ABSTRACT

Software architecture has been identified as an
increasingly important part of software develop-
ment. The software architecture helps the deve-
loper of a software system to define the internal
structure of the system. Several methods for eva-
luating software architectures have been propo-
sed in order to assist the developer in creating a
software architecture that will have a potential to
fulfil the requirements on the system. Many of the
evaluation methods focus on evaluation of a single
quality attribute. However, in a real system the-
re are normally requirements on several quality
aspects of the system. Therefore, an architecture
evaluation method that addresses multiple quality
attributes, e.g., performance, maintainability, tes-
tability, and portability, would be more beneficial.
This thesis presents research towards a method
for evaluation of multiple quality attributes using
one software architecture evaluation method. A
prototype-based evaluation method is proposed

2006:03

that enables evaluation of multiple quality attri-
butes using components of a system and an ap-
proximation of its intended run-time environment.
The method is applied in an industrial case study
where communication components in a distribu-
ted real-time system are evaluated.The evaluation
addresses performance, maintainability, and por-
tability for three alternative components using a
single set of software architecture models and a
prototype framework. The prototype framework
enables the evaluation of different components
and component configurations in the software ar-
chitecture while collecting data in an objective way.
Finally, this thesis presents initial work towards in-
corporating evaluation of testability into the met-
hod. This is done through an investigation of how
testability is interpreted by different organizatio-
nal roles in a software developing organization and
which measures of source code that they consider
have an affect on testability.

‘BTW°

ISSN 1650-2140
ISBN 91-7295-082-X

NOILLVNTVAI ALITVNO FIHNLDILIHOYVY FUVMLIOS

UOSSUDL.IEB] SUB.Y

€0:900C

SOFTWARE ARCHITECTURE QUALITY

EVALUATION
APPROACHES IN AN INDUSTRIAL CONTEXT

Blekinge Institute of Technology
Licentiate Dissertation Series No. 2006:03

School of Engineering

Frans Martensson

Software Architecture Quality Evaluation -
Approaches in an Industrial Context

Frans Martensson

Blekinge Institute of Technology Licentiate Dissertation Series
No 2006:03
ISSN 1650-2140
ISBN 91-7295-082-X

Software Architecture Quality Evaluation -
Approaches in an Industrial Context

Frans Martensson

Department of Systems and Software Engineering
School of Engineering
Blekinge Institute of Technology
SWEDEN

© 2006 Frans Martensson

Department of Systems and Software Engineering
School of Engineering

Publisher: Blekinge Institute of Technology

Printed by Kaserntryckeriet, Karlskrona, Sweden 2006
ISBN 91-7295-082-X

Abstract

Software architecture has been identified as an increasingly
important part of software development. The software architec-
ture helps the developer of a software system to define the inter-
nal structure of the system. Several methods for evaluating
software architectures have been proposed in order to assist the
developer in creating a software architecture that will have a
potential to fulfil the requirements on the system. Many of the
evaluation methods focus on evaluation of a single quality
attribute. However, in an industrial system there are normally
requirements on several quality aspects of the system. Therefore,
an architecture evaluation method that addresses multiple quality
attributes, e.g., performance, maintainability, testability, and port-
ability, would be more beneficial.

This thesis presents research towards a method for evaluation of
multiple quality attributes using one software architecture evalu-
ation method. A prototype-based evaluation method is proposed
that enables evaluation of multiple quality attributes using com-
ponents of a system and an approximation of its intended run-
time environment. The method is applied in an industrial case
study where communication components in a distributed real-
time system are evaluated. The evaluation addresses perform-
ance, maintainability, and portability for three alternative compo-
nents using a single set of software architecture models and a
prototype framework. The prototype framework enables the eval-
uation of different components and component configurations in
the software architecture while collecting data in an objective
way. Finally, this thesis presents initial work towards incorporat-
ing evaluation of testability into the method. This is done through
an investigation of how testability is interpreted by different
organizational roles in a software developing organization and
which measures of source code that they consider affecting testa-
bility.

ii

Acknowledgments

I would first like to thank my advisors Dr. Michael Mattsson and
Dr. Hakan Grahn for all your help and support during the years
leading up to the completion this thesis. Your patience, guidance,
and good advice are what made this possible.

I am also thankful to Professor Claes Wohlin for comments and
guidance during the completion of this thesis. And to my col-
leagues in the SERL research group and the BESQ research
project. You provide a very creative and fun work environment.

I would like to thank the people at Danaher Motion Sérd AB. You
have provided an industrial point of view and a professional
organization where our studies could be performed. In particular
I would like to thank Henrik Eriksson and Jonas Rahm.

My friends in Lunchmobben shall of course be mentioned. Over
the years you have provided many relevant comments and ques-
tions hidden in a roar of completely irrelevant comments and bad
puns.

Finally, I would like to thank my parents, Hékan and Kerstin, for
inspiring and encouraging me to find my own path. My sister
Tina that always seems to be so far away, but always is close to
my heart. Finally my love Kim, you are always there and you are
my dearest friend. You all support me when things are hard and
cheer me on when things go well.

This work was partly funded by The Knowledge Foundation in
Sweden under a research grant for the project “Blekinge - Engi-
neering Software Qualities (BESQ)” http://www.bth.se/besq.

il

iv

Table of Contents

Chapter 1. 1

Introduction
1.1 Software Development Process.........cceevevveecieeninns 3
1.2 Functional and Quality Requirements........................ 6
1.3 Software Architecturecccoeevvevienceeeceenieeeeeens 8
1.4 Research QUESHIONSc.cocvveeviieciieeieeieeciie e 12
1.5 Research Methodsocceeeveerieniieniienieciiecieeieee 14
1.6 Contributions of this Thesiscccocvvvvererverrnnne. 18
1.7 Thesis Papers......cccceecveeeiieiiierienieeieecee e 20
1.8 Validity of ReSultSccovieriieieiieiee e 23
1.9 Future Work........coocveeciieiiieieeieceeeeee e 26
1.10 SUMMATY ..eeeieieiiieiieeeee e 27

Chapter 2. 29

A Survey of Software Architecture Evaluation Methods with
Focus on Performance, Maintainability, Testability, and

Portability
2.1 INtrodUCHION ..ot 29
2.2 Software Architecture Evaluationcccceueene... 31
2.3 Quality AttribULESceeveevieiieeeie e 32
2.4 Related WOrK......oooveeviiiiiiiiieieceeeeee e 34
2.5 Overview of the Architecture Evaluation Methods.. 36
2.6 DISCUSSION .evviiiieiieeiiieiee ettt eve e saeeaee e 43
2.7 CONCIUSIONS ..ot 45

Chapter 3. 47

A Case Against Continuous Simulation for Software Archi-
tecture Evaluation

3.1
3.2
33
34

INtroductionoccveecvieiiieiieeie et 47
Software Architecturecceceevveeveneecieneeeesreenenn 49
Model and Simulationcccceeeveerieeciieniesieeieens 51
Software TOOIS.......cccvevverieieriieiere e 53

35 AGV SYSIEMS...cuviiiiieiiiiiiiieeeese et 54
3.6 The EXPeriment.........coecvevveeeeneereenenieseeeesieeveniens 56
3.7 The System Behavior.........cccoocveviiiiieieiiciieee 56
3.8 The Model.....ccoooiriiiiiie e 57
3.9 Problems With the Approach...........ccoccvvveviirininnnen. 64
3.10 DISCUSSION ...t 66
3.11 CONCIUSIONS ..c.niiiiiicriirictereseet et 67
Chapter 4 ... 69

An Approach for Performance Evaluation of Software Archi-
tectures using Prototyping

4.1 INtroductioncccoeeeriiiienene e 69
42 Software Architectureoceeveveeienerieneeeeeene 71
4.3 The Prototype-based Evaluation Approach 71
4.4 Prototype-based Architecture Evaluation 75
4.5 A Case Study of an AGV Systemccceevevverneennnne 77
4.6 Results From the Case Studycccoceevvveeiiienenen. 86
4.7 Analysis of the Evaluation Method...............coo........ 86
4.8 Future Workcoocooiiiiiie e 87
4.9 CONCIUSIONS ...t 87
Chapter 5 ... 89

Evaluating Software Quality Attributes of Communication
Components in an Automated Guided Vehicle System

5.1 Introductioncooevieiinieiiiiieecc e 89
5.2 Backgroundcocceveiieiiinieiee e 91
53 Component Quality Attribute Evaluation 95
5.4 Evaluation Results.........c.coveveneninininenininencene 99
55 Related Work.......cooeeviiiiiiiieee e 105
5.6 CONCIUSIONSviiiiiiiiirceeeeteeee e 106
Chapter 6 ... 109
Forming Consensus on Testability in Software Developing
Organizations
6.1 Introductioncooeveeiiiiiiinieeee e 109
6.2 Software Testing and Testability...........cccccveevennnen. 111

vi

6.3 Objectives and Methodologyccccevevieniieininne 113

6.4 Results and Analysis of Testability Statements....... 115
6.5 Selection of Testability Metrics........cooeeevereeeeneenne 123
6.6 DISCUSSION ..o 127
6.7 COoNCIUSIONS ..euveneineeiieieieiiecc e 128
References...............cccooooiioiiniicieeee 131

vii

viii

Introduction

Software plays an increasingly large role in our society. Many
services that we take for granted would have been impossible to
create without the use of software. Software systems are in turn
becoming more and more complex. The number and complexity
of the functions that software systems provide continuously
increase. Development of new technologies and reuse of existing
technologies further complicate the development of new systems.
Systems have to take in consideration not only existing systems
that they interact with, but also possible future changes. These
considerations are present and have to be managed throughout
the lifecycle of software systems.

Software architecture has been introduced to help manage com-
plexity and risk during development and maintenance of software
systems. It guides and documents the structure of the system as
well as the responsibilities of the system’s components within
this structure. The software architecture is not only based on
requirements for functions but also requirements for different
qualities of the software system. The quality requirements can be
used as a basis for evaluation of one, or comparison of two soft-
ware architectures. Bengtsson [17] describes four main situations

Introduction

where software architecture evaluations can be used. The first is
when two different software architectures have to be compared
(A versus B), and we want to find out which architecture that is
the best. The second situation is when we want to evaluate
changes that have been introduced in an architecture (A versus
A’). Will the changes of the architecture improve the system? The
third situation is when we want to see how well an architecture
fulfils a quality attribute. Finally, in the fourth situation, an archi-
tecture can be compared to an alternative theoretical architecture.
By evaluating architectural alternatives it becomes possible to
select the most promising software architecture for continued
development. The exploration of alternatives increases the devel-
opers’ trust in that the final architecture is the one best suited for
fulfilling the systems requirements. This also decreases the risk
that the development project will fail.

The main contribution of this thesis is the work towards a soft-
ware architecture evaluation method for addressing multiple
quality attributes. We present a survey of evaluation methods that
can be used to address four important quality attributes: perform-
ance, maintainability, testability, and portability. We present an
evaluation of continuous simulation for performance evaluation
of software architectures and continue with a method for per-
forming prototype-based software architecture evaluations. We
then apply the prototype-based method, in cooperation with an
industrial partner, to evaluate how it can be used to address per-
formance, maintainability, and portability. In preparation for con-
tinued research on evaluation of testability we investigate how
testability is perceived by different roles in a software developing
organization.

In this chapter we give an introduction to the field of software
architecture, we introduce the research questions that this thesis
focuses on, and the research methodologies applied to examine
the questions. We describe the papers that are in the remaining
chapters and their contributions towards answering the research
questions. Finally, we discuss future research directions based on
our results.

Introduction

11

Software Development Process

Software engineering is an engineering discipline that concerns
the development of software. As an engineering discipline it is
focused on making things work, applying theories, methods, and
tools when and where it is appropriate.

In order to better understand the concept of software architecture
and enable us to see where it fits in the software development
process, we give a short introduction to software development. In
this context we then describe the use of software architecture.

Software development is usually performed in a development
project. The project identifies requirements from a customer or
intended market for the system. Then it analyses, designs, and
implement a software system that will fulfil these requirements.
Several tasks are performed by the people in the development
project resulting in the creation of a number of artefacts, e.g.,
requirements specifications, prototypes, and an implementation.
In order to make the tasks easier and more structured, the people
in the development project usually follow a software develop-
ment process.

A software development process describes activities that have to
be done and when, during the development, they should be done.
A process can also describe which roles that should exist in the
development organization. Examples of roles are requirements
engineer, programmer, software architect, tester, and manager.
The process defines each role's tasks and responsibilities.
Depending on how far the development has progressed, the
number of people in each role may vary. In essence, the process
helps to structure the developers’ work and make the develop-
ment process less unpredictable.

Most software development processes can be described using a
general set of activities (or collections of activities) for software
development. These have been described by Sommerville [84]
as:

1. Software specification.

2. Software development.

3. Software validation.
4

Software evolution.

Software Development Process 3

Introduction

Software specification. This activity concerns the identification
of requirements from the intended users of the system. The
requirements are verified and prioritized so that the most impor-
tant requirements can be identified. Having a clear set of require-
ments is important for the success of the project. If the wrong
functionality is implemented it does not matter how well it is
implemented, it is still wrong.

Software development. The requirements are used as input for
the creation or modification of a software architecture for the sys-
tem. The architecture describes the high level components of the
system, their responsibilities, and interactions. The architecture is
then further refined into a more detailed design for the system.
Finally the implementation is done according to the design.

Software validation. The system has to be validated to make
sure that it fulfils the requirements gathered during the specifica-
tion phase. Defects that are identified should be corrected so that
the software system that is delivered to the customer is as correct
as possible. Many methods for testing a system exist and which
method that should be used depends on the requirement that is
being tested.

Software evolution. The development of a software system does
not end once it has been delivered to the customer. A system
might be in use during ten to twenty years and the likelihood that
changes have to be made to it during this time is high. New func-
tionality can be added and changes to existing functionality can
occur. Evolution can be seen as a form of maintenance, which is
the term that we use in the remainder of this thesis.

These basic activities are present in most software development
processes, for example waterfall [73] and iterative development
methods [53] such as Extreme Programming [16]. In the water-
fall development method, the development progresses from one
activity to the following, putting the focus on one activity at a
time. In iterative development, the activities of the development
process are repeated over a number of smaller iterations. Some
requirements may be changed for each iteration so that the soft-
ware system grows incrementally and adapts to changing require-
ments.

In the model described by Sommerville we find software archi-
tecture in the second step, i.e., software development. The soft-

Software Development Process

Introduction

ware architecture is used as input to the continued design of the
software system. Sommerville continues to describe a set of
design activities within the software development activity:
Architectural design

Abstract specification

Interface design

Component design

Data structure design

A o e

Algorithm design

Architectural design. The activity of identifying the sub-sys-
tems of the software system. The sub-systems’ relations are iden-
tified and documented.

Abstract specification. Each sub-system that was identified is
assigned responsibilities and constraints that it has to fulfil. The
necessary services are identified and documented.

Interface design. The interfaces that enable the interaction
between the sub-systems are designed.

Component design. The responsibility for the services previ-
ously identified is assigned to components. The interfaces for the
components are designed.

Data structure design. The data structures that will be used in
the services and for communication between services are speci-
fied and documented.

Algorithm design. The algorithms that will be used in the serv-
ices are selected or designed.

Software Development Process 5

Introduction

1.2

Functional and Quality Requirements

A requirement is defined in the encyclopedia of software engi-
neering [61] as:

“A requirement is an externally observable
characteristic of a desired system. When trying to
determine whether a candidate requirement is really a
requirement, two criteria from this definition must be
met: it must be externally observable, and it must be
desired.”

An externally observable characteristic is something that can be
perceived by the user of the system. That the characteristic
should be desired means that it has been identified as important
to the intended user. Following these two rules helps secure that
no unwanted characteristics are introduced in the system. The
remaining problem is then to identify a representative set of users
for the system and identifying important requirements. The user
that will use the system from day to day is an important source of
requirements, but a developer can also be a user of the system
since the developers might have to maintain the system over a
long period of time. This leads to the identification of a number
of stakeholders in the system. Each stakeholder has a set of
requirements that they want the completed system to fulfil.
Stakeholders during development can be different types of users
and developers, such as end-user, programmer, and tester.

Requirements are collected from stakeholders during the initial
phase of software development. They are commonly divided into
two main groups: functional and non-functional. Non-functional
and quality requirements are often grouped together [19], but
there exist requirements that are non-functional and unrelated to
quality, e.g., the choice of programming language. The quality
requirements that a software system has to fulfil can in turn be
divided into two groups based on the quality they are requesting,
i.e., development and operational qualities. A development qual-
ity requirement will benefit the developers work, e.g., maintaina-
bility, understandability, and flexibility. Operational quality
requirements, on the other hand, focus on making the system bet-
ter from the users point of view, e.g., performance and usability.
Depending on the domain and priorities of the users and develop-
ers, quality requirements can become both development and
operational, such as performance in a real-time system.

Functional and Quality Requirements

Introduction

A quality attribute is a property of a software system. Compared
to a quality requirement that is placed on a software system by a
stakeholder; a quality attribute is what the system actually
presents once it has been implemented. During the development
of an architecture it is therefore important to validate that the
architecture has the required quality attributes. This can be done
by one or more software architecture evaluations. A deeper dis-
cussion of architecture evaluation can be found in Section 1.3.3.

In this thesis we will focus on the following quality attributes:
maintainability, performance, testability, and portability. Quality
attributes can be hard to define in an unambiguous way,. Stand-
ardization bodies such as IEEE [41] and ISO [43] have therefore
created standardized definitions for many quality attributes.
IEEE standard 610.12-1990 [42] defines the previously men-
tioned quality attributes as:

Maintainability. This is defined as:

“The ease with which a software system or component
can be modified to correct faults, improve performance
or other attributes, or adapt to a changed
environment.”

Maintainability is a multifaceted quality requirement. It incorpo-
rates aspects such as readability and understandability of the
source code. It is also concerned with testability to some extent
as the system has to be re-validated during the maintenance.

Performance. Performance is defined as:

“The degree to which a system or component
accomplishes its designated functions within given
constraints, such as speed, accuracy, or memory
usage.”

There are many aspects of performance, e.g., latency, throughput,
and capacity.

Testability. Testability is defined as:

“The degree to which a system or component facilitates
the establishment of test criteria and the performance
of tests to determine whether those criteria have been
met.”

Functional and Quality Requirements 7

Introduction

1.3

1.3.1

We interpret this as the effort needed to validate the system
against the requirements. A system with high testability can be
validated quickly.

Portability. Portability is defined as:

“The ease with which a system or component can be
transferred from one hardware or software
environment to another.”

We interpret this as portability not only between different hard-

ware platforms and operating systems, but also between different
virtual machines and versions of frameworks.

Software Architecture

We have previously discussed where in the development process
that software architecture has its place. We have also discussed
the main influencing factors (requirements) for the software
architecture and how they are identified. Now we discuss the def-
inition of software architecture and methods that exist for design-
ing and evaluating architecture alternatives.

Definition of Software Architecture

The concept of software architecture has been discussed by for
example Shaw and Garland in [81]. The concept has since then
evolved. Today there exists a number of definitions with minor
differences depending on domain and peoples’ experience. How-
ever, most definitions share common characteristics that can be
exemplified by looking at the definition by Bass et al. [12]:

“The software architecture of a program or computing
system is the structure or structures of the system,
which comprise software elements, the externally
visible properties of those elements, and the
relationships among them.”

This means that the architecture describes which high level com-
ponents a software system consists of as well as which responsi-
bilities that the components have towards other components in
the system. The architecture also describes how these compo-
nents are organized, both on a conceptual level as well as on a
decomposed detailed level since there can be an architectural

Software Architecture

Introduction

1.3.2

structure inside components as well. Finally, the architecture
defines which interfaces the components present to other compo-
nents and which interfaces and components that they use.

