lines of C code and 372 lines of Java.

We have so far ported a number of applications to Cibyl, including several games.
For some of these, we have ported the applications to the J2ME C API, and the porting
effort then varies depending on how well the API maps to the J2ME API. For others,
we have instead left the applications completely untouched and instead implemented
the API in Java as a system call set or in C, using the J2ME API. In most cases, the
porting process has been straightforward, mostly consisting of adapting the build system
to Cibyl and reimplementing the API-dependent parts for graphics, sound and keyboard
input.

The largest Cibyl application we know of is RoadMap [126], a GPS navigation soft-
ware which was previously available for UNIX and PocketPC platforms. RoadMap uses
the Cibyl syscall facilities quite extensively, since the bluetooth GPS support uses an
external Java library, and also employs a lot of floating point operations. The RoadMap
implementation consists of around 40000 lines of C code and 1300 lines of Java and was
completely implemented by an external developer.

7.3.1 Benchmarks

To see the performance and code size impact compared to native Java we have imple-
mented a number of benchmarks both in Java and in C. The benchmarks are implemen-
tations of the Game of Life and the A* algorithms. Both benchmarks are implemented
in a Cibyl-friendly way, i.e., using 32-bit values for data accessed in the critical path.
We measure the time it takes to run the actual algorithm, disregarding startup time.
The benchmarks were executed on a 600MHz Intel Pentium M processor running Debian
GNU/Linux. The time is the average of 10 runs.

We also ran two of the benchmarks from the Mediabench benchmark suite [81],
ADPCM and PEGWIT. ADPCM is a speech compression benchmark and PEGWIT
performs public key encryption and authentication. We limited the selection to these
two since many of the benchmarks in the suite uses floating point operations, which is
currently stabilizing in Cibyl. These benchmarks compare the native C implementa-
tion to the recompiled Cibyl version and we measure only the execution of the actual
algorithm (startup time is disregarded).
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Table 7.1: The size of compiled classes for Cibyl and native Java, in bytes. The MIPS
size is the size of the code segment only. Cibyl size is split in three categories: the
program itself, system call wrappers and the C runtime.

Cibyl bytes
Benchmark Lines of code (program/syscalls/ Java bytes MIPS bytes

C runtime)
Life 115 7882 / 3806 / 5394 1853 5204
A* 879 13205 / 3619 / 5394 21897 6836
ADPCM 788 11029 / 4486 / 5394 5572
PEGWIT 7175 83858 / 5313 / 5394 54004

The Game of Life benchmark primarily stresses the memory system with loops of
matrix updates. The Java implementation is a straight port from the C implementation,
using static methods and static variables for global C variables. We ran the benchmark
for 1000 iterations on a 100x100 field. The logic and structure for both A* implementa-
tions is the same, but the Java implementation uses multiple classes in the way a native
implementation would. The graph search visits 8494 nodes. The A* benchmark stresses
function calls, memory allocation and dereferencing of pointers and references.

Table 7.2: Performance results for the A* and game of life benchmarks.
Cibyl Native Java

JVM (Life) (seconds) (seconds) Slowdown
Gij 25.6131 28.5493 0.90
SableVM 20.0237 18.9271 1.06
Kaffe 2.3426 2.3020 1.02
Sun JDK 1.1712 1.3431 0.87

Cibyl Native Java
JVM (A*) (seconds) (seconds) Slowdown
Gij 1.2268 0.6238 1.97
SableVM 0.9560 0.5320 1.80
Kaffe 0.1089 1.0649 0.10
Sun JDK 0.1390 0.1002 1.39

We have executed the benchmarks with the Sun JDK 1.5.0 [134], the Kaffe JVM [146],
the SableVM [37] interpreter and the GNU Java bytecode interpreter (gij) [141]. Gij and
SableVM are bytecode interpreters, and therefore similar to the K Virtual Machine [136]
common in low-end and older J2ME devices. Kaffe uses a fairly simple Just-in-Time
compiler, and is similar to the more recent CLDC HotSpot virtual machine [138]. The
Sun JDK has the most advanced virtual machine, which will not be available in J2ME
devices in the near future. The C code was compiled with GCC 4.1.2 and optimizes
for size with the -Os switch. Cibyl optimization was turned on, and the Cibyl peephole
optimizer was used to post-process the Java bytecode assembly file.
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7.3.2 Code Size

Table 7.1 shows the size of the benchmarks for both Cibyl and native Java. The size
of the compiled Cibyl programs can be split in three parts: the size of the recompiled
program itself, the size of the generated Java wrappers including support classes and
the size of the runtime environment. The runtime environment size is constant for all
programs, whereas the size of the system call wrappers will depend on the number of
system calls referenced by the program. The C library support consumes a significant
part of the code for smaller programs, e.g., the printf implementation alone consumes
2.5KB in the compiled Cibyl class.

For the A* and game of life benchmarks, we can see that the size of the actual
program is within a factor of two of the Java implementation (and for the A* benchmark
lower than the Java implementation). Compared to the MIPS code, the size overhead
is between 2 and 4 (including the runtime support) for all the benchmarks. For larger
programs, we expect the size overhead compared to Java will be small.

7.3.3 Performance

Table 7.2 shows the performance results for the A* and game of life benchmarks. The
first thing that can be noted is the large performance difference between the JVMs, with
a 10-30 times performance difference within the same language in the most extreme
cases. Secondly, we can see that the performance of Cibyl is within a factor of 2 of the
native Java implementation, and in one case clearly outperforms Java.

For the game of life benchmark, GCC was able to optimize the main part of the code
very well and this leads to less overhead for Cibyl, which is within 27% of the native Java
implementation. A number of interesting properties are shown in the A* benchmark.
For all JVMs except Kaffe, this benchmark shows worse results for Cibyl. As with game
of life, the two JIT compilers fares better on Cibyl than the pure interpreters. Interesting
to note is the extremely good results for Kaffe, which is the fastest result on Cibyl and
almost 10 times faster than Java on the same virtual machine, much because of the bad
results of the Java implementation.

We believe this is caused by the differences in the generated bytecode. The Java
version uses invocations of virtual methods and accesses object fields, whereas Cibyl
uses static methods similar to C code. The Kaffe JVM clearly has difficulties with
invoking virtual methods and interfaces in the Java implementation, while it optimizes
well for the simpler bytecode (static methods) which Cibyl generates.

When comparing recompiled Cibyl code with native C code, there is a large slow-
down as shown in Table 7.3. However, this is mostly because of the current inefficient
implementation file operations. For ADPCM, input read with fread is the culprit and
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Table 7.3: Performance results in seconds for the mediabench benchmarks. The Cibyl
results were obtained with the Sun JVM.

Cibyl Cibyl no file ops Native
Benchmark (seconds) (seconds) (seconds) Slowdown Slowdown no

file ops.
ADPCM 0.821 N/A 0.031 26.0 N/A
PEGWIT 1.307 0.288 0.051 25.62 5.64

for PEGWIT, producing the output with fwrite causes most of the degradation. By
making fwrite a no-op, PEGWIT finishes in less than 0.3 seconds, which suggests that
improving the performance of file operations should be a future priority.

7.4 Related Work

NestedVM [2] also performs a binary translation of MIPS binaries to Java bytecode and
therefore has many similarities with Cibyl. However, NestedVM has different goals than
Cibyl. The main focus of NestedVM is to recompile and run insecure native binaries in a
secure VM. In contrast, Cibyl offers an alternative environment on Java-based platforms.
NestedVM has a UNIX-compatibility layer to support recompilation and execution of
existing UNIX tools, and consequently requires a larger runtime environment.

Technically, NestedVM and Cibyl are also different. To support sparse memory,
NestedVM uses a matrix memory representation whereas Cibyl uses a vector. For the
embedded applications Cibyl target, the improved performance of the vector representa-
tion is more important than the ability to support large memories effectively. NestedVM
also uses class-variables as register representation whereas Cibyl uses local variables,
which gives more efficient and compact bytecode. The use of architectural extensions
also separates Cibyl from NestedVM, and Cibyl uses a hybrid software floating point
implementation while NestedVM implements the MIPS FPU instructions.

There are also a few compilers which generate Java bytecode directly. Axiomatic
solutions [10] has a compiler for a subset of C which generates Java bytecode, and
the University of Queensland Binary Translator project has developed a Java bytecode
backend for GCC [29]. Compared to the Axiomatic solutions compiler, Cibyl provides
full support for the C language can leverage the GCC optimization framework. The
Java bytecode backend is not part of GCC and therefore requires a significant effort
to track mainline development. In contrast, maintenance of Cibyl is independent of
GCC and benefits automatically from GCC updates and Cibyl also provides a complete
development environment for J2ME devices.