Designing Software Architectures

Several methods for designing software architecture have been
proposed. Examples of such methods are the Siemens’ four
views method by Hofmeister et al. [40] and the quality attribute-
oriented software architecture design method (QASAR) by
Bosch [19]. The methods differ on where they put their focus
during the design of the architecture.

Which architecture design method that should be used during the
development of a software system depends on several factors. It
depends on the organization and people working in it and it
depends in the requirements on the system. Large development
organizations put requirements on well documented and easily
understandable architecture documentation so that designers and
programmers can understand the architecture [23].

Over the years of software and architecture design, certain prob-
lems have been identified as recurring. As developers gained
experience in designing systems they found that certain solutions
could be applied to the recurring problems and thus simplify the
design of the system. This codification of applicable solutions
was named patterns and initially focused on solutions to pro-
gramming problems [30]. When the concept of software architec-
ture was introduced the same thing happened again. Certain ways
of organizing architectural elements appeared over and over. The
patterns that were identified were described as architectural
styles that help the architect to identify and organize components
of the architecture [21]. Architectural styles are often associated
with quality attributes [51]. By using a certain style the architect
gives the system the potential to be better at a desired quality
attribute and through that fulfilling its quality requirements. It is
however still possible to affect the quality attributes of the system
during the design and implementation of the system [37].

Even though a software architecture has been created to fulfil the
requirements on the system, it is difficult to guarantee that it actu-
ally will fulfil them. Some quality attributes such as performance
can be specified using a set of test cases that the system can pass
or fail, but several quality attributes, e.g., maintainability and

Software Architecture 9

Introduction

1.3.3

usability are difficult to validate. The qualitative nature of many
quality attributes make them difficult to quantify and therefore it
becomes difficult to say if a quality requirement has been ful-
filled or not. It is easier to make a qualitative statement that the
architecture fulfils the quality requirements to some extent.

Evaluating Software Architectures

Architecture evaluations can be performed in one or several
stages of a software development process. They can be used to
compare and identify strengths and weaknesses in architecture
alternatives during the early design stages. They can also be used
for evaluation of existing systems in preparation for maintenance
or continued development. The evaluations help software devel-
opers make sure that a software architecture will be able to fulfil
the quality requirements and several approaches for evaluating
software architectures have been proposed. The approaches can
be divided into four main groups, i.e., experience-based, simula-
tion-based, mathematical modelling, and scenario-based [19].

Experience-based evaluations are based on the previous experi-
ence and domain knowledge of developers or consultants [4].
People who have encountered the requirements and domain of
the software system before can, based on the previous experi-
ence, say if a software architecture will be good enough [19].

Simulation-based evaluations rely on a high level implementa-
tion of some or all of the components in the software architecture
and its environment. The simulation can then be used to evaluate
quality requirements such as performance and correctness of the
architecture. Simulation can also be combined with prototyping,
thus prototypes of an architecture can be executed in the intended
context of the completed system. Examples of methods in this
group are Layered Queuing Networks (LQN) [3] based
approaches and event-based methods such as RAPIDE [59, 60]

Mathematical modelling uses mathematical proofs and methods
for evaluating mainly operational quality requirements such as
performance and reliability [75] of the components in the archi-
tecture. Mathematical modelling can be combined with simula-
tion to more accurately estimate performance of components in a
system.

10

Software Architecture

Introduction

Scenario-based architecture evaluation tries to evaluate a partic-
ular quality attribute by creating a scenario profile that forces a
very concrete description of the quality requirement. The scenar-
ios from the profile are then used to step through the software
architecture and the consequences of the scenario are docu-
mented. Several scenario-based evaluation methods have been
developed, e.g., the Software Architecture Analysis Method
(SAAM) [47], the Architecture Tradeoff Analysis Method
(ATAM) [49], and the Architecture Level Modifiability Analysis
(ALMA) [17].

Depending on which evaluation method that is used and how the
evaluation is performed, the nature of the results vary between
qualitative and quantitative. Results of a qualitative nature give
an answer to the question “Is architecture A better than architec-
ture B?”, while quantitative results also can address the question
“How much better is architecture A than architecture B?”. The
use of methods that give quantitative results makes it possible to
compare architectures and trace how quality attributes develop
over time.

As we have discussed, there exists a number of methods for eval-
uating different quality attributes of software architectures, e.g.,
[3, 17,47, 75]. However, few methods can address several qual-
ity attributes. ATAM [49] is probably the best known method that
address multiple quality attributes, but the focus of the method is
on trade-off between qualities, and not on the quantification of
each quality in the trade-off.

Simulation-based and mathematical modelling-based methods
usually also focus on one quality attribute such as performance or
reliability [3]. Examples of prototypes can also be found but they
focus on evaluation of functionality [15] or a single quality
attribute [11] and not on the method for creating the prototype.

We think it is important to have a method that can evaluate more
than one quality attribute and that the results from the evaluation
are quantitative. We try to achieve this by using a simulation-
based approach in combination with experience and scenarios to
show how it is possible to address more than one quality attribute
(performance, maintainability, testability, and portability) during
an evaluation.

Software Architecture 11

Introduction

1.4

Research Questions

In this section we introduce and motivate the research questions
that have been addressed in this thesis.

The initial questions focus on the need to make comparisons
between architecture alternatives based on quantification of a
selected set of quality attributes (questions one to four). Ques-
tions five and six relate to the testability quality attribute and are
relevant for continued work with architecture evaluation, focus-
ing on testing and validation of software systems.

Most of the research questions have been identified in coopera-
tion with our industrial partner. This has helped us make sure that
the research has been interesting not only from an academic per-
spective, but also relevant from an industrial perspective.

Research Question 1

“Which architecture evaluation methods exist that can
address one or more of the quality attributes
performance, maintainability, testability, and
portability?”

Many methods for evaluation of software architectures have been
proposed [47, 49, 54, 56]. Most of these methods only address
one quality attribute, which means that several methods have to
be used if we want to evaluate more than one quality attributes of
a software architecture. Each evaluation method requires differ-
ent input in the form of different views of the architecture, differ-
ent documentation, etc. Therefore it becomes relevant to extract
as much information as possible from an evaluation. If several
quality attributes can be evaluated based on one set of inputs, the
process of evaluating a software architecture becomes more effi-
cient.

Research Question 2

“Is it possible to use continuous simulation as a
supporting aid for software architecture performance
evaluations?”

Discrete simulation has been shown to be useful in simulation of
software architectures [34]. But, if the discrete events in the sim-
ulation are abstracted and seen as flows of data between modules

12

Research Questions

Introduction

in an architecture, then it might be possible to use continuous
simulation for simulating these flows.

Research Question 3

“How can we use prototypes for evaluation of the
performance of software architectures?”

Previous work on prototype-based evaluation that we found
focused on the prototypes themselves rather than the method
behind their design and implementation [11, 15]. We wanted to
explore how accurate the prototypes could be made compared to
the completed system. Focus was on the performance quality
attribute during the evaluation. Describing the method for creat-
ing and analysing the performance of a software architecture pro-
totype opens the way for exploring which other quality attributes
that can be evaluated using this approach.

Research Question 4

“Can the prototype-based evaluation approach be used
to assist selection of communication components for a
real-time system based on comparison of multiple
quality attributes?”

We apply the prototype-based software architecture evaluation
method to quantitatively evaluate a set of components for use in a
software system. The addition of quality attributes such as main-
tainability and portability to the evaluation makes the evaluation
more exhaustive than evaluating only performance. We think that
this is important since the more information that can be collected
during an evaluation the more informed the outcome of the eval-
uation would be.

Research Question 5

“How do different roles in a software development
organization perceive the testability quality attribute?”

This was a question that was put forward by our industry partner.
They felt that there were different interpretations of testability in
their development organization. The ideal situation would be that
all roles shared the same interpretation or at least were aware of
the different interpretations that each role used. We wanted to see
which differences that existed and how large they were.

Research Questions 13

Introduction

1.5

Research Question 6

“Which source code metrics do the programmers think
are representative for testable code?”

Making sure that the metrics that are used to evaluate source code
are relevant for the developers is important for the credibility of
the metric. We asked a number of developers which source code
metrics that they thought had a positive or negative impact on the
testability of a software system.

In the following sections we discuss the research methods that we
have applied to address each question.

Research Methods

A number of methods can be used for data collection in software
engineering research. A number of such methods have been iden-
tified by Zelkowitz and Wallace [93]. They divide the methods
into three main groups: observational, historical, and controlled.
Depending on the type of data that is sought and the conditions of
the research project, different methods are applicable for the data
collection.

Observational. Here, the researcher collects data from an ongo-
ing project. The researcher does not have any control or influence
over the development process and is strictly an observer. Obser-
vational methods are:

¢ Project monitoring, which is a way of passively collecting
data during the span of a project.

e Case studies, which actively collect relevant data, the collec-
tion is a goal of the project.

e Assertion, which is used to make comparisons of technolo-
gies.

¢ Field studies, which are similar to case studies but less intru-
sive and covers more than one project simultaneously.

Historical. The researcher collects data from already completed
projects. This means that the researcher has to rely on the data
that can be identified from artefacts that were created during the
project. Examples of such artefacts are documents and source
code. Historical methods that can be used are:

14

Research Methods

Introduction

e Literature search, which focus on analysis of papers and
documents.

e Study of legacy data, which means search for patterns in pre-
viously collected data.

e Study of lessons-learned searching through lessons-learned
documents from completed projects.

e Static analysis focuses on analysis of the products’ structure,
syntax, comments, etc.

Controlled. This family of methods makes it easier to replicate
an experiment, making it possible to statistically analyse obser-
vations. This makes it easier to ensure the validity of experiments
based on methods from this group. Controlled methods are:

e Replicated experiment runs several instances of an experi-
ment, differences are introduced and outcomes can be studied
statistically.

¢ Synthetic environment experiment means that one isolated
task is performed over a short period of time by the experi-
ments participants.

¢ Dynamic analysis executes the product, gathering data dur-
ing runtime.

¢ Simulation uses a model for simulating the product or envi-
ronment and uses this simulation for the data collection.

A number of these approaches has been used to answer the
research questions in this thesis. Specifically, we have used the
following methods:

e Literature search

e Simulation

¢ Dynamic analysis

e Static analysis

e (Case study

For the case study we used a questionnaire and telephone inter-
views for the data collection. Robson [77] describes the two
methods for gathering information:

Self-completion questionnaires are answered by the respond-
ents independently of the researcher. The questionnaires can be
distributed to respondents by for example e-mail, which makes it

Research Methods 15

Introduction

easy to distribute questionnaires to respondents distributed over a
large geographical area.

Telephone interviews are conducted by the researcher when
face-to-face interviews are impractical. The drawback is that it is
difficult to make sure that the respondent is completely focused
on the interview, and that the interaction between the researcher
and respondent is more limited than when face-to-face interviews
are used.

We now go through the research questions and discuss which
research methods that we used for each research question.

Research Question 1

“Which architecture evaluation methods exist that can
address one or more of the quality attributes
performance, maintainability, testability, and
portability?”

To address this question we used a historical method, i.e., litera-
ture search. A literature search gathers data from available docu-
mentation or literature. This method is inexpensive and non
invasive towards an organization.

Conducting a literature search is in a way part of every research
project. The literature search is used to gather related work from
already published papers. To answer this research question we
used it as our primary source of information. We searched
through the Inspec and Compendex research databases [27] iden-
tifying 240 primary papers which were then reviewed. Resulting
in a selection of 25 relevant papers.

Research Question 2

“Is it possible to use continuous simulation as a
supporting aid for software architecture performance
evaluations?”

For this question we used the simulation method from the group
of controlled methods. Simulation can be used if no executable
part of a system is available. It is based around the creation of a
model of the system or its environment which is then used to
gather the data that is needed.

16

Research Methods

Introduction

The simulation model was created using a tool for continuous
simulation. The model was based on an existing software system
and we modelled its architecture using the facilities that the con-
tinuous simulation tool provided. The simulation was initialized
using data collected from logs of the completed system and sev-
eral simulation runs were executed.

Research Question 3

“How can we use prototypes for evaluation of the
performance of software architectures?”

For this question we used dynamic analysis from the controlled
group of research methods. Dynamic analysis can be used when a
system is partially or fully completed, as long as it can be com-
piled into an executable form. Dynamic analysis focuses on char-
acteristics that can be collected from a system (or part of a
system) by instrumenting and executing it.

To explore how the process of developing prototypes should be
implemented and where the difficulties are, we started by creat-
ing a prototype framework. The framework was used to make the
modelling of an architecture faster by minimizing the amount of
code that would have to be replicated. The prototype framework
handled the communication between the components of the
architecture. It also gathered data on events such as when mes-
sages were sent or received. The data was then analysed using an
analysis program, resulting in a quantitative estimation of how a
system based on the architecture would perform.

Research Question 4

“Can the prototype-based evaluation approach be used
to assist selection of communication components for a
real-time system based on comparison of multiple
quality attributes?”

For this question we used two different methods for collecting
our data: static and dynamic analysis. Static analysis is a histori-
cal method that gathers data from a partially or fully completed
system by parsing source code and counting the occurrence of
some feature in the source code. It is for example common to
count the number of lines and comments in a system’s source
code.

Research Methods 17

Introduction

We reused the prototype framework created for question 3 and
added a tool for static analysis. The static analysis tool parsed
through the source code of the components that we wanted to
evaluate. The data from the static analysis was used to compute a
maintainability index [69] for the components. Performance was
evaluated through the dynamic analysis of the time behaviour of
the components using the tools previously created. The portabil-
ity aspects were qualitatively evaluated by comparing the time it
took to move prototypes between platforms.

Research Questions 5 and 6

“How do different roles in a software development
organization perceive the testability quality attribute?”

“Which source code metrics do the programmers think
are representative for testable code?”

For these questions we decided to use a questionnaire for collect-
ing the data. We used self-completion questionnaires to limit our
impact on the organization that we were going to study. The use
of the questionnaires lets the respondent fill out the form when-
ever he or she has time. After the initial deadline for responding
to the questionnaire ran out, we extended the deadline for a few
days and sent out a reminder to the respondents that had not yet
responded. After the final deadline we analysed the responses.
During the analysis we found a few respondents that deviated
significantly from the other respondents in their group. Rather
than sending them a new questionnaire we called them and con-
ducted telephone interviews to clear up any questions that we had
regarding their original responses.

1.6 Contributions of this Thesis

The work presented in this thesis focuses on the development and
application of methods for evaluation of software architectures.
As previously described, we have focused on methods for evalu-
ating four important quality attributes, e.g., performance, main-
tainability, testability, and portability. Our main contribution is a
method for performing prototype-based software architecture
evaluations. We apply this method, in cooperation with an indus-
trial partner, to evaluate how it can be used to address perform-
ance, maintainability, and portability. In order to prepare for the
addition of testability evaluation we also investigate how testabil-

18 Contributions of this Thesis

Introduction

ity is perceived by different roles in a software developing organ-
ization and find differences between how programmers, testers,
and managers define testability.

More specifically, the following contributions can be identified:

1.

A survey of existing architecture evaluation of the methods
that can be used to evaluate one or more of the quality
attributes performance, maintainability, testability, and porta-
bility. We find that few methods exist that are capable of
addressing all of these four quality attributes. This contribu-
tion relates to research question one.

Continuous simulation is not useful for software architecture
simulation and evaluation. The lack of discrete events in the
simulation made it difficult to model the components of the
architecture and to describe their behaviour. A combined sim-
ulation approach where it is possible to use discrete events in
the model would be a better approach. The experiment
resulted in a number of arguments against the continuous
simulation approach. This contribution answers research
question two.

A method for performing prototype-based evaluation of com-
ponents in a software architecture. In response to research
questions three and four, it is possible to evaluate both com-
ponents in a software architecture as well as the structure and
distribution of the components in the architecture. The evalu-
ation is focused on the performance, maintainability, and
portability of communication components. The use of a pro-
totype framework introduces a clean interface between the
architecture models and the components that are tested. This
separation makes reuse of both the architecture models or the
components easy.

An industrial case study capturing the view on testability in a
software developing organization. The aim was to investigate
how testability was defined by different roles in the organiza-
tion. We found that programmers and testers share similar
definitions and have a large understanding for each other’s
definitions of testability. The managers on the other hand dif-
fer both between themselves and with the programmers and
testers. This contribution comes from the study of research
questions five and six.

Contributions of this Thesis 19

Introduction

1.7

1.71

Thesis Papers

The remaining chapters in this thesis contain the articles that
have been produced during the course of the research work. In
this section we list the abstracts and publication information for
the papers.

Chapter 2

A Survey on Software Architecture Evaluation Methods
with Focus on Performance, Maintainability, Testability,
and Portability

Mattsson, M., Martensson, F., and Grahn, H. To be submitted.

“The software architecture has been identified as an important
part of a software system. The architecture describes the different
components in a system and their interaction. Further, the soft-
ware architecture impacts the quality attributes of a system, e.g.,
performance and maintainability. Therefore, methods for evaluat-
ing the quality attributes of software architectures are becoming
increasingly important. Several evaluation methods have been
proposed in order to assist the developer in creating a software
architecture that will have a potential to fulfil the requirements on
the system. Most evaluation methods focus on evaluation of a
single quality attribute but in industrial practice it is common to
have require—ments on several quality aspects of a system.

In this paper, we present a survey of software architecture evalu-
ation methods. We focus on methods for evaluating one or sev-
eral of the quality attributes performance, maintainability,
testability, and portability. Based on a literature search and
review of 240 articles, we present and compare ten evaluation
methods. We have found that most evaluation methods only
address one quality attribute, and very few can evaluate several
quality attributes simultaneously in the same framework or
method. Further, only one of the methods includes trade-off anal-
ysis. Therefore, our results suggest an increased research focus
on software architecture evaluation methods than can address
several quality attributes and the possible trade-offs between dif-
ferent quality attributes.”

20

Thesis Papers

Introduction

1.7.2

1.7.3

Chapter 3

A Case Against Continuous Simulation for Software
Architecture Evaluation

Martensson, F., Jonsson, P., Bengtsson, PO., Grahn, H., and
Mattsson M., Proc. Applied Simulation and Modelling, pp. 97-
105, ISBN: 0-88986-354-9, September 2003, Marbella, Spain.

“A software architecture is one of the first steps towards a soft-
ware system. The design of the architecture is important in order
to create a good foundation for the system. The design process is
performed by evaluating architecture alternatives against each
other. A desirable property of a good evaluation method is high
efficiency at low cost. In this paper, we investigate the use of
continuous simulation as a tool for software architecture per-
formance evaluation. We create a model of the software architec-
ture of an existing software system using a tool for continuous
simulation, and then simulate the model. Based on the case study,
we conclude that continuous simulation is not feasible for soft-
ware architecture performance evaluation, e.g., we identified the
need of discrete functionality to correctly simulate the system,
and that it is very time consuming to develop a model for per-
formance evaluation purposes. However, the modelling process
is valuable for increasing knowledge and understanding about an
architecture.”

Chapter 4

An Approach for Performance Evaluation of
Software Architectures using Prototyping

Mértensson, F., Grahn, H., and Mattsson, M., Proc. Software
Engineering and Applications, pp. 605-612, ISBN: 0-88986-394-
63-5, November 2003, Los Angeles, USA.

“The fundamental structure of a software system is referred to as
the software architecture. Researchers have identified that the
quality attributes of a software system, e.g., performance and
maintainability, often are restricted by the architecture. There-
fore, it is important to evaluate the quality properties of a system
already during architectural design. In this paper we propose an
approach for evaluating the performance of a software architec-
ture using architectural prototyping. As a part of the approach we
have developed an evaluation support framework. We also show

Thesis Papers 21

Introduction

1.7.4

1.7.5

the applicability of the approach and evaluate it using a case
study of a distributed software system for automated guided vehi-
cles.”