The area of binary translation can roughly be separated into two areas: static and
dynamic binary translators, with Cibyl being a static binary translator. A cited prob-
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lem with static translators is separating code from data [3] but being a development
environment, Cibyl does not have these problems. By retaining relocation and symbol
information from the compiler and using static linking, Cibyl cleanly separates code
from data and can prune unused functions and executing data or rewriting code is not
possible in Java. Dynamic binary translators, performing the translation during run-
time, avoid problems with static binary translation, but typically targets other problems
than Cibyl such as translating unmodified binaries from one architecture to another [51],
performing otherwise difficult optimizations [12] or implementing debug and inspection
support [108]. Since Cibyl targets memory-constrained embedded systems, the large
runtime support system needed for a dynamic translator would be a disadvantage.

7.5 Conclusions

In this paper, we have presented the Cibyl binary translation environment. We have
described how extensions to the MIPS architecture and use of the ABI can help bring
the performance close to that of native Java implementations. We have further described
how Java functionality can be integrated into C programs in the Cibyl environment
efficiently and with small effort. The approach taken by Cibyl should be comparable in
performance to a dedicated compiler backend for Java bytecode, with much less effort.
We believe that Cibyl can fill an important niche for porting of existing programs in C
and other languages to the J2ME platform, but also for development of new projects
where Java might not be the ideal language. We also expect that the small size of the
Cibyl tools make it easy to maintain in the long run. Since we use unmodified standard
tools, Cibyl benefits from improvements and new tool versions without the need to
continuously track development.

There are multiple possible directions for future research on Cibyl. First, to reduce
the overhead of function calls, functions which are called in a chain (determined through
profiling) can be colocated to one Java method with a common entry point. Second,
to further improve performance and reduce size, we are planning an implementation
of register value tracking. Third, to better support debugging, we are investigating an
implementation of GDB support for Cibyl. Fourth, runtime libraries for C++ and other
languages would further increase the applicability of Cibyl.

Acknowledgements and Availability

This work was partly funded by The Knowledge Foundation in Sweden under a research
grant for the project “Blekinge - Engineering Software Qualities (BESQ)” (http://www.
bth.se/~besq). Cibyl is free software under the GNU GPL and can be downloaded
from http://cibyl.googlecode.com.

128



Chapter 8
Paper VII

Optimizations in the Cibyl binary translator for J2ME devices

Simon K̊agström, H̊akan Grahn, Lars Lundberg

Published at the 12th Workshop on Interaction between Compilers and Computer
Architectures, Salt Lake City, USA, February 2008

8.1 Introduction

A large majority of the mobile phones sold today come with support for the Java 2
Platform, Micro Edition (J2ME) [133], and the installation base can be measured in
billions of units [124]. J2ME is a royalty-free Java development environment for mobile
phones, and is often the only available method of extending the software installed on
the phone. This poses a severe problem when porting C or C++ applications to J2ME
devices, which can often require a complete rewrite in Java of the software, possibly
assisted by automated tools [94, 21, 91, 61].

Cibyl is a binary translator which targets this problem. Cibyl translates MIPS bi-
naries into Java bytecode, and provides means to integrate with native J2ME classes.
Cibyl therefore allows C and C++ programs to be ported to run on J2ME phones. When
designing Cibyl, our goals have been to produce compact translated code with perfor-
mance close to native Java code for common cases. The general design of Cibyl has
been described in an earlier paper [75], and this paper focuses on optimizations made to
reduce the size and improve the performance of the translated binaries.
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Figure 8.1: Translation process in Cibyl. Gray boxes show unmodified third-party tools.

The main contributions of this paper are the following. We first describe the set of
optimizations we make and how these improve size and performance. We then perform
a benchmark on an application ported with Cibyl to illustrate the optimizations in a
real-world setting. Finally, we compare Cibyl against native Java and another binary
translator, NestedVM [2] in a micro benchmark (an implementation of the A* algorithm)
to study performance characteristics in detail. The performance results show that Cibyl
is significantly faster than NestedVM and close to native Java performance on the cases
we target.

The rest of the paper is structured as follows. In Section 8.2 we introduce the Cibyl
binary translator. The main part of the paper then follows in Section 8.3 where we
describe the optimizations performed by Cibyl and Section 8.4 where we evaluate our
optimizations. Section 8.5 describes related work and finally we conclude and present
future directions in Section 8.6.

8.2 Cibyl

Cibyl uses the GCC [129] compiler to produce a MIPS I [65] binary, which is thereafter
translated into Java bytecode by the Cibyl tools. Figure 8.1 shows the translation
process with Cibyl, where we use a set of tools to translate the MIPS binary. Apart
from the binary translator, which outputs Java bytecode assembly to Jasmin [98], we
also have a stub code generator to produce stubs for calls into native Java code. When
translating, Cibyl uses Java local variables to represent MIPS registers, which contributes
to producing efficient and compact code compared to using class member variables or
static class variables. The MIPS instruction set is well suited for binary translation,
and most arithmetic instructions can be directly translated to a sequence of loading
source registers (local variables) on the Java operand stack, performing the operation
and storing into the destination register.
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We use a Java integer array to represent memory as seen by the MIPS binary. This
means that 32-bit memory accesses are performed efficiently by simply indexing the
memory array with the address divided by four, but also that 8- and 16-bit accesses
need an extra step of masking and shifting the value in memory to get the correct result.
Since a common pattern is to use the same base register repeatedly with different offsets,
we pre-calculate the array index and use special memory access registers for these cases.
To reduce space, we also perform the more expensive 8- and 16-bit accesses through
functions in the runtime support instead of generating bytecode directly. Similarly,
expensive arithmetic operations such as unsigned multiplications are also implemented
in the runtime layer. Since 32-bit access is easiest to support efficiently, Cibyl focuses
on performance for this case.

Cibyl uses a 1-1 mapping between C functions and generated Java methods, which
brings a number of benefits. First, this mapping enables the J2ME profiler to produce
meaningful output for Cibyl programs. Second, if the program causes an exception,
the call chain emitted by the JVM will be human readable. The 1-1 mapping also
enables some optimizations, which will be discussed later. We handle register-indirect
function calls specially since Java bytecode does not support function pointers. To
support function pointers, we generate a special “call table”method that switches on the
function address and calls the corresponding method indirectly.

Compared to the integer instruction set, the MIPS floating point instruction set is
more difficult to translate [75]. Floating point is therefore supported by a hybrid ap-
proach where we use the GCC soft-float support, but implement the runtime support
functions using native Java floats. This solution provides a tradeoff between imple-
mentation complexity and performance, with a very simple implementation but less
performance than an implementation of the MIPS FPU instruction set.

8.3 Optimizations

We perform a number of optimizations in Cibyl apart from the general code genera-
tion optimizations described above to improve performance and reduce the size of the
generated Java class files.

8.3.1 32-bit multiplications/divisions

The MIPS instruction for multiplication always produce a 64-bit result, split in the hi/lo
register pair. We translate this to Java bytecode by casting the source registers to 64-bit
longs, perform the multiplication, split the resulting value and place it in hi/lo. As
expected, this generates many instructions in Java bytecode, and is also fairly inefficient
and we perform it in the runtime support to save space.
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Often, however, only the low 32 bits of the value is actually used and in these cases
we perform a 32-bit multiplication which can be done natively in Java bytecode. This is
safe since the lo/hi registers are not communicated across functions in the MIPS ABI,
so if the hi register is unused we simply skip producing it. This optimization saves both
space and improves performance of multiplications. Divisions are handled similarly.

8.3.2 Size reduction

To reduce size, functions which are unused are pruned during translation, and reloca-
tion information in the binary is used to determine which functions are safe to remove.
Similarly, the table of indirect calls contains only the functions which are called register-
indirect, also determined by relocations and reconstructing values from instructions with
relocations.

The 1-1 mapping between C functions and Java also methods allows for size reduc-
tions together with the MIPS ABI [122]. On function calls, we pass only the stack pointer
and the argument registers used by the called function, which reduces the overhead for
short functions. Another optimization the ABI allows is to skip stores and loads in
the function prologue and epilogue to the MIPS callee-saved registers s0...s8, which are
handled automatically as the register representation uses Java local variables.

Figure 8.2: Handling of co-located functions in Cibyl
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8.3.3 Inlining of builtin functionality

We perform selective inlining of certain functions in the runtime support, mostly for
the floating point support. This optimization is implemented by matching function call
names to a set of Python classes that implements these builtins. These then generate the
corresponding functionality through emitting bytecode instructions directly, replacing
the function call.

This allows us to reduce the overhead of floating point operations significantly, at
the cost of a slightly larger translated file. We use this functionality for other purposes
as well, e.g., to throw and catch Java exceptions from C code.

8.3.4 Function co-location

One large source of overhead is method calls, i.e., translated C function calls. Since Cibyl
uses local variables for the register representation, it needs to pass up to 7 arguments
for the method to call, and method call overhead grows with the number of arguments.
This overhead is especially noticeable with short functions which are frequently called.