Chapter 5

Evaluating Software Quality Attributes of
Communication Components in an Automated Guided
Vehicle System

Martensson, F., Grahn, H., and Mattsson, M., Proc. 10th IEEE
International Conference on Engineering of Complex Computer
Systems, pp. 550-558, ISBN: 0-7695-2284-X, June 2005, Shang-
hai, China.

“The architecture of a large complex software system, i.e., the
division of the system into components and modules, is crucial
since it often affects and limits the quality attributes of the sys-
tem, e.g., performance and maintainability. In this paper we eval-
uate three software components for intra- and inter-process
communication in a distributed real-time system, i.e., an auto-
mated guided vehicle system. We evaluate three quality
attributes: performance, maintainability, and portability. The per-
formance and maintainability are evaluated quantitatively using
prototype-based evaluation, while the portability is evaluated
qualitatively. Our findings indicate that it might be possible to
use one third-party component for both intra- and inter-process
communication, thus replacing two in-house developed compo-
nents.”

Chapter 6

Forming Consensus on Testability in Software
Developing Organizations

Martensson, F., Grahn, H., and Mattsson, M., Proc. Fifth Confer-
ence on Software Engineering Research and Practice in Sweden,
pp- 31-38, ISBN: 91-88834-99-9, October 2005, Visteras, Swe-
den.

“Testing is an important activity in all software development
projects and organizations. Therefore, it is important that all parts
of the organization have the same view on testing and testability
of software components and systems. In this paper we study the

22

Thesis Papers

Introduction

1.8

view on testability by software engineers, software testers, and
managers, using a questionnaire followed by interviews. The
questionnaire also contained a set of software metrics that the
respondents grade based on their expected impact on testability.
We find, in general, that there is a high consensus within each
group of people on their view on testability. Further, we have
identified that the software engineers and the testers mostly have
the same view, but that their respective views differ on how much
the coupling between modules and the number of parameters to a
module impact the testability. Base on the grading of the software
metrics we conclude that size and complexity metrics could be
complemented with more specific metrics related to memory
management operations.”

Validity of Results

All research has to be critically evaluated for validity. Results
that lack in validity are less useful as it is difficult to know if they
are correct or not. Identifying and reporting validity as well as
threats to the validity in the research show that the researcher is
aware of the problems with the study and might show how they
can or should be addressed in future studies.

Validity is the trustworthiness of the research results. If the
researcher has done what is possible to limit factors with negative
impact on the result of a study, then the validity of the study
becomes higher. Robson [77] defines three aspects of validity:
construct validity, internal validity, and external validity.

Construct validity. The first type of validity concerns the choice
of measures that are used in the study. Can it be shown that the
measure really measures what it says it does. Identifying useful
metrics is difficult, and several points for and against the use of a
specific metric can usually be found.

The study in Chapter 2 has no problems with construct validity.
The nature of the literature study makes it easy to quantify the
presence of a software architecture evaluation method that is able
to evaluate several quality attributes.

In Chapter 3 we measure the ability of our simulation model to
mimic the performance of an existing system.

Validity of Results 23

Introduction

In Chapter 4 we focus on creating a method for evaluating soft-
ware architectures using prototypes. The performance of the
architecture is measured by counting the milliseconds that it
takes to deliver messages as well as timing larger sets of events in
the architecture.

Chapter 5 uses the same performance measure as in Chapter 4. In
addition, a metric of maintainability called Maintainability Index
[69] is also used. There has been papers published on the draw-
backs of the components of this metric, e.g., [14] but we consider
the metric to be useful as an indication of the maintainability of
the source code.

Finally, in Chapter 6 we try to gather how roles in a software
developing organization define testability. We gather our data by
distributing a questionnaire that lets the respondents rate how
much they agree or disagree with a number of statements.

Internal validity. This concerns the setup of the study, i.e., if
there are any factors such as perturbation, bias in selection of par-
ticipants, etc.

In Chapter 2 we gather candidate papers from Compendex and
Inspec [27], we then performed a first screening by going
through abstracts and keywords to identify papers that were rele-
vant to our survey. After the first screening we read the remaining
papers to identify and summarize the papers that would be
included in the study. It is possible that papers that were relevant
were excluded in the first screening and that we thus missed
cases where an evaluation method had been used in part or full.
We addressed this by initially doing a very wide search and inten-
tionally included papers that might be borderline. The screening
was then performed by three people to make sure that no relevant
papers were excluded.

Chapter 3 has a weakness in the development of the model for the
simulation. The model of the architecture has to be driven using
inputs that reflect the real environment of the system in order to
give useful results. The model elements that were needed to sim-
ulate this environment quickly outgrew the model of the architec-
tural structure. This made it difficult to focus on the simulation
and evaluation of the software architecture model.

24

Validity of Results

Introduction

The study in Chapter 4 has to deal with the possibility of pertur-
bation of the system that it is trying to simulate. The collection of
data for the performance estimation adds a slight overhead to the
interactions between the components of the architecture. Initial
problems with hard disk activity when the prototype had exe-
cuted for a period of time was circumvented and the added over-
head was eventually kept to a minimum.

Chapter 5 continued to build on the prototype-based evaluation
and therefore had the same problem with perturbation as in Chap-
ter 4. The introduction of the static analysis tools does not affect
the dynamic-analysis aspects of the study.

Finally, in Chapter 6 the largest problem was the limited number
of replies that we got from the respondents. Even after an exten-
sion of the deadline we had too few replies (14 replies to 25 dis-
tributed questionnaires) to be able to use statistical tests during
the analysis of the results. In addition, 9 replies were from pro-
grammers, 3 from managers, and 2 from testers, resulting in a
potential bias towards the programmers point of view.

Generalizability. Generalizability (or external validity) concerns
the possibility to generalize the results to other cases. If we for
example conduct a study on an organization and then replicate
the study on another organization and get the same result, then
the generalizability of the results can be seen as high. In gauging
the generalizability of results one should be very careful. Espe-
cially when working with organizational issues such as the defi-
nitions of testability, many factors such as experience and
background of the respondents affect the outcome of the study
and the results may not be true for another organization working
under different conditions.

In Chapter 2 we perform a literature survey where we collect our
data from a number of research databases. The generalizability of
the survey is limited to the set of methods that can address one or
more of the quality attributes: performance, maintainability, test-
ability, and portability. The results might change if the search is
repeated since additional publications are continuously added to
the research databases.

In Chapter 3 the conclusions show that the use of continuous sim-
ulation lacks some mechanisms that are necessary to correctly
simulate a software architecture. This result is generalizeable to

Validity of Results 25

Introduction

the application of continuous simulation of software architec-
tures.

The results from the study in Chapter 4 are generalizable to the
evaluation of software architectures with respect to performance.
The evaluation requires the presence of a runtime environment
that is similar to or the same as the target platform in order to be
effective.

In Chapter 5 we extend on the study from Chapter 4, the addition
of a software metric for maintainability can have a negative
effect on the generalizability. It is not sure that the maintainabil-
ity index can be applied to another evaluation because the tools
that were used to gather the data for the analysis are language
specific. The maintainability index is applicable to an organiza-
tion as long as it is calibrated to the systems and the programmers
that work in the organization.

Finally, in Chapter 6, the generalizability is threatened by the low
number of respondents to the survey. The fact that only four peo-
ple responded in two of the roles makes it very hard to generalize
from the results. Even if the responses had been more evenly dis-
tributed, it would be difficult to generalize the results to another
organization. However, the result show that there are at least one
organization where opinions on how a quality attribute is defined
differ between roles. It would however be possible to replicate
the study on several other companies.

1.9 Future Work

During the later parts of the work presented in this thesis, discus-
sions have tended towards validation and testing of software
architectures. We have identified two main paths forward based
on the work that has been presented here.

The first possibility is to explore automated testing and validation
of software architectures. To integrate the validation of the soft-
ware architecture into a daily build process would enable the
developers to follow how the quality attributes of the system are
developing. It would then be possible to give early feedback to
developers and also to see when the implementation is starting to
deviate from the intended architecture of the system.

26 Future Work

Introduction

1.10

The second possibility is to investigate visualization of how of a
systems’ quality attributes are changing during development or
maintenance. This requires quantification of quality attributes in
a way that can be automated and repeated. Possible the proto-
types developed during an architecture evaluation could be used
as a benchmark that could be reused throughout the development.

Summary

In this chapter we have introduced and discussed the software
development process. During the development of software sys-
tems, software architecture plays an important role. The architec-
ture provides a blueprint for the continued work with design and
implementation of a software system. Because of the influential
role of the architecture, it is important that it will be able to fulfil
the requirements on the system. Evaluation techniques for soft-
ware architectures are therefore important, since they are used to
evaluate one or more aspects of the software architecture.

We have also discussed the research questions that are addressed
in the remaining chapters of this thesis. We have focused on the
evaluation of four important quality attributes (performance,
maintainability, testability, and portability). The majority of our
research questions have focused on the evaluation of one or more
of these quality attributes.

There has also been an introduction of the research methods that
have been used in the search for answers to the research ques-
tions. The choice of methods brings different concerns over the
validity of the data that has been gathered. We have therefore dis-
cussed the validity of each study from the perspectives of con-
struct validity, internal validity, and generalizability. The research
methods that have been used are: literature search, simulation,
dynamic analysis, static analysis, and case study. Finally, we
have presented and discussed the main contributions of this the-
sis.

Summary 27

Introduction

28 Summary

A Survey of Software Architecture Evaluation
Methods with Focus on Performance,
Maintainability, Testability, and Portability

21

Michael Mattsson, Frans Martensson, and Hakan Grahn

Introduction

The software engineering discipline is becoming more wide-
spread in industry and organisations due to the increased pres-
ence of software and software-related products and services. This
demands for new concepts and innovations in the development of
the software. During the last decades, the notion of software
architecture has evolved and today, a software architecture is a
key asset for any organization that builds complex software-
intensive systems [12, 19, 82]. A software architecture is created
early in the development and gives the developers a means to cre-
ate a high level design for the system, making sure that all
requirements that has to be fulfilled will be possible to implement
in the system.

There exists a number of definitions of software architecture with
minor differences depending on domain and people’s experience.
However, most definitions share common characteristics that can
be exemplified by looking at the definition by Bass et al. [12]:

Introduction 29

A Survey of Software Architecture Evaluation Methods with Focus on Performance, Maintainability, Testability, and

Portability

“The software architecture of a program or computing
system is the structure or structures of the system,
which comprise software elements, the externally
visible properties of those elements, and the
relationships among them.” [12]

This means that the architecture describes which high level com-
ponents a software system consists of as well as which responsi-
bilities that the components have towards other components in
the system. It also describes how these components are organ-
ized, both on a conceptual level as well as a decomposed detailed
level since there can be an architectural structure inside compo-
nents as well. Finally the architecture defines which interfaces
the components present to other components and which inter-
faces and components that they use.

The architecture is created based on a set of requirements that it
has to fulfil. These requirements are collected from the stake-
holders of the system, i.e., users and developers. The functional
requirements describe what the system should do, e.g., the func-
tions that the system should provide to the users. Quality require-
ments describe a set of qualities that the stakeholders want the
systems to have, e.g., how long time it may take to complete a
certain operation, how easy it is to maintain the system. Other
examples of quality attributes are availability, testability, and
flexibility.

In order to help software developers make sure that a software
architecture will be able to fulfil the quality requirements, several
approaches for evaluating software architectures has been pro-
posed. The approaches can be divided into four basic categories,
i.e., experience-based, simulation-based, mathematical model-
ling-based, and scenario-based [19] and are described in more
detail later.

In this chapter we present a survey of software architecture eval-
uation methods, we focus on methods that address one or more of
the quality attributes performance, maintainability, testability,
and portability. We think that this selection of quality attributes is
relevant for development of software systems that will be used
and maintained over a long period of time. The methods are
described and compared based on a set of criterias.

30

Introduction

A Survey of Software Architecture Evaluation Methods with Focus on Performance, Maintainability, Testability, and

Portability

2.2

Software Architecture Evaluation

Architecture evaluations can be performed in one or more stages
of a software development process. They can be used to compare
and identify strengths and weaknesses in different architecture
alternatives during the early design stages. They can also be used
for evaluation of existing systems before future maintenance or
enhancement of the system as well as for identifying architectural
drift and erosion. Software architecture evaluation methods can
be divided into four main categories [19]. Methods in the catego-
ries can be used independently but also be combined to evaluate
different aspects of a software architecture, if needed.

Experience-based evaluations are based on the previous experi-
ence and domain knowledge of developers or consultants. People
who have encountered the requirements and domain of the soft-
ware system before can based on the previous experience say if a
software architecture will be good enough [19].

Simulation-based evaluations rely on a high level implementa-
tion of some or all of the components in the software architecture
[3, 59]. The simulation can then be used to evaluate quality
requirements such as performance and correctness of the archi-
tecture. Simulation can also be combined with prototyping, thus
prototypes of an architecture can be executed in the intended con-
text of the completed system.

Mathematical modelling uses mathematical proofs and methods
for evaluating mainly operational quality requirements such as
performance and behaviour of the components in the architecture
[75]. Mathematical modelling is similar to simulation and can be
combined with simulation to more accurately estimate perform-
ance of components in a system.

Scenario-based architecture evaluation tries to evaluate a partic-
ular quality attribute by creating a scenario profile which forces a
very concrete description of the quality requirement. The scenar-
ios from the profile are then used to go through the software
architecture and the consequences are documented [47, 49, 17].

Software Architecture Evaluation 31

A Survey of Software Architecture Evaluation Methods with Focus on Performance, Maintainability, Testability, and

Portability

2.3

Quality Attributes

Software quality is defined as the degree to which software pos-
sesses a desired combination of attributes [42]. According to
[19] the quality requirements that a software architecture has to
fulfil is commonly divided in two main groups based on the qual-
ity they are requesting i.e. development and operational qualities.
A development quality requirement is a requirement that is of
importance for the developers work, e.g. maintainability, under-
standability, and flexibility. Operational quality requirements are
requirements that make the system better from the users point of
view, e.g. performance and usability. Depending on the domain
and priorities of the users and developers, quality requirements
can become both development and operational, such as perform-
ance in a real-time system.

A quality attribute can be defined as a property of a software sys-
tem [12]. A quality requirement is a requirement that is placed on
a software system by a stakeholder; a quality attribute is what the
system actually presents once it has been implemented. During
the development of the architecture it is therefore important to
validate that the architecture has the required quality attributes,
this is usually done using one or more architecture evaluations.

This survey focus on software architecture evaluation methods
that address one or more of the following quality attributes: per-
formance, maintainability, testability, and portability. The IEEE
standard 610.12-1990 [42] defines the four quality attributes as:

Maintainability. This is defined as:

“The ease with which a software system or component
can be modified to correct faults, improve performance
or other attributes, or adapt to a changed
environment.”

Maintainability is a multifaceted quality requirement, it incorpo-
rates aspects such as readability and understandability of the
source code. Maintainability is also concerned with testability to
some extent as the system has to be re-validated during the main-
tenance.

32

Quality Attributes

A Survey of Software Architecture Evaluation Methods with Focus on Performance, Maintainability, Testability, and
Portability

Performance. Performance is defined as:

“The degree to which a system or component
accomplishes its designated functions within given
constraints, such as speed, accuracy, or memory
usage.”

This is also an attribute with several aspects, performance can be
measured in, e.g., latency, throughput, and capacity. Which
aspect of performance that is desired depends in the type of sys-
tem.

Testability. Testability is defined as:

“The degree to which a system or component facilitates
the establishment of test criteria and the performance
of tests to determine whether those criteria have been
met.”

We interpret this as the effort needed to validate the system
against the requirements. A system with high testability simpli-
fies the testers work and can be validated quickly.

Portability. Portability is defined as:

“The ease with which a system or component can be
transferred from omne hardware or software
environment to another.”

We interpret this as portability not only between different hard-
ware platforms and operating systems, but also between different
virtual machines and versions of frameworks.

These four quality attributes are selected, not only for their
importance for software developing organizations in general, but
also for their relevance for organizations developing software in
the real-time system domain in a cost effective way, e.g., by
using a product-line approach. Performance is important since a
system must fulfil the performance requirements, if not, the sys-
tem will be of limited use, or not used. The long-term focus
forces the system to be maintainable and testable, it also makes
portability important since the technical development on compu-
ter hardware technology moves quickly and it is not always the
case that the initial hardware is available after a number of years.

uality Attributes 33
y

A Survey of Software Architecture Evaluation Methods with Focus on Performance, Maintainability, Testability, and

Portability

2.4

Related Work

Surveying software architecture evaluation methods has, as far as
we know, been done in four previous studies. In two of the cases,
Dobrica and Niemeld [25] and Babar et al. [5], the software
architecture evaluation methods are compared with each other in
a comparison framework, specific for each study. The survey by
Etxeberria and Sagardui [28] compares architecture evaluation
methods with respect to the context of architectures in software
product lines. The last survey, by Kazman et al. [48], does not
address a large number of architecture evaluation methods but
uses two evaluation methods as examples for illustrating how the
methods fulfil a number of criteria the authors argue are highly
needed for an architecture evaluation method to be usable.

The Dobrica and Niemeld survey [25], the earliest one, presents
and compares eight of the “most representative”, according to
themselves, architecture evaluation methods. The discussion of
the evaluation methods focus on 1) discovering differences and
similarities and 2) making classifications, comparisons and
appropriateness studies. The comparison and characterization
framework in the survey comprises the following elements; the
methods goal, which evaluation techniques are included in the
method, quality attributes (what quality attributes and what
number of quality attributes is considered), the software architec-
ture description (what views are the foci and in which develop-
ment phase), stakeholders’ involvement, the activities of the
method, support for a reusable knowledge base and the validation
aspect of the evaluation method.

The objective of the Babar et al. survey [5] is to provide a classi-
fication and comparison framework by discovering commonali-
ties and differences among eight existing scenario-based
architecture evaluation methods. To a large extent, the frame-
work comprises features that are either supported by most of the
existing methods or reported as desirable by software architec-
ture researchers and practitioners. The framework comprises the
following elements; the method’s maturity stage, what definition
of software architecture is required, process support, the
method’s activities, goals of the method, quality attributes, appli-
cable project stage, architectural description, evaluation
approaches (i.e., what types of evaluation approaches are
included in the method?), stakeholders involvement, support for

34

Related Work

A Survey of Software Architecture Evaluation Methods with Focus on Performance, Maintainability, Testability, and
Portability

non-technical issue, the method’s validation, tool support, experi-
ence repository, and resources required.

The survey by Etxeberria and Sagardui [28] addresses an evalua-
tion framework for software architecture evaluation methods
addressing software product-line architectures. Since the life
span of a product-line architecture is longer than for ordinary
software architectures evolution becomes prioritized quality
attribute that deserves extra attention in an evaluation. There
exist other quality attributes as well, e.g. variability. The context
of software product lines imposes new requirements on architec-
ture evaluation methods and this is discussed by Etxeberria and
Sagardui and reflects their classification framework. The frame-
work comprises the following elements; The goal of the method,
attribute types (what domain engineering and application engi-
neering quality attributes are addressed), evaluation phase (in the
product-line context the evaluation can take place on different
phases in application engineering and domain engineering,
respectively, as well as in a synchronization phase between the
two), evaluation techniques, process description, the method’s
validation and relation to other evaluation methods.