As a way around this problem, we allow multiple C functions to be co-located into one
Java method. Calling between functions in a single Java method can then be done using
regular goto’s avoiding the method call overhead. The implementation is illustrated in
Figure 8.2, which shows a call chain fn1, fn2, fn3:

1. Co-located methods are called with an index specifying the function to call, then
the method prologue does a switch on this index and calls the function. The MIPS
ra register is set to a special value to signify that the function was called from
outside the method.

2. Calls to external methods are handled as elsewhere, with argument registers (Java
local variables) passed.

3. On calls to functions within the method, a direct goto is used. Passing argument
registers are not needed, but we store a generated index for the return address in
the ra register (local variable).

4. On returning, we switch on the ra register and jump back to where the local call
was made or out of the co-located method.

There are a few differences compared to normal methods. First of all we need to
save the ra register since it’s now used for the function returns. Second, we allocate the
used MIPS s-registers to different Java local variables for each function in the co-located
method, which allows us to avoid storing store/restore these registers in the function as
with normal methods.
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8.3.5 Peephole optimizer

Cibyl also includes a peephole optimizer to improve common translation patterns. For
example, since the size of MIPS instructions is fixed at 4 bytes, constant assignments
to registers is split in a lui/addiu pair to assign the upper and lower half of the reg-
ister. These assignments are fairly common and are coalesced into one assignment by
the peephole optimizer. Similarly, storing of intermediate results for computations in
registers can often be avoided and kept on the Java operand stack.

8.4 Performance evaluation

We have evaluated Cibyl performance in two benchmarks, FreeMap and A*. FreeMap [126]
is a GPS street navigation application originally written for X-windows but later ported
to other platforms such as WindowsCE. It has been ported to the J2ME platform using
Cibyl by an external developer, and consists of over 40000 lines of C code and 1600
lines of Java code. FreeMap uses a mixture of integer and floating point operations, and
displaying the map is the most computationally intensive operation.

We run FreeMap in the Sun J2ME emulator and set it up to perform a map rotation
operation during one minute and count the number of iterations of the main loop during
this time. Startup and shutdown time is ignored. We compare a non-optimized Cibyl
version with an optimized one, where the optimizations enabled are inlining of builtins,
optimization of 32-bit multiplications and divisions and co-location of functions dealing
with redrawing.

The A* benchmark consists of two implementations of the A* algorithm, one in C
and one in Java, which are based on the same source. The Java implementation is not
a port, but implemented Java-style using multiple classes. Both implementations stress
memory management, dereferencing pointers/references and short function calls. The
graph search visits 35004 nodes during the execution.

We setup the A* implementation to use different data types for the main data struc-
ture (the nodes in the graph). The types are 32-bit int, 16-bit short, 32-bit float and
the 64-bit double. We run the benchmark in Cibyl both without and with optimizations,
in NestedVM and in Java on the Sun JDK 1.5.0 [134] JVM, the Kaffe JVM [146], the
SableVM [37] interpreter and the GNU Java bytecode interpreter (gij) [141]. The Cibyl
optimizations we use is inlining of builtins, memory registers, multiplication and divi-
sion optimization, and function co-location. We co-locate the functions in the hottest
call chain, which is the actual A* algorithm, looking up nodes, iterating over nodes and
computing distance heuristics.

All benchmarks are executed on a Pentium M processor at 600 MHz with Debian
GNU/Linux. The A* benchmarks are compiled with GCC 3.3.6 (using the NestedVM
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compiler), using the default options for NestedVM and Cibyl, optimizing at level -O3 in
the NestedVM case and -Os, size, for Cibyl. The FreeMap benchmark is compiled with
GCC 4.1.2, optimizing for size.

8.4.1 Results

For FreeMap, shown in Figure 8.3, we see that enabling the optimizations improves
the performance with almost 15% over the non-optimized version. This improvement is
visible in the emulator update frequency. The majority of the improvement comes from
function co-location and the use of builtins. The size of the FreeMap classes is 592KB
of which 457KB are Cibyl-generated classes.

B
as

e

O
pt

im
iz

ed

Lo
op

 it
er

at
io

ns

0

1000

2000

3000

4000

5000

3631.71
4134.86

Figure 8.3: FreeMap benchmark results. The baseline shows results without optimiza-
tions enabled.

In the A* benchmark, presented in Figure 8.4, we can see that Cibyl performs very
well in the integer-case, being on par with Java on the Sun JVM and significantly faster
than NestedVM on all tested JVMs. This is expected since our optimizations target
the of 32-bit data case, and the optimizations improve results with between 10-40%
depending on JVM. Cibyl is faster than NestedVM also in the unoptimized case, which
is most likely caused by the higher use of Java local variables in Cibyl (which are more
efficient to access than class members). NestedVM also references memory in a two-level
scheme to support sparse address spaces [2], which contributes a bit to the overhead.
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For the other cases, there is a more mixed picture. As expected, both Cibyl and Nest-
edVM are far behind Java in these cases since the translated code cannot work directly
with 16-bit or 64-bit values and less efficiently with floating point values. With shorts,
Cibyl performs better than NestedVM on the Sun JVM and SableVM and marginally
worse on Kaffe and Gij. The slowdown compared to the integer benchmark is caused by
additional memory latency, and the relative slowdown compared to NestedVM can be
explained by the calls into the runtime for 16-bit memory accesses.

The floating point part, both Cibyl and NestedVM frequently need to store floats
in integer variables or memory (through the method Float.floatBitsToInt), which
decrease the performance a lot compared to native Java. For the Sun JVM, Cibyl has
performance comparable to NestedVM, but is behind on the other JVMs, which is caused
by soft-float overhead. However, we can see that the builtin optimization substantially
improves performance with 30-40%. The double case is not optimized by the builtin
approach, and show only small improvements from the optimization.

An outlier is native Java on the Kaffe JVM, which shows much worse results than
on the other JVMs throughout all the tests. On the other hand, Kaffe gives good results
with Cibyl and NestedVM, which use a simpler program structure based on calls of static
methods.

The size of the classes including runtime support in A* benchmark is 37KB for the
optimized Cibyl version, 240KB for NestedVM and 61KB for native Java. Cibyl loads
static data (the .data and .rodata ELF sections) from a file, and with that included
in the class size as done in NestedVM and native Java, the Cibyl size is 75KB. The size
advantage compared to NestedVM is caused by the larger NestedVM runtime, and the
more aggressive use of Java local variables in Cibyl which decreases the size compared
to class members.
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Figure 8.4: Results of the A* benchmark for the integer, short, float and double data
types continued on the next page
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Figure 8.4: Results of the A* benchmark for the integer, short, float and double data
types
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8.5 Related work

NestedVM [2] has many similarities with Cibyl. NestedVM is also a binary translator
that translates MIPS binaries into Java bytecode, but NestedVM targets security - being
able to run insecure binaries in a secure VM - while Cibyl targets portability to J2ME
devices. This is reflected in some of the design decisions, where NestedVM uses a two-
level scheme for memory accesses (but which can be disabled) to detect accesses of
uninitialized memory, and an optional UNIX compatibility layer to support translation
of existing UNIX tools. Cibyl on the other hand focuses on generation of compact code
and good performance for the common and easily supported case of 32-bit memory
accesses. Cibyl also uses Java local variables for the register representation throughout,
whereas NestedVM uses local variables only for caching the normal class variable register
representation.

There is also a set of compilers which can generate Java bytecode directly. Axiomatic
solutions [10] has a compiler for a subset of C which generates Java bytecode. Cibyl
supports the C language fully, and with runtime support any language which GCC can
compile. The University of Queensland Binary Translator project has a Java bytecode
backend for GCC [29]. This backend is not part of mainline GCC, and tracking mainline
development can require a significant effort. In contrast, Cibyl is independent of GCC
and able to any GCC version which can generate MIPS binaries.

8.6 Conclusions and future work

In this paper, we have presented the optimization framework for the Cibyl binary trans-
lator and benchmarked it against NestedVM and native Java. We show how function
co-location, inlining of the soft-float implementation and use of the MIPS ABI con-
tributes to improve the performance of code translated with Cibyl. Our benchmarks
illustrates how these optimizations can improve performance of real-world Cibyl appli-
cations and how binary translation is affected by data types. We also compare Cibyl to
the NestedVM binary translator and native Java and show that performance in the case
we target is significantly better than NestedVM and close to performance of native Java.

Future directions to improve performance includes implementing the MIPS FPU
instruction set, which is an area where NestedVM has an advantage. We are also planning
an implementation of register type and value tracking, which can reduce size and improve
performance by avoiding arithmetic operations with constant values and by reducing
conversions between floats and integer representations of floating point values.
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