The purpose of the last survey, by Kazman et al. [48], is primary
to provide criteria that are important for an evaluation method to
address, and not to compare existing evaluation methods. The
authors argue for criteria addressing what it means to be an effec-
tive method, one that produces results of real benefit to the stake-
holders in a predictable repeatable way, and a usable method one
that can be understood and executed by its participants, learned
reasonably quickly, and performed cost effectively. Thus, the sur-
vey ends up with the following four criteria: 1) Context and goal
identification, 2) Focus and properties under examination, 3)
Analysis Support, and 4) Determining analysis outcomes.

The survey by Dobrica and Niemeld [25] provides an early, ini-
tial overview of the software architecture evaluation methods.
This was followed up by the survey by Babar et al. [5] that
presents a more detailed break-down (including requirements on
detailed method activities etc.) and a more holistic perspective,
e.g., process support, tool support. The survey by Kazman et al.
[48] presents additional requirements on what a software archi-
tecture method should support. The software product-line context
survey by Etxeberria and Sagarduia [28] addresses evaluation
methods from a prescribed way of developing software. This per-

Related Work 35

A Survey of Software Architecture Evaluation Methods with Focus on Performance, Maintainability, Testability, and

Portability

2.5

spective opened up some additional phases where an evaluation
can take place and put product-line important quality attributes
more in focus, e.g. variability, maintainability.

Our survey takes the perspective from a set of quality attributes
that are of general importance for software developing organiza-
tions. This means that we are taking a more solution-oriented
approach, i.e., we are focusing on finding knowledge about what
existing evaluation methods can provide with respect to the iden-
tified quality attributes. We are not aiming at obtaining knowl-
edge about general software architecture evaluation methods or
pose additional requirements on the methods due to some com-
pleteness criteria or specific way of developing the software, as
in the four performed surveys. We may add additional require-
ments on the evaluation method, but if that is the case, the
requirements will have its origin from the four quality attributes
addressed, performance, testability, maintainability and portabil-

ity.

Overview of the Architecture Evaluation
Methods

In this survey each of the software architecture evaluation meth-
ods will be described according to a pre-defined template. The
template structures the description of the architecture according
to the following elements: Name and abbreviation (if any), Cate-
gory of method, Reference(s) where the method are described in
detail, Short description of the method, Evaluation goal of the
method, How many quality attributes the method addresses, (one,
many or many where trade-off approaches exist), What specific
quality attributes the method address (or if it is a more general
evaluation method) and finally, the usage of the method. Table 1
summarizes the template with indication of potential values for
each element.

The initial selection of research papers was made by searching
through the Compendex, Inspec, and IEEE Xplore research data-
bases. We searched for papers that mentioned (software architec-
ture) and (evaluation or analysis or assessment) and
(performance or maintainability or testability or portability) in
their title or abstract. The search in Compendex and Inspec
resulted in 194 papers, and the search in IEEE Xplore produced

36

Overview of the Architecture Evaluation Methods

A Survey of Software Architecture Evaluation Methods with Focus on Performance, Maintainability, Testability, and
Portability

2.51

Table 2.1 Method Description Template

Item Potential values

Name and abbreviation The method’s name and abbreviation
(if any)
Experience-based, Simulation-based,

Category of method Scenario-based, Mathematical model-
ling or a mix of categories

Reference(s) One or more literature source(s)

Short description of the Text summary of the method

method

Evaluation goal Text description of goal

Number of quality One, many or many (with trade-off

attributes addressed approach)

Specifi lit Any of Maintainability, Performance,

pecttic quaity Testability, Portability, General and

attributes addressed e
any additional ones

Has the method been used by the
method developer(s) only or by some
other?

Method usage

an additional 46 papers. In total, we had 240 papers from the
database searches. We then eliminated duplicate papers and
started to read abstracts in order to eliminate papers that were
obviously off topic. We then read through the remaining papers
and removed those that did not provide or mention a method for
how they had performed an evaluation. After the elimination we
had about 25 papers that contained architecture evaluation meth-
ods and experience reports from their use that addressed one or
more of our four quality attributes. From these papers we have
identified 10 methods and approaches that can be applied for
architecture-level evaluation of performance, maintainability,
testability, or portability.

SAAM — Software Architecture Analysis Method

Software Architecture Analysis Method (SAAM) [47] is a sce-
nario-based software architecture evaluation method, targeted for
evaluating a single architecture or making several architectures
comparable using metrics such as coupling between architecture
components.

Overview of the Architecture Evaluation Methods 37

A Survey of Software Architecture Evaluation Methods with Focus on Performance, Maintainability, Testability, and
Portability

2.5.2

SAAM was originally focused on comparing modifiability of dif-
ferent software architectures in an organization’s domain. It has
since then evolved to a structured method for scenario-based
software architecture evaluation. Several quality attributes can be
addressed, depending on the type of scenarios that are created
during the evaluation process. Case studies where maintainability
and usability are evaluated have been reported in [44], and modi-
fiability, performance, reliability, and security are explicitly
stated in [49].

The method consists of five steps. It starts with the documenta-
tion of the architecture in a way that all participants of the evalu-
ation can understand. Scenarios are then developed that describe
the intended use of the system. The scenarios should represent all
stakeholders that will use the system. The scenarios are then
evaluated and a set of scenarios that represents the aspect that we
want to evaluate is selected. Interacting scenarios are then identi-
fied as a measure of the modularity of the architecture. The sce-
narios are then ordered according to priority, and their expected
impact on the architecture. SAAM has been used and validated in
several studies [22, 26, 44, 47, 55].

ATAM — Architecture Trade-off Analysis Method

Architecture Trade-off Analysis Method (ATAM) [49] is a sce-
nario-based software architecture evaluation method. The goals
of the method are to evaluate architecture-level designs that con-
siders multiple quality attributes and to gain insight as to whether
the implementation of the architecture will meet its requirements.
ATAM builds on SAAM and extends it to handle trade-offs
between several quality attributes.

The architecture evaluation is performed in six steps. The first
one is to collect scenarios that operationalize the requirements for
the system (both functional and quality requirements). The sec-
ond step is to gather information regarding the constraints and
environment of the system. This information is used to validate
that the scenarios are relevant for the system. The third step is to
describe the architecture using views that are relevant for the
quality attributes that were identified in step one. Step four is to
analyse the architecture with respect to the quality attributes. The
quality attributes are evaluated one at a time. Step five is to iden-
tify sensitive points in the architecture, i.e., identifying those
points that are affected by variations of the quality attributes. The

38

Overview of the Architecture Evaluation Methods

A Survey of Software Architecture Evaluation Methods with Focus on Performance, Maintainability, Testability, and

Portability

2.5.3

254

sixth and final step is to identify and evaluate trade-off points,
i.e., variation points that are common to two or more quality
attributes. ATAM has been used and validated in several studies
[49, 67].

ALMA — Architecture-Level Modifiability Analysis

Architecture-Level Modifiability Analysis (ALMA) [17, 18] is a
scenario-based software architecture evaluation method with the
following characteristics: focus on modifiability, distinguish mul-
tiple analysis goals, make important assumptions explicit, and
provide repeatable techniques for performing the steps. The goal
of ALMA is to provide a structured approach for evaluating three
aspects of the maintainability of software architectures, i.e.,
maintenance prediction, risk assessment, and software architec-
ture comparison.

ALMA is an evaluation method that follows SAAM in its organi-
zation. The method specifies five steps: 1. determine the goal of
the evaluation, 2. describe the software architecture, 3. elicit a
relevant set of scenarios, 4. evaluate the scenarios, and 5. inter-
pretation of the results and draw conclusions from them. The
method provides more detailed descriptions of the steps involved
in the process than SAAM does, and tries to make it easier to
repeat evaluations and compare different architectures. It makes
use of structural metrics and base the evaluation of the scenarios
on quantification of the architecture. The method has been used
and validated by the authors in several studies [17, 18, 54].

RARE/ARCADE

RARE and ARCADE are part of a toolset called SEPA (Software
Engineering Process Activities) [6]. RARE (Reference Architec-
ture Representation Environment) is used to specify the software
architecture and ARCADE is used for simulation-based evalua-
tion of it. The goal is to enable automatic simulation and interpre-
tation of a software architecture that has been specified using the
RARE environment.

An architecture description is created using the RARE environ-
ment. The architecture description together with descriptions of
usage scenarios are used as input to the ARCADE tool.
ARCADE then interprets the description and generates a simula-
tion model. The simulation is driven by the usage scenarios.

Overview of the Architecture Evaluation Methods 39

A Survey of Software Architecture Evaluation Methods with Focus on Performance, Maintainability, Testability, and
Portability

2.5.5

2.5.6

RARE is able to perform static analysis of the architecture, e.g.,
coupling. ARCADE makes it possible to evaluate dynamic
attributes such as performance and reliability of the architecture.
The RARE and ARCADE tools are tightly integrated to simplify
an iterative refinement of the software architecture. The method
has, as far as we know, only been used by the authors.

Argus-I

Argus-I [87] is a specification-based evaluation method. Argus-I
makes it possible to evaluate a number of aspects of an architec-
ture design. It is able to perform structural analysis, static behav-
ioural analysis, and dynamic behavioural analysis, of
components. It is also possible to perform dependence analysis,
interface mismatch, model checking, and simulation of an archi-
tecture.

Argus-I uses a formal description of a software architecture and
its components together with statecharts that describe the behav-
iour of each component. The described architecture can then be
evaluated with respect to performance, dependence, and correct-
ness. There is no explicit process defined that the evaluation
should follow, but some guidance is provided. The evaluation
results in a quantification of the qualities of the architecture. The
performance of the architecture is estimated based on the number
of times that components are invoked. The simulation can be vis-
ualized using logs collected during the simulation. The method
has, as far as we know, only been used by the authors.

LQN — Layered Queuing Networks

Layered queuing network models are very general and can be
used to evaluate many types of systems. Several authors have
proposed the use of queuing network models for software per-
formance evaluation [29, 35, 50, 65]. Further, there also exist
many tools and toolkits for developing and evaluating queuing
network models, e.g., [29, 35]. A queuing network model can be
solved analytically, but is usually solved using simulation.

The method relies on the transformation of the architecture into a
layered queuing network model. The model describes the interac-
tions between components in the architecture and the processing
times required for each interaction. The creation of the models

40

Overview of the Architecture Evaluation Methods

A Survey of Software Architecture Evaluation Methods with Focus on Performance, Maintainability, Testability, and

Portability

2.5.7

2.5.8

require detailed knowledge of the interaction of the components,
together with behavioural information, e.g., execution times or
resource requirements. The execution times can either be identi-
fied by, e.g., measurements, or estimated. The more detailed the
model is the more accurate the simulation result will be.

The goal when using a queuing network model is often to evalu-
ate the performance of a software architecture or a software sys-
tem. Important measures are usually response times, throughput,
resource utilization, and bottleneck identification. In addition,
some tools not only produce measures, but also have the ability
to visualize the system behaviour.

SAM

SAM [89] is a formal systematic methodology for software archi-
tecture specification and analysis. SAM is mainly targeted for
analysing the correctness and performance of a system.

SAM has two major goals. The first goal is the ability to pre-
cisely define software architectures and their properties, and then
perform formal analysis of them using formal methods. Further,
SAM also support an executable software architecture specifica-
tion using time Petri nets and temporal logic. The second goal is
to facilitate scalable software architecture specification and anal-
ysis, using hierarchical architectural decomposition. The method
has, as far as we know, only been used by the authors.

Empirically-Based Architecture Evaluation

Lindvall et al. describe in [56] a case study of a redesign/reimple-
mentation of a software system developed more or less in-house.
The main goal was to evaluate the maintainability of the new sys-
tem as compared to the previous version of the system. The paper
outlines a process for empirically-based software architecture
evaluation. The paper defines and uses a number of architectural
metrics that are used to evaluate and compare the architectures.

The basic steps in the process are: select a perspective for the
evaluation, define/select metrics, collect metrics, and evaluate/
compare the architectures. In this study the evaluation perspec-
tive was to evaluate the maintainability, and the metrics were
structure, size, and coupling. The evaluations were done in a late

Overview of the Architecture Evaluation Methods 41

A Survey of Software Architecture Evaluation Methods with Focus on Performance, Maintainability, Testability, and
Portability

2.5.9

2.5.10

development stage, i.e., when the systems already were imple-
mented. The software architecture was reverse engineered using
source code metrics.

ABAS — Attribute-Based Architectural Styles

Attribute-Based Architectural Styles (ABASs) [51] build on the
concept of architectural styles [21, 82], and extend it by associat-
ing a reasoning framework with an architectural style. The
method can be used to evaluate various quality attributes, e.g.,
performance or maintainability, and is thus not targeted at a spe-
cific set of quality attribute.

The reasoning framework for an architectural style can be quali-
tative or quantitative, and are based on models for specific qual-
ity attributes. Thus, ABASs enable analysis of different quality
aspects of software architectures based on ABASs. The method
is general and several quality attributes can be analysed concur-
rently, given that quality models are provided for the relevant
quality attributes. One strength of ABASSs is that they can be used
also for architectural design. Further, ABASs have been used as
part of evaluations using ATAM [49].

SPE — Software Performance Engineering

Software performance engineering (SPE) [83, 90] is a general
method for building performance into software system. A key
concept is that the performance shall be taken into consideration
during the whole development process, not only evaluated or
optimized when the system already is developed.

SPE relies on two different models of the software system, i.e., a
software execution model and a system execution model. The
software execution model models the software components, their
interaction, and the execution flow. In addition, key resource
requirements for each component can also be included, e.g., exe-
cution time, memory requirements, and I/O operations. The soft-
ware execution model predicts the performance without taken
contention of hardware resources into account.

The system execution model is a model of the underlaying hard-
ware. Examples of hardware resources that can be modelled are
processors, I/O devices, and memory. Further, the waiting time

42

Overview of the Architecture Evaluation Methods

A Survey of Software Architecture Evaluation Methods with Focus on Performance, Maintainability, Testability, and

Portability

2.5.11

2.6

and competition for resources are also modelled. The software
execution model generates input parameters to the system execu-
tion model. The system execution model can be solved by using
either mathematical methods or simulations.

The method can be used to evaluate various performance meas-
ures, e.g., response times, throughput, resource utilization, and
bottleneck identification. The methods is primarily targeted for
performance evaluation. However, the authors argue that their
method can be used to evaluate other quality attributes in a quali-
tative way as well [90]. The method has been used in several
studies by the authors, but do not seem to have been used by oth-
ers.

Summary of Architecture Evaluation Methods

Table 2.2 summarizes the most important characteristics (see
Table 2.1) of our survey of software architecture evaluation
methods. As we can see, half of the methods address only one
quality attribute of those that we consider in this survey, and the
most common attribute to address is performance. Surprisingly,
no method was found that specifically address portability or test-
ability. Further, we can observe that only one method exists that
support trade-off analysis of software architectures. Finally, we
also observe that only two methods seem to have been used by
others than the method inventor.

Discussion

Despite the promising number of primary studies found, i.e., 240,
it turned out that only 10 software architecture evaluation meth-
ods were possible to identify that addressed one or more of the
performance, maintainability, testability, or portability quality
attributes. There exist several reasons for this large reduction of
the number of articles. First, there were some duplicate entries of
the same article since we searched several databases. Second, a
large portion of the papers evaluated one or several quality
attributes in a rather ad hoc fashion. As a result, we excluded
those papers from our survey since they did not document a
repeatable evaluation method or process. Third, several papers
addressed both hardware and software evaluations, thus they did
not qualify either in our survey with its focus on methods for
software architecture evaluation.

Discussion 43

A Survey of Software Architecture Evaluation Methods with Focus on Performance, Maintainability, Testability, and

Portability
Table 2.2 Summary of evaluation method characteristics.
Quality
Name Category attributes Method usage
SAAM [47] Scenario-based General (C)ili:[ro[r 2[24’752’45]’5]
. tor [49],
ATAM [49] Scenario-based General, trade creator [49]
off other [67]
ALMA [18] Scenario-based Modifiabity creator [17, 18, 54]
RARE/ARCADE [6] Simulation-based (P;;i(r)rmance, creator [6]
ARGUS-I [87] Simulation-based Performance, creator [87]
other
Simulation-based,
LQN [29, 65, 72] mathematical Performance creator [72, 3]
modelling
SAM [89] Simulation-based Performance, creator [89]
other
Experience-based, e
EBAE [56] . Maintainability ~ creator [56]
metrics
ABAS [51] Experience-based ~ General creator [51]
Simulation-based,
SPE [83, 90] mathematical Performance creator [83, 90]
modelling

Continuing with the 10 remaining articles, we found that five of
the methods addressed only one of the quality attributes that we
were interested in. Only one (ATAM) of the remaining methods
addressing multiple attributes provide support for trade-off
between the quality attributes. No specific methods evaluated
testability or portability explicitly. These quality attributes could
be addressed by any of the three evaluation methods that are
more general in their nature, i.e., that could address more arbi-
trary selected quality attributes, ATAM [49], SAAM [47], or
EBAE [56].

Many of the methods have been used several times of the
authors. Multiple use of the method indicates an increase in
validity of the method. However, only two methods have been
used by others than the original authors of the method. We
believe that external use of a method is an indication of the matu-
rity of the method. These two methods are SAAM and ATAM.

44

Discussion

A Survey of Software Architecture Evaluation Methods with Focus on Performance, Maintainability, Testability, and

Portability

2.7

However, experience papers that use a method in whole or part
are difficult to identify, since the evaluation method that has been
used is not always clearly stated.

Conclusions

The architecture of a software system has been identified as an
important aspect in software development, since the software
architecture impacts the quality attributes of a system, e.g., per-
formance and maintainability. A good software architecture
increases the probability that the system will fulfil its quality
requirements. Therefore, methods for evaluating the quality
attributes of software architectures are important.

In this chapter, we present a survey of evaluation methods for
software architecture quality attribute evaluation. We focus on
methods for evaluating one or several of the quality attributes
performance, maintainability, testability, and portability. Meth-
ods that evaluate several quality attributes and/or trade-off analy-
sis are especially interesting. Based on a broad literature search
in major scientific publication databases, e.g., Inspec, and
reviewing of 240 articles, we present and compare ten evaluation
methods.

We focus our survey around four important quality attributes
(performance, maintainability, testability, and portability) and
have found that many evaluation methods only address one of the
quality attributes, and very few can evaluate several quality
attributes simultaneously in the same framework or method. Spe-
cifically, only one of the methods includes trade-off analysis.
Further, we have identified that many methods are only used and
validated by the method inventors themselves.

Conclusions 45

A Survey of Software Architecture Evaluation Methods with Focus on Performance, Maintainability, Testability, and
Portability

In summary, our results suggest

e an increased research focus on software architecture evalua-
tion methods than can address several quality attributes
simultaneously,

® an increased research focus on software architecture evalua-
tion methods that can address the possible trade-offs between
different quality attributes, and

e an increased focus on validation of software architecture
evaluation methods by people other than the method inven-
tors.

46 Conclusions

A Case Against Continuous
Simulation for Software
Architecture Evaluation

Frans Martenssonw Per Jonsson, PerOlof Bengtsson, Hakan Grahn, and Michael Mattsson

3.1

Introduction

The software architecture is fundamental for a software system
[7, 33, 81], as it often restricts the overall performance of the
final system. Before committing to a particular software architec-
ture, it is important to make sure that it handles all the require-
ments that are put upon it, and that it does this reasonably well.
The consequences of committing to a badly designed architecture
could be disastrous for a project and could easily make it much
more expensive than originally planned. Bad architecture design
decisions can result in a system with undesired characteristics
such as low performance, low maintainability, low scalability etc.

When designing the architecture for a system, the architect often
has the possibility to choose among a number of different solu-
tions to a given problem. Depending on which solution is chosen,
the architecture evolves in different ways. To be able to make a
proper decision, the architect needs to identify quantifiable
advantages and disadvantages for each one. This can be done by

Introduction 47

A Case Against Continuous Simulation for Software Architecture Evaluation

using, e.g., prototyping or scenario-based evaluation [19]. A
desirable property of a good evaluation method is high efficiency
at low cost.

In this chapter we evaluate the use of continuous simulation for
system architecture performance evaluation purposes. The main
idea is that tools for continuous simulation can be used to quickly
create models of different architecture alternatives. These models
can then be used, through simulation, to evaluate and compare
different architectures to each other. The work presented has been
conducted in co-operation with Danaher Motion Sérd (referred to
as “DMS”). We have co-operated with DMS to use the software
architecture of their Automated Guided Vehicle (AGV) system
(hereafter referred to as the “DMS system”) as a case for the
research.

Unfortunately, we found that continuous simulation does not
work very well for software architecture performance evaluation.
First, when a continuous simulation model is used only average
flow values can be used to parameterize the model. This makes
the model less dynamic and may have the consequence that the
simulation model can be replaced with a static mathematical
model. Second, it is impossible to address unique entities when
using continuous simulation. This is not always necessary when
simulating flows of information, but if the flows depend on fac-
tors that are discrete in their nature, for example vehicles in an
AGYV system, then continuous simulation is a bad choice.

We do however believe that an architecture modeling tool that
incorporates some simulation functionality could be helpful
when designing and evaluating software architectures. It could,
e.g., provide functions for studying data flow rates between enti-
ties in an architecture. Such a tool would preferably be based on
combined simulation techniques, because of the need to model
discrete events.

The rest of the chapter is structured as follows: We begin with an
introduction to software architectures in Section 3.2. In Section
3.3, we discuss some simulation approaches, and in Section 3.4,
we describe two software tools for continuous simulation. Next,
Section 3.5 introduces the AGV system domain. Section 3.6
describes our attempts to model and simulate the architecture of
the DMS system. In Section 3.10, we have a discussion of our
results, and finally, in Section 3.11, we present our conclusions.

48

Introduction

A Case Against Continuous Simulation for Software Architecture Evaluation

3.2

Software Architecture

There are many different definitions of what a software architec-
ture is, and a typical definition is as follows [33]:

A critical issue in the design and construction of any complex
software system is its architecture: that is, its gross organization
as a collection of interacting components.

In other words, through the creation of a software architecture we
define which parts a system is made up of and how these parts are
related to each other. The software architecture of a system is cre-
ated early in the design phase, since it is the foundation for the
entire system.

The components in an architecture represent the main computa-
tional elements and data storage elements. The architecture is
created on a high level of abstraction which makes it possible to
represent an entire subsystem with a single component. The com-
munication between the components can be abstracted so that
only the flow of information is considered, rather than technical
details such as communication protocol etc. Individual classes
and function calls are normally not modelled in the architecture.

With the creation of the software architecture, designers get a
complete view of the system and its subsystems. This is achieved
by looking at the system on a high level of abstraction. The
abstracted view of the system makes it intellectually tractable by
the people working on it and it gives them something to reason
around [7].

The architecture helps to expose the top level design decisions
and at the same time it hides all the details of the system that
could otherwise be a distraction to the designers. It allows the
designers to make the division of functionality between the dif-
ferent design elements in the architecture and it also allows them
to make evaluations of how well the system is going to fulfil the
requirements that are put upon it. The requirements on system
can be either functional or non-functional. The functional
requirements specify what function the system shall have. The
non-functional requirements include, e.g., performance, main-
tainability, flexibility, and reusability.

Software Architecture 49

A Case Against Continuous Simulation for Software Architecture Evaluation

Software architectures are often described in an ad hoc way that
varies from developer to developer. The most common approach
is to draw elements as boxes and connections simply as connect-
ing lines. A more formal way of defining architectures is to use
an architecture description language (ADL) that is used to
describe the entities and how they connect to each other. Exam-
ples of existing ADL:s are ACME [32] and RAPIDE [59], which
are still mainly used for research. ADL:s have been successfully
used to describe new architectures and to document and evaluate
existing architectures [31].

A software architecture is, among other things, created to make
sure that the system will be able to fulfil the requirements that are
put upon it. The architecture usually focuses more on non-func-
tional requirements than on functional ones. The non-functional
requirements are for example those that dictate how many users a
system should be able to handle and which response times the
system should have. These requirements does not impact which
functionality the system should provide or how this functionality
should be designed. They do however affect how the system
should be constructed.

It is important to evaluate different software architecture alterna-
tives and architectural styles against each other in order to find
the most appropriate ones for the system. There exists a number
of evaluation methods, e.g., mathematical model-, experience-,
and scenario-based methods [19]. The process of evaluating the
software architectures is mainly based on reasoning around the
architecture and the chosen scenarios. How successful this evalu-
ation is depends currently heavily on the level of experience of
the people performing it. More experienced people are more
likely to identify problems and come up with solutions.

It is during this evaluation phase that we believe that it would be
useful to use continuous simulation for evaluating the perform-
ance of software architectures. It could be used as a way of
quickly conducting objective comparisons and evaluations of dif-
ferent architectures or scenarios. The advantage over other evalu-
ation methods, for example experience-based evaluation, is that
simulation gives objective feedback on the architecture perform-
ance.

50

Software Architecture

A Case Against Continuous Simulation for Software Architecture Evaluation

3.3

Model and Simulation

A model is a representation of an actual system [10], or a “selec-
tive abstraction” [76], which implies that a model does not repre-
sent the system being modelled in its whole. A similar definition
is that a model should be similar to but simpler than the system it
models, yet capture the prominent features of the system [62]. To
establish the correctness of a model, there is a need for model
validation and verification. Validation is the task of making sure
that the right model has been built [7, 62]. Model verification is
about building the model right [7, 78].

A simulation is an imitation of the operation of a real-world proc-
ess or system over time [10, 62, 86]. A simulation can be reset
and rerun, possibly with different input parameters, which makes
it easy to experiment with a simulation. Another important prop-
erty of simulation is that time may be accelerated, which makes
simulation experiments very efficient [82].

The state of a simulation is a collection of variables that contain
all the information necessary to describe the system at any point
in time [9]. The input parameters to a simulation are said to be
the initial state of the simulation. The state is important for paus-
ing, saving, and restoring an ongoing simulation, or for taking a
snapshot of it. A simulation model must balance the level of
detail and number of state variables carefully in order to be use-
ful. The goal is to find a trade-off between simplicity and realism
[62].

Continuous simulation is a model in which the system changes
continuously over time [86]. A continuous simulation model is
characterized by its state variables, which typically can be
described as functions of time. The model is defined by equations
for a set of state variables [10], e.g, dy/dt = f(x, t). This simula-
tion technique allows for smooth system simulation, since time is
advanced continuously, i.e. changes occur over some period of
time.

When using the discrete simulation technique, time is advanced
in steps based on the occurrence of discrete events, i.e., the sys-
tem state changes instantaneously in response to discrete events
[62, 86]. The times when these events occur are referred to as
event times [9, 80]. In an event-driven discrete simulation, events
are popped from a sorted stack. The effect of the topmost event

Model and Simulation 51

A Case Against Continuous Simulation for Software Architecture Evaluation

on the system state is calculated, and time is advanced to the exe-
cution time of the event. Dependent events are scheduled and
placed in the stack, and a new event is popped from the top of the
stack [52]. With the discrete simulation technique, the ability to
capture changes over time is lost. Instead, it offers a simplicity
that allows for simulation of systems too complex to simulate
using continuous simulation [86].

Combined continuous-discrete simulation is a mix of the continu-
ous and discrete simulation techniques. The distinguishing fea-
ture of combined simulation models is the existence of
continuous state variables that interact in complex or unpredicta-
ble ways with discrete events. There are mainly three fundamen-
tal types of such interactions [7, 52]: (i) a discrete event causes a
change in the value of a continuous variable; (ii) a discrete event
causes a change in the relation governing the evolution of a con-
tinuous variable; and (iii) a continuous variable causes a discrete
event to occur by achieving a threshold value.

A software system can be modeled and simulated using either
discrete or continuous simulation techniques. When looking at
the software architecture of a system, communication between
the components can be viewed as flows of information, disre-
garding discrete events. By leaving out the discrete aspects of the
system, continuous simulation can be used to study information
flows. It is our assumption that it is simpler to model a software
architecture for continuous than for discrete simulation, because
low-level details can be ignored.

A good example of a low-level detail is a function call, which is
discrete since it happens at one point in time. By looking at the
number of function calls during some amount of time, and the
amount of data sent for each function call, the data transferred
between the caller and the callee can be seen as an information
flow with a certain flow rate. Some reasons that make this advan-
tageous are:

e [t is valid to consider an average call frequency and to disre-
gard variations in call interval etc.

e Multiple function calls between two components can be
regarded as one single information flow.

¢ Accumulated amounts and average values are often interest-
ing from a measurement perspective.

52

Model and Simulation

A Case Against Continuous Simulation for Software Architecture Evaluation

3.4

Figure 3.1

Software Tools

Once a model has been constructed, we want to run it to see what
results it produces. If it is a simple model then it might be possi-
ble to simulate it using pen and paper or perhaps a spreadsheet.
But if the model is too complex for “manual” execution then it
becomes necessary to use some kind of computer aid. Since we
in this chapter focus on the possibilities of using continuous sim-
ulation in architecture evaluation, we look at GUI-based general-
purpose simulation tools that require little knowledge about the
underlying mathematical theories.

The first tool that we evaluated was the STELLA 7.0.2 Research
simulation tool, which is a modeling and simulation software for
continuous simulation that is created and marketed by High Per-
formance Systems Inc. The second tool was Powersim Studio
Express 2001, created by Powersim. This is a similar tool that
offers more functionality than STELLA as it is based on com-
bined simulation, and has some more advanced features. Both
tools are based on the concept of Systems Thinking [76] for the
creation of models, and both programs are capable of performing
the simulation directly in the program and also to perform some
basic analysis.

In both STELLA and Powersim, models are constructed from a
number of basic building blocks which are combined in order to
build a model. The model is simulated by the use of entities that
are sent through the model. The flow of entities can then be
measured and analyzed. We use snapshots of the STELLA tool,
but they look very similar in Powersim and they work in a similar
fashion. In Figure 3.1 we show the five basic building blocks
Stock, Flow, Converter, Connector, and Decision Process.

Stock Flow Conwerter Connector Decision

Oy (O o Ta e
<

Examples of basic building blocks.

Stocks are used to represent accumulation of entities various
ways. Flows are used to connect stocks and to enable and control

Software Tools 53

A Case Against Continuous Simulation for Software Architecture Evaluation

3.5

the flow of entities between them. Converters are often used in
order to modify the rate of flows, and to introduce constants in a
model. Connectors are used to connect, e.g., stocks and flows so
they can exchange information. To make a model less complex it
is possible to hide parts of it by using decision processes.

Once the model is completed it is possible to run it. Both Power-
sim and STELLA are capable of accelerating the simulation time.
The tools can visualize simulation outputs and results as the sim-
ulation runs, e.g., time-graphs, time-tables and value labels. Pow-
ersim also has the possibility to export results to a standard file
format.

We used Powersim for the following three reasons: (i) Powersim
has the ability to check the consistency of the model via the use
of units on every flow; (ii) Powersim offers the possibility to cre-
ate discrete flows and visually distinguish them in a model; and
(ii1) STELLA crashed repeatedly when we tried to use the deci-
sion process functions, and also sometimes even during normal
work. The unreliability of the tool made us hesitant to use
STELLA.

AGV Systems

An AGV (Automated Guided Vehicle) system is an automatic
system that usually is used for materials handling in manufactur-
ing environments, e.g., car factories and metal works. They are
however not restricted to these environments and can be used in
very different environments such as hospitals and amusement
parks.

An AGV is usually a driverless battery-powered truck or cart that
follows a predefined path [24]. A path is divided into a number of
segments of different lengths and curvatures. There can be only
one vehicle on a segment at any given time. The amount of com-
putational power in a vehicle may vary depending on how
advanced the behavior of the vehicle is. With more computa-
tional power, it is possible to let the vehicle be autonomous.
However, computational power costs money, and with many
vehicles, a computationally strong solution can be expensive.

The management and control of the AGV system is usually han-
dled by a central computer that keeps track of all the vehicles and

54

AGYV Systems

A Case Against Continuous Simulation for Software Architecture Evaluation

their orders. This computer maintains a database of the layout of
the paths that the vehicles can use to get to their destinations [24].
With this information it acts as a planner and controller for all the
vehicles in the system, routing traffic and resolving deadlocks.
The central server gets orders from, e.g., production machines
that are integrated with the AGV system.

In order for the AGV system to work it must be possible to find
the position of the vehicles with good precision. This is achieved
by the use of one or more positioning and guidance systems, e.g.,
electrical track, optical guidance, and magnetic spots. With elec-
trical track guidance, the vehicle path is defined by installing a
guidance wire into the floor of the premises. Optical guidance is
achieved for example by the use of a laser positioning system
which uses reflectors placed on the walls of the premises in order
to calculate an accurate position of the AGV as it moves. Mag-
netic guidance works by the use of magnetic spots, which are
placed on the track. The vehicles have magnetic sensors that
react on the presence of the spots.

In an AGV system it is desirable to minimize the communication
between the server and the clients. The choice of communication
strategy affects the amount of information that is communicated
in the system.

An early communication strategy was to let the vehicles commu-
nicate with the server only at certain designated places. As a
result, the vehicles can only be redirected at certain points, since
the server has no control of a vehicle between communication
spots. A more advanced way of communicating is via the use of
radio modems. The early modems however had very low band-
width, which imposed limitations on the amount of information
that could be transferred. This limitation has diminished as
advancements made in radio communication technology have
increased the amount of available bandwidth. The next step in
communication is to make use of cheaper off-the-shelf hardware
such as wireless LAN, e.g., IEEE 802.11b. An advantage with
using such a strategy is that an existing infrastructure can be
used.

We mention here two alternative ways to design an AGV system,
and they are interesting because they represent the extremes of
designing a system architecture. The goal of a centralized
approach is to put as much logic in the server as possible. Since

AGYV Systems 55

A Case Against Continuous Simulation for Software Architecture Evaluation

3.6

3.7

the vehicles cannot be totally free of logic (they have to have
driving logic at least), the centralized approach is in practise dis-
tributed. However, we may choose different degrees of centrali-
zation by transferring modules from the vehicle logic to the
server logic. In an entirely distributed approach there is no cen-
tralized server, thus making the system less vulnerable to failure.
This requires all information in the system to be shared among,
and available to, all vehicles, which can be realized, e.g., by
using a distributed database solution.

The Experiment

The architecture studied is a client-server architecture for a sys-
tem that controls AGVs. The server is responsible for such tasks
as order management, carrier management, and traffic manage-
ment. It creates “flight plans” and directs vehicles to load sta-
tions. The vehicles are “dumb” in the sense that they contain no
logic for planning their own driving. They fully rely on the server
system. A more in-depth explanation of the system can be found
in [85].

The communication between server and clients is handled by a
wireless network with limited capacity, set by the radio modems
involved. Topics of interest are for example:

¢ Has the network capacity to handle communication in highly
stressed situations with many vehicles?

e Can the system architecture be altered so less traffic is gener-
ated?

e Can the system share an already present in-use wireless
LAN?

With this in mind, we decided to simulate the architecture with
respect to the amount of generated network traffic. The intention
is to provide a means for measuring how communication-intense
a certain architecture is.

The System Behavior

The purpose of the studied system is to control a number of
AGVs. The AGVs must follow a pre-defined track which con-
sists of segments. A fundamental property of a segment is that it

56

The Experiment

A Case Against Continuous Simulation for Software Architecture Evaluation

3.8

can only be “allocated” to one AGV at a time. Sometimes, sev-
eral segments can be allocated an AGV to prevent collisions. The
primary controlling unit for the system is an order. An order usu-
ally contains a loading station and an unloading station. Once an
order has been created, the server tries to assign a vehicle to the
order and instructs the vehicle to carry it out. During the execu-
tion of an order, the vehicle is continuously fed segments to
drive.

In certain situations, deadlock conflicts can arise. A deadlock
occurs, e.g., when two vehicles are about to drive on the same
segment. A traffic manager tries to resolve the deadlock, accord-
ing to a set of deadlock avoidance rules. As the number of vehi-
cles involved in the deadlock increases, it becomes harder and
harder for the traffic manager to resolve the situation.

Each vehicle, i.e., each client, contains components for parsing
drive segments fed from the server, controlling engines and steer-
ing, locating itself on the map etc. The vehicle is highly depend-
ent on the drive commands sent from the server; if the segment-
to-drive list is empty, it will stop at the end of the current seg-
ment. If the vehicle gets lost and can’t rediscover its location, it
will also stop.

The communication between server and clients is message-
based. The server sends vehicle command messages to control
the vehicles, and the vehicles respond to these with vehicle com-
mand status messages. There are also status messages, which are
used to report vehicle status.

The Model

We will look at the flow of information over the network in the
system architecture. Thus, the communication network plays a
central role in the model, and the purpose of all other entities is to
generate input traffic to the network. The network traffic in a cli-
ent-server system has two components; server generated traffic
and client generated traffic. However, when measuring the net-
work utilization, the sum is interesting. In our model, the network
traffic is modelled as a whole. Further, the network is more or
less a “black hole”, since the output is discarded.

The Model 57

A Case Against Continuous Simulation for Software Architecture Evaluation

Figure 3.2

Prior to constructing the model we had basic knowledge of the
behavior of both the server architecture and the client architec-
ture, e.g., which components that communicate over the network.
However, we had only vague understanding of what caused com-
munication peaks and which communication that could be con-
sidered “background noise”. Therefore, we studied a version of
the current client-server system. The server system can handle
both real and simulated AGVs, which allowed us to run a simula-
tion of the real system in action, but with simulated vehicles
instead of real ones (30 vehicles were simulated).

An example of logged network traffic can be seen as the solid
line in Figure 3.2 (the y-axis has no unit, because the purpose is
only to show the shape of the traffic curve). In the left part of the
diagram, all AGVs are running normally, but in the right part
they are all standing still in deadlock. Except for the apparent
downswing in network traffic during deadlock, no obvious visual
pattern can be found. When analyzing the traffic, we found that
normal status messages are responsible for roughly 90% of the
traffic, and that the number of status messages and the number of
vehicle command messages fluctuate over time. However, the
number of vehicle command status messages seems to be rather
stable regardless of system state (e.g. normal operation vs. dead-
lock).

Oaty cantper 100 oo Orders albvcated par 100 s [sealsd]

Example of network traffic during a system run, with order
allocations superimposed on the traffic diagram.

We sought reasons for the traffic fluctuations, and examined the
log files generated. We found a connection between order alloca-

58

The Model

A Case Against Continuous Simulation for Software Architecture Evaluation

tions and network traffic. An order allocation takes place when a
vehicle is assigned to a new order, and this causes an increase in
traffic. In Figure 3.2, a correlation between the order allocations
(dotted line) and the network traffic (solid line) is observed. In
particular, during the deadlock there are no order allocations at
all. Mathematically, the correlation is only 0.6, which is not very
strong but enough for us to let order allocations play the largest
role in the model. The reason for an upswing in traffic when an
order allocation takes place is simple; it changes the state of a
vehicle from “available” to “moving”, and in the latter state the
traffic per vehicle is higher.

The network is modelled as a buffer with limited storage capac-
ity. It holds its contents for one second before it is released.
Immediately before the network buffer is a transmission buffer to
hold the data that cannot enter the network. If the network capac-
ity is set too low, this buffer will be filled. In a real system, each
transmitting component would have a buffer of its own, but in the
model the buffer acts as transmission buffer for all components.

To model network congestion, the network buffer outlet is
described by a function that depends on the current network utili-
zation, e.g., it releases all network data up to a certain utilization
limit, and thereafter gradually releases less data as the utilization
increases. The data that remains in the network buffer represents
data that in a real system would be re-sent. A visual representa-
tion of the modeled network is seen to the left in Figure 3.3. The
entity “Network indata” in Figure 3.3 is at every time the sum of
all traffic generated in the model at that time

The primary controlling unit for the system is an order, and order
allocations generate network traffic. The amount of traffic gener-
ated also depends on how many vehicles that are available,
processing orders, and in deadlock. Therefore, we need con-
structs for the following:

¢ Order generation
e Order allocation

e Available vs. non-available vehicles
e Deadlock

Orders can be put into the system automatically or manually by
an operator. We have chosen to let orders be generated randomly

The Model 59

A Case Against Continuous Simulation for Software Architecture Evaluation

Figure 3.3

Congestion function

Metwork capacity O

Transmission buffer

Metw buffer O

Metwork indata MNetwork inlet Network outlet

Order buffer

é&ﬂ)@ratmn >|i%meton

Order allocator
Order generator

Network component (top), and Order component and order
allocator (bottom).

over time, but with a certain frequency. Each time an order is
generated, it is put in an order buffer. As orders are allocated to
vehicles, the number of orders in the buffer decreases. The order
component and the order allocator is shown to the right in Figure
3.3.

For an order allocation to take place, there must be at least one
available order, and at least one available vehicle. Then, the first
order in queue is consumed and the first available vehicle is
moved to the busy-queue. The busy queue contains several buft-
ers to delay the vehicles’ way back to the buffer for available
vehicles and a mechanism for placing vehicles in deadlock. In the
deadlock mechanism each vehicle runs the risk of being put in a
deadlock buffer. The risk of deadlock increases as more and more
vehicles are put into the deadlock buffer. Once in deadlock, each
vehicle runs the chance of being let out of the deadlock again.
The chance for this to happen is inversely proportional to the
number of vehicles in deadlock. Figure 3.4 shows the construct
describing the vehicle queues and the deadlock mechanism.

The remaining parts of the model fill the purpose of “gluing” it
together. They are simple constructs that, given the current state
of vehicles, generate the proper amounts of traffic to the network.

60

The Model

A Case Against Continuous Simulation for Software Architecture Evaluation

Figure 3.4

3.8.1

To deadlock

Order allocatar

Vehicle queues and deadlock mechanism.

Simulation Parameters and Results

In the current system, each vehicle is equipped with a modem
capable of transmitting 19 200 bps, while both the network and
the server system have higher capacity. We therefore chose to set
the network speed to 2 400 byte/s (19 200 bps) in the simulation,
since the first step was to build a model that approximates the
real system, rather than to study the impact of different network
speeds.

In our simulation, we let the order creation probability be high
enough to ensure that there is always at least one order in queue
when a vehicle becomes available. The average order processing
time is set to 230 seconds. This is based on the average order
processing time in the real system when run with 1 vehicle.

The probability for a vehicle to enter deadlock is set to
Popior = 1-0,99""" where x is the number of vehicles cur-
rently in deadlock, i.e., the probability increases as more vehicles
enter deadlock. The probability for a vehicle to leave deadlock is
setto P,,,,, = 0,2 where y is the number of vehicles currently
in deadlock, i.e., the more vehicles involved in a deadlock, the
harder it is to resolve.

Table 3.1 contains data points measured in the real system in
standby state, i.e., when no vehicles were moving. As seen in
Figure 3.5, the traffic is linearly related to the number of vehicles.

The Model 61

A Case Against Continuous Simulation for Software Architecture Evaluation

The situation when all vehicles are standing still is assumed to be
similar to a deadlock situation, at least traffic-wise.

Traffic generated in standby state (avg. bytes/s)

No. of vehicles Status msg. g(;;;mand sctgglllsn::;(gi
0 0 0 0

1 1.2 0 0.5

5 6.0 0 2.5

10 12.0 0 5.0

20 24.0 0 10.0

Table 3.2 contains data points measured in moving state. In Fig-
ure 3.5, we see that this traffic does not appear to be linearly
related to the number of vehicles. We suspect that this has to do
primarily with deadlock situations when the number of vehicles
is high. Otherwise it would mean that for some certain number of
vehicles (more than 30), there would be no increase in traffic as
more vehicles are added to the system. To sum up, the traffic gen-
erated in different situations is as follows, deduced from the data
in Tables 3.1 and 3.2:

e Available vehicles and vehicles in deadlock generate on aver-
age 1.2 bytes/s of status messages per vehicle.

e Vehicles processing orders generate on average /7 bytes/s of
status messages per vehicle.

e The server sends 3.2 bytes/s of command messages per run-
ning vehicle.

e Each vehicle sends 0.5 bytes/s of command response status
messages in standby state and 0.33 byfes/s in moving state..

We ran the simulation for different periods of time, varying
between 10 minutes and 10 hours. The behavior of the model is
rather predictable, as Figure 3.6 depicts. With the limited set of
controllable parameters in the model, patterns in the simulation
output are more apparent and repetitive than in output from the
real system. An important reason for this is that we cannot take
segment lengths, vehicle position and varying order processing
time into account in the model. Furthermore, there may also be
factors affecting the network traffic that we have not found.

62

The Model

A Case Against Continuous Simulation for Software Architecture Evaluation

Table 3.2 Traffic generated in moving state (avg. bytes/s)

No. of vehicles Status Command Command
: msg. msg. status msg.
0 0 0 0
1 19.0 34 0.2
3 54.8 9.6 0.7
5 92.5 16.8 1.2
8 138.2 27.2 2.2
10 187.8 33.6 33
13 211.8 39.8 4.2
20 298.9 52.7 7.5
30 335.0 59.5 10.1
Moving state
450
400 =
350 =t
, 300 "
£ -
150 4 ‘
100 /
50 -
0 T * +
0 5 10 15 20 25 30
no. of vehicles
Standby state
30
25 | L
w 20
% 15
10 4 A
5
0 » - .
0 5 10 15 20
no. of vehicles
—— status messages —a— command messages
—&— command status messages - - - - Linear trend (status messages)

Figure 3.5 Relation between number of vehicles and the generated traffic

One reason that we cannot say much about the simulation results,
is that its inputs do not match the inputs to the real system. In

The Model 63

A Case Against Continuous Simulation for Software Architecture Evaluation

3.9

Figure 3.6

o + + J
2002-01-01 2002-01-01 00:20:00 2002-01-01 00:40:00 2002-01-01 01:00:00

Output from a simulation of 30 vehicles.

other words, we cannot validate the model using the simulation
results. Even if we could extract all external inputs to the real
system, they would not all apply directly to the model because of
the approximations made.

In the simulation output in Figure 3.6, we see that the average
network utilization in the simulation is higher than in the real sys-
tem (Figure 3.5). The reason is that the model keeps vehicles
busy as the number of vehicles increase, while the real system is
not because of the fact that deadlocks and conflicts occur more
often there. The lack of variation in the traffic diagram in Figure
3.6 is an effect of the fixed order processing time, and the fact
that vehicles do not enter deadlock until the end of the busy loop.

Problems With the Approach

One fundamental problem with the simulation technique we have
focused on, is that it is not possible to distinguish between single
“entities” that make up flows in the simulation. An example is
the balance of available vehicles and vehicles in use. The time it
takes for a vehicle to process an order has to be set to some aver-
age time, because the tool does not allow us to associate a ran-
dom process time with each vehicle. This has to do with the fact
that, in continuous simulation, entities are not atomic.

64

Problems With the Approach

A Case Against Continuous Simulation for Software Architecture Evaluation

A possible solution in our case would be to let each vehicle be a
part of the model instead of being an entity that flows through the
model. In such a model, however, the complexity would increase
with the number of vehicles. In particular, to change the number
of vehicles in the model, one would have to modify the model
itself, rather than just one of its parameters.

One of the simulation parameters is the total number of vehicles
in the system. The number of vehicles must be chosen carefully,
as it has great impact on the efficiency of the system as a whole.
In addition, it is not possible to add an arbitrary number of vehi-
cles without taking into consideration the size and complexity of
the segment map.

As mentioned, the processing time for an order is set to a fixed
value due to limitations in the tool (and simulation technique). In
the real system, the processing time depends on a number of fac-
tors, e.g., the vehicle’s location, the size of the map, and where
the loading stations are

Parameters that have to do with the segment map, such as
number of segments and segment lengths, are not included in the
model at all. For the same reason as the processing time for an
order is fixed, it had not been possible to include other than aver-
age values.

In an architecture, the primary entities are components that act
together as a whole system. Connections between components
can be of the same importance as components, but can also be
assumed to simply exist when needed. A reason for this may be
that connections can be realized by standardized protocols, e.g.,
CORBA. In a simulation model like the one we have created, the
connections control how data are moved, and components are
often merely data generators or data containers, e.g., see the net-
work component in Figure 3.3. It represents a connection, but is
not modeled as a simple connector. Instead, it is a complex unit to
show the characteristics it is supposed to have. Thus, the compo-
nents of the model do not map the components of the architecture
very well.

Problems With the Approach 65

A Case Against Continuous Simulation for Software Architecture Evaluation

3.10

Discussion

We have found that the part of the simulation process that was
most rewarding was to develop the model. When creating the
model, you are forced to reflect over the choices that has to be
made in the architecture, resulting in a deepened understanding
of the system that helps to identify potential points of concern.

When creating a model of a system, lots of decisions are taken to
simplify it in order to speed up the modeling process. A simplifi-
cation of some system behavior may be valid to make, but if it is
erroneous it may as well render the model useless. Therefore,
each step in the modeling has to be carefully thought through,
something that slows down the entire modeling process.

A model easily becomes colored by the opinions and conceptions
of the person that creates the model. Two persons may model the
same system differently from each other, which indicates that it is
uncertain whether or not a model is correct. Model verification
and validation are the apparent tools to use here, but it is still
inefficient to risk that a model is not objectively constructed.
Therefore, we recommend that modeling always should be per-
formed in groups.

While experimenting with the simulation tool, we have found
that the ability to simulate a system is a good way to provide
feedback to the modeler. It is possible to get a feeling for how the
system is going to behave, which is a good way to find out if
something has been overlooked in the architecture model. We
believe this is independent of the method of simulation that is
being used.

While building our experiment model we found that a library of
model building blocks would have been of great help. The availa-
bility of a standardized way of modeling basic entities such as
processes, networks, etc. would both speed up the modeling
process and allow modelers to focus on the architecture instead
of the modeling.

When simulating a software architecture, the focus can be put on
different aspects, e.g., network or CPU utilization. The choice of
aspect dictates what in the model that has to be modeled in detail.
In our experiment, we chose to look at network utilization, and
therefore it is the communication ways in the architecture that

66

Discussion

A Case Against Continuous Simulation for Software Architecture Evaluation

3.1

have to be specifically detailed. This is noticeable in that commu-
nication channels in the model are complex structures rather than
simple lines as in an architecture diagram.

Conclusions

In this chapter we have evaluated the applicability of continuous
simulation as a support tool during evaluation of software archi-
tectures. Unfortunately, we conclude that continuous simulation
does not fit for evaluation of software architectures. There are
three reasons that make us come to this conclusion.

First, if continuous simulation is to be used, then we have to use
average flow values when we parameterize the model. This
makes the model become less dynamic and may have the conse-
quence that the simulation model can be replaced with a static
mathematical model.

Second, it is impossible to address unique entities when using
continuous simulation. This is not always necessary when simu-
lating flows of information, but if the flows depend on factors
that are discrete in their nature, for example vehicles in an AGV
system, then continuous simulation is a bad choice.

Third, the process of creating a model for simulation takes con-
siderable time. Since an architecture evaluation generally has to
be completed within a limited time, modeling becomes an
impractical and uneconomical activity to perform during an eval-
uation.

We do, however, still believe that an architecture modeling tool
that incorporates some simulation functionality could be helpful
when designing software architectures. It could for example pro-
vide functionality for studying data flow rates between entities in
an architecture. Such a tool would preferably be based on com-
bined simulation techniques, because of the need to model dis-
crete factors.

Acknowledgments

We would like to thank Mikael Svahnberg, Blekinge Insitute of
Technology, and Henrik Eriksson and Lars Ericsson, Danaher

Conclusions 67

A Case Against Continuous Simulation for Software Architecture Evaluation

Motion Sard, for valuable discussions, comments, and informa-
tion about their AGV system. Finally, thanks to Ake Arvidsson at
Ericsson AB for valuable simulation advises.

68 Conclusions

An Approach for Performance
Evaluation of Software
Architectures using Prototyping

4.1

Frans Martensson, Hakan Grahn, and Michael Mattsson

Introduction

The size and complexity of software systems are constantly
increasing. During recent years, software engineering research
has identified that the quality properties of software systems, e.g.,
performance and maintenance, often are constrained by their
architecture [12]. Before committing to a particular software
architecture, it is important to make sure that it handles all the
requirements that are put upon it, and that it does this reasonably
well. Bad architecture design decisions can result in a system
with undesired characteristics, e.g., low performance and/or low
maintainability.

When designing an architecture, there exists many different solu-
tions to a given problem. Therefore, the design of the architecture
should be supported by a well-defined, explicit method and relia-

Introduction 69

An Approach for Performance Evaluation of Software Architectures using Prototyping

ble data predicting the effects of design decisions, preferably in a
quantifiable way. Examples of architecture evaluation methods
are prototyping and scenario-based evaluation [19]. Each method
has its own advantages and drawbacks, and there is no general
consensus that a certain method is the best. Which method to use
depends on time constraints and which quality attributes that are
to be evaluated.

One important quality attribute to evaluate during architectural
design is performance. Many times performance problems are
not detected until system integration test, and thus are very costly
to correct [83]. Some even argue that a design change is at least
ten times more expensive after the code has been written than
during architectural design. Therefore, it is important to evaluate
the performance of a system as early as possible in the system
development process, i.e., during the architectural design phase.

In this chapter, we present an approach that assess the perform-
ance characteristics of a software architecture, or a part of it. We
apply the approach in a case study, an automated guided vehicle
(AGV) system, where an early version of a communication com-
ponent of the architecture is evaluated in order to identify its per-
formance characteristics. The protypical method is based on an
adaptation of the simulation based evaluation method as
described by Bosch in [19]. We extend that approach by building
an executable prototype of the software architecture, and thus
evaluate the performance at the architectural level. The exten-
sions to Bosch’s method include, among others, the introduction
of an evaluation support framework for gathering data in a con-
sistent way during several subsequent evaluations as well as eval-
uation of candidate implementations or technologies.

We will with some background about software architecture in
Section 4.2. In Section 4.3, we describe the simulation-based
evaluation method, how we adapted it to prototype-based evalua-
tion, and finally describe the resulting evaluation approach.
Then, in Section 4.5, we illustrate the prototype based evaluation
approach using a case study where an evaluation is conducted on
an AGV system architecture. In Section 4.6 and Section 4.7 we
discuss the results of the case study and how the evaluation
approach worked, respectively. Finally, we conclude our study in
Section 4.9.

70

Introduction

An Approach for Performance Evaluation of Software Architectures using Prototyping

4.2

4.3

Software Architecture

Software systems are constructed with a requirement specifica-
tion as a base. The requirements in the requirement specification
can be categorized into functional requirements and non-func-
tional requirements, also called quality requirements. The design
of software systems has traditionally been centred around the
functional requirements. Although software engineering practice
was forced to incorporate the quality requirements as well, soft-
ware engineering research focused on the system functionality.

During recent years, the domain of software architecture [12, 71,
81] has emerged as an important area of research in software
engineering. This is in response to the recognition that the archi-
tecture of a software system often constrains the quality
attributes. Thus, architectures have theoretical and practical lim-
its for quality attributes that may cause the quality requirements
not to be fulfilled. If no analysis is done during architectural
design, the design may be implemented with the intention to
measure the quality attributes and optimize the system at a later
state. However, the architecture of a software system is funda-
mental to its structure and cannot be changed without affecting
virtually all components and, consequently, considerable effort.

Software architecture can be divided into three problem areas,
i.e., designing, describing, and evaluating a software architecture.
In this chapter we focus on evaluating software architectures, and
in particular evaluating their performance. Four approaches to
architecture evaluation can be identified, i.e., scenarios, simula-
tion, mathematical modelling, and experience-based reasoning.
Smith [83] discusses an approach to modelling system perform-
ance mathematically, although one may require simulation in cer-
tain cases. Our approach relies on the construction of an
executable prototype of the architecture.

The Prototype-based Evaluation Approach

In the core of the prototype-based evaluation approach is the
architecture prototype that approximates the behavior of the com-
pleted software system. When we were asked to perform the
evaluation of the AGV system (see Section 4.5), we were unable
to find a description of the steps involved in creating an architec-
ture prototype. As a result we decided to take the basic workflow

Software Architecture 71

An Approach for Performance Evaluation of Software Architectures using Prototyping

431

from simulation based evaluation as described in [19] and adapt
it to our needs. We will in the following section give a short intro-
duction to the steps involved in performing a simulation-based
architecture evaluation. We will then describe the changes that
we made to that approach, and finally describe the resulting pro-
totype-based evaluation approach.

Simulation-based Architecture Evaluation

A simulation-based evaluation is performed in five steps [19]:
Define and implement context.

Implement architectural components.

Implement profile.

Simulate system and initiate profile.

A o A

Predict quality attribute.

Define and implement context. In this first step two things are
done. First, the environment that the simulated architecture is
going to interact with is defined. Second, the abstraction level
that the simulation environment is to be implemented at is
defined (high abstraction gives less detailed data, low abstraction
gives accurate data but increases model complexity).

Implement architectural components. In this step the compo-
nents that make up the architecture are implemented. The compo-
nent definitions and how the components interact with each other
can be taken directly from the architecture documentation. The
level of detail and effort that is spent on implementing the archi-
tecture components depends on both which quality attribute that
we are trying to evaluate and the abstraction level that we have
chosen to conduct the simulation at. If we are going to evaluate
several quality attributes, then we will most likely have to imple-
ment more functionality than if we focus on only one.

Implement profile. A profile is a collection of scenarios that are
designed to test a specific quality attribute. The scenarios are
similar to use-cases in that they describe a typical sequence of
events. These sequences are implemented using the architectural
components that are going to be evaluated. This results in a
model of the system components and their behavior. How a pro-
file is implemented depends on which quality attribute we are

72

The Prototype-based Evaluation Approach

An Approach for Performance Evaluation of Software Architectures using Prototyping

4.3.2

43.3

trying to assess as well as the abstraction level that is necessary
for getting relevant data.

Simulate system and initiate profile. The simulation model is
executed. During the execution data is gathered and stored for
analysis. The type of data that is gathered depends on which
quality attribute that we want to evaluate.

Predict quality attribute. The final step is to analyse the col-
lected data and try to predict how well the architecture fulfils the
quality requirements that we are trying to evaluate. This step is
preferably automated since a simulation run usually results in a
large amount of raw data.

Adaptations to the Evaluation Method

The workflow from the simulation-based evaluation had to be
adapted to incorporate steps that we wanted to perform in our
prototype-based evaluation. The main changes that we made
were to introduce an evaluation support framework and put more
emphasis on iteration in the evaluation process. We also did
minor changes in the existing steps. These changes are described
in more detail when we present our case study.

Evaluation Support Framework

We added the step of creating an evaluation support framework
for use during the evaluation. A layered view of where the sup-
port framework is placed is shown in Figure 4.1. We choose to
create the evaluation support framework for two reasons.

First, it makes us less dependent on the architecture component
that we want to evaluate. The framework decouples the architec-
ture component that we are evaluating from the architecture
model that is used to generate input to the component. This
increases the reusability of the architecture model as it only
depends on the API provided by the framework and not directly
on the architecture component.

Second, all logging can be performed by the framework, result-
ing in that neither the architecture model nor the architecture
component that are evaluated need to care about the logging.
This leads to both that the logging is done in a consistent way

The Prototype-based Evaluation Approach 73

An Approach for Performance Evaluation of Software Architectures using Prototyping

Figure 4.1

434

independent of the underlying architecture component, and that
no change has to be made to the architecture component when it
is fitted to the framework. All that is needed is a wrapper class
that translates between the calls from the framework and the
architecture component. A more thorough discussion on how we
constructed our framework can be found in section 4.5.2

Architecure Model

Evaluation Support
Framework

1 1

Architecture
Component

A layered view of the prototype design.

Iteration

During the development and execution of the prototype we found
that it became necessary to perform the development of both the
architecture model and the evaluation support framework in an
iterative way. We needed to reiterate steps two to five in order to
make adjustments to the way data was logged, and also to the
behavior of the architecture model that was used. The need to
make these changes was identified first after an initial execution
of the simulation and analysis of the generated data. The positive
thing with adding an iteration is that the initial results can be
reviewed by experts (if such are available) that can determine if
the results are sensible or not, and if changes to the model are
necessary. We also got a confirmation that the log analysis tools
were working correctly.

74

The Prototype-based Evaluation Approach

An Approach for Performance Evaluation of Software Architectures using Prototyping

4.4

Prototype-based Architecture Evaluation

In order to perform a prototype based evaluation there are some
conditions that has to be fulfilled.

e First, there has to be at least one architecture defined, if the
goal of the evaluation is to compare alternative architectures
to each other then we will of course need more.

e Second, if we want to evaluate the performance of one or
more candidates for a part of the software architecture then
these components has to be available. This is usually no prob-
lem with COTS components but might pose a problem if the
components are to be developed in house.

In addition, it is a preferable, but not necessary condition, that the
target platform (or equivalent) of the architecture is available. If
it is possible to run the prototype on the correct hardware, it will
give more accurate results.

After integrating our adaptations in the evaluation method we
ended up with the following method for prototype based architec-
ture evaluation.

Define evaluation goal.

Implement an evaluation support framework.

Integrate architectural components.

Implement architecture model.

Execute prototype.

Analyse logs.

Predict quality attribute.

e A o o

If necessary, reiterate.

Define evaluation goal. Define what it is that should be evalu-
ated, are we looking at more one or more architecture candidates
or architecture components, and which quality attributes are we
interested in evaluating.

Implement an evaluation support framework. The evaluation
support framework’s main task is to gather data that is relevant
for fulfilling the evaluation goal that has been defined. Depend-
ing on the goal of the evaluation, the framework has to be
designed accordingly, but the main task of the support framework

Prototype-based Architecture Evaluation 75

An Approach for Performance Evaluation of Software Architectures using Prototyping

is always to gather data. The support framework can also be used
to provide common functions such as utility classes for the archi-
tecture model.

Integrate architectural components. The component of the
architecture that we want to evaluate has to be adapted so that the
evaluation support framework can interact with it.

Implement architecture model. Implement a model of the
architecture with the help of the evaluation support framework.
The model together with the evaluation support framework and
the component that is evaluated becomes an executable proto-

type.

Execute prototype. Execute the prototype and gather the data
for analysis in the next step. Make sure that the execution envi-
ronment matches the target environment as close as possible.

Analyse logs. Analyse the gathered logs and extract information
regarding the quality attributes that are under evaluation. The
analysis is with advantage automated as much as possible since
the amount of data easily becomes overwhelming.

Predict quality attribute. Predict the quality attributes that are
to be evaluated based on the information from the analysed logs.

If necessary, reiterate. This goes for all the steps in the evalua-
tion approach. As the different steps are completed it is easy to
see things that were overlooked during the previous step or steps.
Once all the steps has been completed and results from the analy-
sis are available, you could let an expert review them and use the
feedback for deciding if adjustments have to be done to the proto-
type. These adjustments can be necessary in both the architecture
model and the evaluation support framework. Another advantage
is that it is possible to make a test run to validate that the analysis
tools are working correctly and that the data that is gathered
really is useful for addressing the goals of the evaluation.

76

Prototype-based Architecture Evaluation

An Approach for Performance Evaluation of Software Architectures using Prototyping

4.5

A Case Study of an AGV System

The prototype based evaluation approach was specified in order
to perform an evaluation for Danaher Motion Sdr6 AB that is
developing a new version of a control system for Automated
Guided Vehicles (AGV:s). The system consists of a central server
that controls a number of vehicles through a wireless network.
Each vehicle has a client that controls it and communicates with
the server. The client regularly position the vehicle through, e.g.,
laser measurements. The position is then sent back to the server
which, based on the positioning information and information
stored in a map database, decides what the client is to do next.
Typical commands for the client is to drive a certain sequence of
path segments, or load and unload cargo.

The client in the new system has a number of quality require-
ments that has to be accommodated, for example portability
between different operating systems, scalability in functionality,
and cost efficiency. The cost efficiency of the client is largely
influenced by the price of the hardware that is needed to provide
the necessary processing power to complete its computational
tasks within a given timeperiod. This brings us to the perform-
ance of the client, since an efficient client will be able to work on
slower hardware than a less efficient version, i.e., a more effi-
cient client will be more cost efficient. The target platform for the
new client is a Intel Pentium CPU at 133 MHz with an embedded
version of the Linux operating system.

The prototype based evaluation method is applied to the architec-
ture of the client and focus on how the internal communication in
the client is handled. The clients consist of a number components
that exchange information with each other. The components are
realised as a number of threads within a process. In order to
decrease the coupling between the components it was decided to
introduce a component that provided a level of indirection
between the other components by managing all communication
in the client. This communication component is very crucial for
the overall performance of the client as all communication
between the other components in the client goes through this
component. The communication component handles asynchro-
nous communication only, the components communicate with
each other by publishing telegrams (messages) of different types.
Each component that is interested in some type of information
has to register as a subscriber for that telegram type.

A Case Study of an AGV System 77

An Approach for Performance Evaluation of Software Architectures using Prototyping

4.51

A first version of the communication component was already in
use for the development of the other components. There were
however some concerns regarding how well the communication
component would perform on the target hardware for the new
system. In order to verify that the new client would be able to ful-
fil the performance requirement it was decided that a perform-
ance evaluation should be done before to much time was spent on
further development.

We will now go through the steps in the prototype-based evalua-
tion method and describe what we did in each step. This will
hopefully give the reader a more concrete feeling for the tasks
that have to be done.

Define the Evaluation Goal

We defined the goal of the evaluation to be the performance of
the communication component of the new AGV client. The com-
ponent is critical as it handles the dispatching of messages
between all the components in the client.

Because of safety and requirements regarding the positioning
accuracy of the vehicles, the client has to complete a navigation
loop within 50 ms. During this time a number of messages has to
be passed between the components of the client. Together with
the communication a certain amount of computation has to be
performed in order to decide where the vehicle is and necessary
course corrections. The amount of computation that has to be
done varies only slightly from one loop to the next, so what
remains that can affect the time it takes to complete the loop is
the time it takes for the components to communicate with each
other. In order to determine how good the communication com-
ponent was we decided to gather the following three datapoints:

¢ The time it takes for a component to send a message.

e The time it takes for the communication component to deliver
the message (message transit time).

e The time it takes to complete a navigation loop in our archi-
tecture model.

e Aside from the pure performance questions there were two

additional questions, i.e., questions that we did not intend to
focus the prototype on but that we would keep an eye out for

78

A Case Study of an AGV System

An Approach for Performance Evaluation of Software Architectures using Prototyping

45.2

in order to get a feel for how the communication component
handled them.

e [s there a large difference in performance between Linux and
Windows 2000? This was a concern raised by some of the
engineers developing the system.

e How easy is it to port the communication component from
Windows 2000 to Linux?

So now we have defined the goal of our evaluation and we have
defined the data that we will need in order to perform the evalua-
tion.

Implement an Evaluation Support Framework

Based on the defined goal of the evaluation we created an evalua-
tion support framework that would handle the gathering of data
as well as separate the communication component from the archi-
tecture model. The conceptual model for the evaluation support
framework that we constructed consisted of four main concepts:
worker, log, framework, and communication component.

e A worker is someone that performs work such as calculations
based on incoming data. A worker can both produce and con-
sume messages. Instances of the worker are used to create the
architecture model.

e The log is used to store information regarding the time it
takes to perform tasks in the system. The framework uses the
log to store information regarding sent and received mes-
sages.

e The framework provides a small API for the workers. It is
mainly responsible for sending relevant events to the log but
it also provides methods for generating unique message id:s
as well as sending and receiving messages etc.

e The communication component is some kind of communica-
tion method that we are interested in evaluating. This is the
exchangeable part of the framework

The four concepts were realised as a small number of classes and
interfaces, as shown in Figure 4.2. The evaluation support frame-
work provided an abstract worker class that contained basic func-
tionality for sending and receiving messages. This class also
generated log entries for each event that happened (such as the
sending or receiving of a message). The class was also responsi-

A Case Study of an AGV System 79

An Approach for Performance Evaluation of Software Architectures using Prototyping

Figure 4.2

ble for shutting down the testing once a predetermined time had
elapsed, during the shutdown the log was flushed to disk. When
creating a worker the user extended the abstract class and through
that got all the messaging an logging functionality ready to use.
Only some initialization was left to be done.

«interface»
BaseConsumer| |ActiveObjectBase|

LogManager

+consumeMsg()

+abcLog()
+abcLogSetup()|
+abcLogFlush()

AbstractWorker

+configure() interface»

+connect() Communication
+disconnect()

+receiveMessage() aboConi
+sendMessage() abeConfigure()

+run() +abcConnect()
+abcDisconnect()

Y
+abcSendData()

WorkerA WorkerD

WorkerB WorkerE

INDCDispatcherComm|

WorkerC

A class diagram of the simulation framework.

The log was realised in a LogManager class that stored log
entries together with a timestamp for each entry. All log entries
were stored in memory during the execution of the model and
written to disk first after the execution had ended. This construc-
tion was chosen as it ensured that there, during execution, was no
disk activity other than what was initiated by the OS, workers, or
communication component.

The communication is represented by an interface in the frame-
work. The interface only provided basic methods for starting up,
configuring, shutting down, sending, receiving, connecting and
disconnecting. If a new communication component is to be
tested, a wrapper class is written that implements the communi-
cation interface and is able to translate the calls from the frame-
work to the communication component.

80

A Case Study of an AGV System

An Approach for Performance Evaluation of Software Architectures using Prototyping

453

454

Figure 4.3

Integrate Architectural Components

The communication component that we wanted to evaluate was
integrated with the evaluation support framework. The compo-
nent provided asynchronous communication based on publisher-
subscriber, meaning that all components that are interested in
some type of message subscribes to it using the communication
component. When a message is sent to the communication com-
ponent it is published to all the components that have subscribed
to that type of message.

The communication interface for the framework was imple-
mented by a wrapper class that passed on messages to be sent and
received. It also handled the translation of telegram types from
the support framework to the communication component.

Implement Architecture Model

With the framework in place and ready to use we went on to cre-
ate the architecture model. It was built based on the architecture
of the navigation system and focused on modeling the navigation
loop. During the loop, several components interact with each
other and perform computations as a response to different mes-
sages, as shown in Figure 4.3.

WorkerE

4| WorkerC H WorkerD |

The model of the different workers that interact during the
simulation.

Workers B, C, and D are the most critical components of the nav-
igation loop. WorkerB initiates the loop when it receives a mes-
sage from WorkerA which sends a message periodically every 50
ms. When workerB receives a message it works for 1 ms and
then sends a message with its results. WorkerC then receives the

A Case Study of an AGV System 81

An Approach for Performance Evaluation of Software Architectures using Prototyping

4.5.5

message from workerB and it proceeds to work for 5 ms before
sending its message. This message is in turn received by work-
erD that also works for 5 ms before sending a new message. The
message from workerD is received by workerB which notes that
it has been received but does nothing more. WorkerE has sub-
scribed to all the message types that exist in the model and thus
receives all messages that are sent between the other workers.

In order to keep the model simple and easy to understand we sim-
plified the interactions between the components so that each
component only published one type of message.

Since we wanted to evaluate the performance of the communica-
tion component without affecting the system too much during
execution we logged only time stamps together with a small iden-
tifier in runtime. This kept the time it took to create a log entry to
a minimum. Log entries were created every time a worker
entered or returned from the communication component and also
when a message was actually sent. When sending a message we
logged a time stamp together with the whole message.

Execute Prototype

The prototype was executed on three different hardware plat-
forms, these were all Intel Pentium based platforms at the speeds
of 133 MHz, 700 MHz, and 1200 MHz. The operating systems
that were used were Linux, Windows 2000, and Windows XP.
The operating system that the client is targeted for is Linux but
all development is performed on Windows 2000 and test runs of
the system are performed on the development platform. There-
fore we wanted to run our prototype on that operating system as
well. It also helped us to determine how portable the communica-
tion component was.

The architecture prototype was executed during 20 seconds on
each platform and the logs from all runs were gathered and stored
for further analysis.

Each execution of the prototype resulted in roughly half a mega-
byte of logged data. The data was stored in five separate log files
(one for each worker) and the individual size of the log files var-
ied between 50 and 150 KB. Each log entry was between 50 and
70 bytes and we gathered about 7000 log entries.

82

A Case Study of an AGV System

An Approach for Performance Evaluation of Software Architectures using Prototyping

4.5.6

Based on the timestamps and identifiers from the logs we were
able to extract information regarding two things.

e The time it took from that a worker called the send message
function until the method returned. This measure is important
as it is the penalty that the worker has to pay for sending a
message.

¢ How long time any given message spent “in transit,” i.e., how
long time it took from that a worker sent a message until it
was received by the recipient or recipients.

Measurements were also made in order to see how much over-
head that was added to the communication by the evaluation sup-
port framework. We found that the framework added a delay of
between 6 to 15 percent to the time it took to send a message.
This results in 0.1 to 0.3 ms on the average send of a message on
the Pentium 133Mhz based machine with Linux as OS (Table
4.1).

Analyse Logs

We implemented a small program that parsed the generated logs
and extracted the information that we wanted from the data files.
Based on the time stamps and identifiers from the logs we were
able to extract information that we had defined as necessary for
evaluating the communication component, namely:

e The time it takes for a component to send a message (Table
4.1).

e The time it takes for the communication component to deliver
the message (Table 4.2).

e The time it takes to complete a navigation loop in our archi-
tecture model (Table 4.3).

In all the tables, L stands for Linux, W2K stands for Windows
2000, WXP stands for Windows XP. The number is the speed of
the Pentium processor, N stands for NFS mounted system and F

A Case Study of an AGV System 83

An Approach for Performance Evaluation of Software Architectures using Prototyping

Table 4.1

Table 4.2

Table 4.3

stands for a system with a flash memory disk. Windows 2000 and
Windows XP test used hard drives.

This table shows the time it took for a client to execute the
method for sending a message. Values are in microseconds.

gg{, L133N LI133F L700N L700F Y2K WXP

700 1200
Min 1562 1571 88 90 88 38
Med 1708 1716 97 97 97 67
Max 2093 2601 645 280 645 163

The table shows how long time a message spent in transit
from sender to receiver. Values are in microseconds.

0s/ W2K WXP
HW L133N L133F L700N L700F 700 1200

Min 921 922 55 55 55 18
Med 3095 3094 1174 1173 1174 1157
Max 9241 9228 5076 5061 5076 5063

The table shows the time it took for the prototype to
complete a navigation loop. Values are in microseconds.

O LI33N LI33F L700N L700F oK WXP
Min 22765 22712 12158 12158 12096 12067
Med 22840 22834 12161 12159 12130 12100
Max 23128 23128 12165 12163 12245 12190

In Table 4.3 we can see that the average time that it takes to com-
plete a navigation loop on the L133 platforms is 22,8 ms. This
figure can be broken down into two parts: work time and mes-
sage transit time. During the loop workerB and workerC has to
perform 10 ms of work and besides this workerE has to perform 3
times 1 ms of work resulting in 13 ms total work time. The aver-
age message transit time of about 3,1 ms per message adds up to
an average of 9,3 ms for communication during the loop. The fig-
ures add up to 22,5 ms for a navigation loop where only three

84

A Case Study of an AGV System

An Approach for Performance Evaluation of Software Architectures using Prototyping

4.5.7

4.5.8

messages are delivered. The fact that we spend about 40% of the
time on communicating is taken as an indication that the commu-
nication component is unsuitable for the Pentium 133 MHz based
system.

Predict Quality Attributes

Based on the information that were extracted from the logs, we
concluded that the 133 Mhz Pentium based platform probably
would be unable to fulfil the performance requirements for the
systems. The time it took to dispatch a message was far to great
to be able to handle the amounts of messages that the real system
would generate.

Regarding the additional questions about the difference between
operating systems and portability, we were able to draw the fol-
lowing conclusions:

e We found that the expected difference in performance
between Windows 2000 and Linux didn’t exist. The two oper-
ating systems performed equally well in the evaluation with
less than 1% performance difference between the two.

e We showed that it would be easy to port the component from
one platform to another, and from one compiler to another.
All that was necessary for the port to build on Linux was that
the necessary makefiles were written. The high portability of
the system was attributed to the use of the ACE framework
together with following the ANSI C++ standard.

Reiterate if Necessary

After a first iteration of all the steps in the evaluation method,
some questions were raised regarding how the evaluation support
framework handled the logging of data. The first version of the
support framework flushed the communication logs to disk every
100 log entry. This could cause the OS to preempt the architec-
ture prototype in order to complete the write operation. This in
turn lead to spikes in the time it took for a message to be sent and
received. In order to remove this problem the framework was
changed so that the logs were stored in memory during the execu-
tion of the prototype and flushed to disk just before the prototype
exited.

A Case Study of an AGV System 85

An Approach for Performance Evaluation of Software Architectures using Prototyping

4.6

4.7

Results From the Case Study

The evaluation we performed in the case study resulted in that
some fears regarding the performance of the new client for the
AGYV system were confirmed and that the developers took steps
to investigate possible solutions to the problem. The evaluation
also successfully answered the additional questions that were
posed in the beginning of the evaluation.

When the implementation of the new system had become stable
we made measurements on the new system in order to validate
the results from the prototype. The data was gathered at the same
points in the code as the evaluation support framework did and
the measurements showed that the prototype produced the same
message delivery times as the real system.

Analysis of the Evaluation Method

We feel confident that the prototype based evaluation approach is
useful for assessing the performance characteristics of an archi-
tecture component and also for evaluating the performance of
architecture models derived from proposed software architec-
tures. New architecture models are easily implemented using the
evaluation support framework and the amount of reuse, both in
code and analysis tools makes the creation of a support frame-
work and analysis tools worth the effort.

The support framework separates the component that we are
evaluating from the architecture model, making it possible to
compare alternative components in a consistent way as the data
for the evaluation is gathered in the same way independently of
the component.

A concern that can be raised against the use of an evaluation sup-
port framework is that since a message has to go through the
framework classes before it reaches the component that we are
evaluating there is an added delay. In our case study we found
that the delay between that the worker sent the message and that
the message was actually sent by the interaction component was
quite small. The framework added between 0,1 to 0,3 ms to the
time it took to send a message.

86

Results From the Case Study

An Approach for Performance Evaluation of Software Architectures using Prototyping

4.8

4.9

Future Work

We plan to continue to use the test framework and the test appli-
cations and try to evaluate other quality attributes such as scala-
bility and maintainability.

The test-framework and applications will be used to perform fol-
low-up evaluations at Danaher Motion Sdr6 AB in order to see
how the communication component develops, and ultimately to
compare how well the original estimations match the perform-
ance of the final system.

Conclusions

In this chapter we have described the prototype based architec-
ture evaluation approach and the steps that it consists of. The
approach is based on the simulation based evaluation approach
but adds mainly the construction of an evaluation support frame-
work and a clearer focus on iteration during the evaluation. The
use of the evaluation support framework simplifies the imple-
mentation of alternative architecture models, makes consistent
gathering of data simpler, and makes it possible to evaluate alter-
native implementations of an architecture component.

The evaluation approach has been used to evaluate the perform-
ance characteristics of a communication component in an AGV
system architecture. The evaluation resulted in that a perform-
ance problem was identified and that two additional questions
were evaluated as well (Portability and performance differences
between Windows 2000 and Linux). Results from the case study
were also used to validate the evaluation approach once the new
system was stable, and showed that it produced accurate results.

The case study illustrates the steps within the evaluation process

and can be seen as a guide for performing a prototype based eval-
uation.

Acknowledgments

This work was partly funded by The Knowledge Foundation in
Sweden under a research grant for the project "Blekinge - Engi-
neering Software Qualities (BESQ)" (http://www.ipd.bth.se/

Future Work 87

An Approach for Performance Evaluation of Software Architectures using Prototyping

besq). We would also like to thank Danaher Motion Sérd AB for
providing us with a case for our case study and many interesting
discussions and ideas.

88 Conclusions

Evaluating Software Quality
Attributes of Communication
Components in an Automated

Guided Vehicle System

5.1

Frans Martensson, Hakan Grahn, and Michael Mattsson

Introduction

The size and complexity of software systems are constantly
increasing. It has been identified that the quality properties of
software systems, e.g., performance and maintenance, often are
constrained by their software architecture [12]. The software
architecture is a way to manage the complexity of a software sys-
tem and describes the different parts of the software system, i.c.,
the components, their responsibilities, and how they interact with
each other. The software architecture is created early in the
development of a software system and has to be kept alive
throughout the system life cycle. One part of the process of creat-

Introduction 89

Evaluating Software Quality Attributes of Communication Components in an Automated Guided Vehicle System

ing a software architecture is the decision of possible use of exist-
ing software components in the system.

The system we study in this chapter is an Automated Guided
Vehicle system (AGV system) [24], which is a complex distrib-
uted real-time system. AGV systems are used in industry mainly
for supply and materials handling, e.g., moving raw materials,
and finished products to and from production machines. Impor-
tant aspects to handle in such systems are, e.g., the ability to auto-
matically drive a vehicle along a predefined path, keeping track
of the vehicles’ positions, routing and guiding the vehicles, and
collision avoidance. The software in an AGV system has to be
adaptable to quite different operating environments, e.g., iron
works, pharmacy factories, and amusement parks. More impor-
tantly, the system may under no circumstances inflict harm on a
person or object. The safety and flexibility requirements together
with other quality- and functional requirements of the system
make it a complex software system to create and maintain. In the
system in our case study, the software in the vehicle can be
divided into three main parts that continuously interact in order to
control the vehicle. These parts communicate both within proc-
esses as well as between processes located on different comput-
ers.

In this chapter we evaluate two communication components used
in an existing AGV system and compare them to an alternative
COTS (commercial-off-the-shelf) component for communication
[79] that is considered for a new version of the AGV system. We
evaluate three quality attributes for each of the components: per-
formance, maintainability, and portability. We use three proto-
types built using a prototype framework to measure the
performance of each component. Both intra-process as well as
inter-processes communication are evaluated. The communicat-
ing processes reside both on the same computer and on two dif-
ferent computers connected by a network. We measure the
maintainability of the three components using the Maintainability
Index metric [69]. We also discuss qualitative data for the porta-
bility aspects of the components.

The evaluation is performed in an industrial context in coopera-
tion with Danaher Motion S&rd. The usage scenarios and archi-
tecture description that are used during the evaluations have been
developed in cooperation with them.

90

Introduction

Evaluating Software Quality Attributes of Communication Components in an Automated Guided Vehicle System

5.2

5.21

Our results indicate that the performance of the COTS compo-
nent is approximately half the performance of the in-house devel-
oped communication components. On the other hand, using a
third party COTS component significantly reduce the mainte-
nance effort as well as increase the functionality. Finally, all three
components turned out to be portable from Windows XP to
Linux with very little effort.

The rest of the chapter is organized as follows. Section 5.2
presents some background to software architecture, architecture
evaluation, and automated guided vehicle systems. In Section 5.3
we introduce the components and the quality attributes that we
evaluate. We present our evaluation results in Section 5.4. In Sec-
tion 5.5 we discuss related work and, finally, in Section 5.6 we
conclude our study.

Background

In this section, we give some background about software archi-
tectures, how to evaluate them, different quality attributes, and
the application domain, i.e., automated guided vehicle systems.

Software Architecture

Software systems are developed based on a requirement specifi-
cation. The requirements can be categorized into functional
requirements and non-functional requirements, also called qual-
ity requirements. Functional requirements are often easiest to test
(the software either has the required functionality or not) but the
non-functional requirements are harder to test (quality is hard to
define and quantify).

In the recent years, the domain of software architecture [12, 19,
71, 81] has emerged as an important area of research in software
engineering. This is in response to the recognition that the archi-
tecture of a software system often constrains the quality
attributes. Software architecture is defined in [12] as follows:

“The software architecture of a program or computing system is
the structure or structures of the system, which comprise soft-
ware components, the externally visible properties of those com-
ponents, and the relationships among them.”

Background 91

Evaluating Software Quality Attributes of Communication Components in an Automated Guided Vehicle System

5.2.2

Software architectures have theoretical and practical limits for
quality attributes that may cause the quality requirements not to
be fulfilled. If no analysis is done during architectural design, the
design may be implemented with the intention to measure the
quality attributes and optimize the system. However, the architec-
ture of a software system is fundamental to its structure and can-
not easily be changed without affecting virtually all components
and, consequently, considerable effort. It has also been shown
that several quality attributes can be in conflict with each other,
e.g., maintainability and performance [38]. Therefore, it is
important to evaluate all (or at least the most) relevant quality
attributes at the software architecture level.

Evaluation Methodology

In order to make sure that a software architecture fulfils its qual-
ity requirements, it has to be evaluated. Four main approaches to
architecture evaluation can be identified, i.e., scenarios, simula-
tion, mathematical modelling, and experience-based reasoning
[19]. In this chapter we use a prototype-based architecture evalu-
ation method which is part of the simulation-based approach and
relies on the construction of an executable prototype of the archi-
tecture [19, 63, 83]. Prototype-based evaluation enables us to
evaluate software components in an execution environment. It
also lets the developer compare all components in a fair way,
since all components get the same input from a simplified archi-
tecture model. An overview of the parts that go into a prototype
is shown in Figure 5.1. A strength of this evaluation approach is
that it is possible to make accurate measurements on the intended
target platform for the system early on in the development cycle.

The prototype-based evaluation is performed in seven steps plus
reiteration. We will describe the steps shortly in the following
paragraphs.

Define the evaluation goal. In this first step two things are done.
First, the environment that the simulated architecture is going to
interact with is defined. Second, the abstraction level that the
simulation environment is to be implemented at is defined (high
abstraction gives less detailed data, low abstraction gives accu-
rate data but increases model complexity).

Implement an evaluation support framework. The evaluation
support framework’s main task is to gather data that is relevant to

92

Background

Evaluating Software Quality Attributes of Communication Components in an Automated Guided Vehicle System

Figure 5.1

Architecture model Evaluation Support Framework Architecture Component

Architecture
Component

The prototype consists of three main parts: the architecture
model, the evaluation support framework, and the
architecture components.

fulfilling the evaluation goal. Depending on the goal of the evalu-
ation, the support framework has to be designed accordingly, but
the main task of the support framework is to simplify the gather-
ing of data. The support framework can also be used to provide
common functions such as base and utility classes for the archi-
tecture models.

Integrate architectural components. The component of the
architecture that we want to evaluate has to be adapted so that the
evaluation support framework can interact with it. The easiest
way of achieving this is to create a proxy object that translates
calls between the framework and the component.

Implement architecture model. Implement a model of the
architecture with the help of the evaluation support framework.
The model should approximate the behavior of the completed
system as far as necessary. The model together with the evalua-
tion framework and the component that is evaluated is compiled
to an executable prototype.

Execute prototype. Execute the prototype and gather the data for
analysis in the next step. Try to make sure that the execution
environment matches the target environment as close as possible.

Analyse logs. Analyse the gathered logs and extract information
regarding the quality attributes that are under evaluation. Auto-
mated analysis support is preferable since the amount of data eas-
ily becomes overwhelming.

Background 93

Evaluating Software Quality Attributes of Communication Components in an Automated Guided Vehicle System

5.2.3

Predict quality attribute. Predict the quality attributes that are
to be evaluated based on the information from the analysed logs.

Reiteration. This goes for all the steps in the evaluation
approach. As the different steps are completed it is easy to see
things that were overlooked during the previous step or steps.
Once all the steps has been completed and results from the analy-
sis are available, you should review them and use the feedback
for deciding if adjustments have to be done to the prototype.
These adjustments can be necessary in both the architecture
model and the evaluation support framework. It is also possible
to make a test run to validate that the analysis tools are working
correctly and that the data that is gathered really is useful for
addressing the goals of the evaluation.

Automated Guided Vehicle Systems

As an industrial case we use an Automated Guided Vehicle sys-
tem (AGV system) [24]. AGV systems are used in industry
mainly for supply and materials handling, e.g., moving raw mate-
rials, and finished products to and from production machines.

Central to an AGV system is the ability to automatically drive a
vehicle along a predefined path, the path is typically stored in a
path database in a central server and distributed to the vehicles in
the system when they are started. The central server is responsi-
ble for many things in the system, it keeps track of the vehicles
positions and uses the information for routing and guiding the
vehicles from one point in the map to another. It also manages
collision avoidance so that vehicles do not run into each other by
accident and it detects and resolves deadlocks when several vehi-
cles want to pass the same part of the path at the same time. The
central server is also responsible for the handling of orders from
operators. When an order is submitted to the system, e.g., “go to
location A and load cargo”, the server selects the closest free
vehicle and begins to guide it towards the pickup point.

In order for the central server to be able to perform its functions,
it has to know the exact location of all vehicles under its control
on the premise. Therefore every vehicle sends its location to the
server several times every second. The vehicles can use one or
several methods to keep track of its location. The three most
common methods are induction wires, magnetic spots, and laser
range finders.

94

Background

Evaluating Software Quality Attributes of Communication Components in an Automated Guided Vehicle System

5.3

5.3.1

The first method, and also the simplest, is to use induction wires
that are placed in the floor of the premises. The vehicles are then
able to follow the electric field that the wire emits and from the
modulation of the field determine where it is. A second naviga-
tion method is to place small magnetic spots at known locations
along the track that the vehicle is to follow. The vehicle can then
predict where it is based on a combination of dead reckoning and
anticipation of coming magnetic spots. A third method is to use a
laser located on the vehicle, that measures distances and angles
from the vehicle to a set of reflectors that has been placed at
known locations throughout the premises. The control system in
the vehicle is then able to calculate its position in a room based
on the data returned from the laser.

Regardless of the way that a vehicle acquires the information of
where it is, it must be able to communicate its location to the cen-
tral control computer. Depending on the available infrastructure
and environment in the premises of the system, it can for exam-
ple use radio modems or a wireless LAN.

The software in the vehicle can be roughly divided into three
main components that continuously interact in order to control
the vehicle. These components require communication both
within processes and between processes located on different
computers. We will perform an evaluation of the communication
components used in an existing AGV system and compare them
to an alternative COTS component for communication that is
considered for a new version of the AGV system.

Component Quality Attribute Evaluation

In this section we describe the components that we evaluate, as
well as the evaluation methods used. The goal is to assess three
quality attributes, i.e., performance, portability and maintainabil-
ity for each component. The prototypes simulate the software
that is controlling the vehicles in the AGV system. The central
server is not part of the simulation.

Evaluated Communication Components

The components we evaluate are all communication components.
They all distribute events or messages between threads within a
process and/or between different processes over a network con-

Component Quality Attribute Evaluation 95

Evaluating Software Quality Attributes of Communication Components in an Automated Guided Vehicle System

nection. Two of the components are developed by the company
we are working with. The third component is an open source
implementation of the CORBA standard [68].

NDC Dispatcher. The first component is an implementation of
the dispatcher pattern which provides publisher-subscriber func-
tionality and adds a layer of indirection between the senders and
receivers of messages. It is used for communication between
threads within one process and can not pass messages between
processes. The NDC Dispatcher is implemented with active
objects using one thread for dispatching messages and managing
subscriptions. It is able to handle distribution of messages from
one sender to many receivers. The implementation uses the ACE
framework for portability between operating systems. This com-
ponent is developed by the company and is implemented in C++.

Network Communication Channel. Network Communication
Channel (NCC) is a component is developed by the company as
well. It is designed to provide point to point communication
between processes over a network. It only provides one to one
communication and has no facilities for managing subscriptions
to events or message types. NCC can provide communication
with legacy protocols from previous versions of the control sys-
tem and can also provide communication over serial ports. This
component is developed by the company and is implemented in
C.

TAO Real-time Event Channel. The third component, The
ACE Orb Real-time Event Channel (TAO RTEC) [79], can be
used for communication between both threads within a process,
and between processes both on the same computer and over a
network. It provides communication from one to many through
the publisher-subscriber pattern. The event channel is part of the
TAO CORBA implementation and is open source. This compo-
nent can be seen as a commercial of-the-shelf (COTS) compo-
nent to the system. We use TAO Real-time Event Channel to
distribute messages in the same way that the NDC Dispatcher
does.

Software Quality Attributes to Evaluate. In our study we are
interested in several quality attributes. The first is performance
because we are interested in comparing how fast messages can be
delivered by the three components. We assess the performance at

96

Component Quality Attribute Evaluation

Evaluating Software Quality Attributes of Communication Components in an Automated Guided Vehicle System

the system level and look at the performance of the communica-
tion subsystem as a whole.

The second attribute is maintainability which was selected since
the system will continue to be developed and maintained under a
long period. The selected communication component will be an
integral part of the system, and must therefore be easy to main-
tain.

The third attribute is portability, i.e., how much effort is needed
in order to move a component from one environment/platform to
another. This attribute is interesting as the system is developed
and to some extent tested on computers running Windows, but
the target platform is based on Linux.

Performance. We define performance as the time it takes for a
communication component to transfer a message from one thread
or process to another. In order to measure this we created one
prototype for each communication component. The prototypes
were constructed using a framework that separates the communi-
cation components from the model of the interaction, i.e., the
architecture. As a result, we can use the same interaction model
for the prototypes and minimize the risk of treating the communi-
cation components unequally in the test scenarios. The frame-
work from a previous study [63] was reused, and functionality
was added for measuring the difference in time for computers
that were connected via a network. This information was used to
adjust the timestamps in the logs when prototypes were running
on separate computers, and to synchronize the start time for when
the prototypes should start their models.

We created two different models of the interaction: one for com-
munication between threads in a process and one for communica-
tion between processes on separate computers that communicate
via a network. The NDC Dispatcher was tested with the model
for communication between threads in a process and NCC was
tested with the model for communication over the network. TAO
RTEC was tested with both models since it can handle both
cases.

Component Quality Attribute Evaluation 97

Evaluating Software Quality Attributes of Communication Components in an Automated Guided Vehicle System

Figure 5.2

An example of a model can be seen in Figure 5.2 which shows
the interaction between threads in a process for the NDC Dis-
patcher prototype. Here, thread A sends a message to thread B
every 50 ms. Thread B sends the message on to thread C. Thread
C sends it to thread D which in turn send it back to thread B.
Each message is marked with a timestamp and stored to a logfile
for offline analysis.

[a]
[8

Interaction within a prototype.

The prototypes were executed three times on a test platform sim-
ilar to the target environment and we calculated the average
response time of the three runs. The test environment consisted
of two computers with a 233Mhz Pentium 2 processor and 128
MB RAM each. Both computers were running the Linux 2.4 ker-
nel and they were connected with a dedicated 10Mbps network.

Maintainability. We use a tool called CCCC [57, 58] to collect a
number of measures (e.g., number of modules, lines of code, and
cyclomatic complexity) on the source code of the components.
The objective is to use these measures to calculate a maintain-
ability index metric [69] for the components. The maintainability
index (MI) is a combination of the average halstead volume per
module (aveVol), the average cyclomatic complexity per module
(aveV(g’)), average lines of code per module (aveLoc), and aver-
age percentage of lines of comments per module (aveCM), as
shown in Figure 5.3. The maintainability index calculation
results in a value that should be as high as possible. Values above
85 are considered to indicate good maintainability, between 85
and 65 is medium maintainability, and finally, values below 65
are indicating low maintainability [69]. Based on the maintaina-
bility index together with our qualitative experiences from devel-
oping the prototypes, we evaluate and compare the

98

Component Quality Attribute Evaluation

Evaluating Software Quality Attributes of Communication Components in an Automated Guided Vehicle System

Figure 5.3

5.4

5.41

5.4.2

maintainability of the components. We do not see the maintaina-
bility index as a definite judgement of the maintainability of the
components but more as a tool to indicate the properties of the
components and to make them comparable.

MI = 171 -5.2 x In(aveVol)—0.23 x aveV(g') —
16.2 x In(aveLoc) + 50 x sin(4/2.46 x aveCM)

Formula for calculating the maintainability index (MI) [69].

Portability. We define portability as the effort needed to move
the prototypes and communication components from a Windows
XP based platform to a Linux 2.4 based platform. This is a simple
way of assessing the attribute but it verifies that the prototypes
actually works on the different platforms and it gives us some
experience from making the port. Based on this experience we
can make a qualitative comparison of the three components.

Evaluation Results

During the evaluation, the largest effort was devoted to imple-
menting the three prototypes and running the performance bench-
marks. The data from the performance benchmarks gave us
quantitative performance figures which together with the experi-
ence from the implementations were used to assess the maintain-
ability and portability of the components.

Performance Results

After implementing the prototypes and performing the test runs,
the gathered logs were processed by an analysis tool that merged
the log entries, compensated for the differences in time on the
different machines and calculated the time it took to transfer each
message.

Intra Process Communication

The intra process communication results in Table 5.1 show that
the average time it takes for the NDC Dispatcher to deliver a
message is 0,3 milliseconds. The same value for TAO RTEC is
0,6 milliseconds. The extra time that it takes for TAO RTEC is
mainly due to the differences in size between TAO RTEC and the

Evaluation Results 99

Evaluating Software Quality Attributes of Communication Components in an Automated Guided Vehicle System

Table 5.1

Figure 5.4

NDC Dispatcher. TAO RTEC makes use of a CORBA ORB for
dispatching the events between the threads in the prototype. This
makes TAO RTEC very flexible but it impacts its performance
when both publisher and subscriber are threads within the same
process; the overhead in a longer code path for each message
becomes a limiting factor. The NDC Dispatcher on the other
hand is considerably smaller in its implementation than TAO
RTEC, resulting in a shorter code path and faster message deliv-

ery.
Intra process communication times.

NDC Dispatcher TAO RTEC

Intra process 0,3 ms 0,6 ms

During the test runs of the NDC Dispatcher and the TAO RTEC
based prototypes we saw that the time it took to deliver a mes-
sage was not the same for all messages. Figure 5.4 and Figure 5.5
show a moving average of the measured delivery times in order
to illustrate the difference in behavior between the components.
In both the NDC Dispatcher and the TAO RTEC prototypes this
time depends on how many subscribers there are to the message,
and the order the subscribers subscribed to a particular message.
We also saw that there is a large variation in delivery time from
message to message when using TAO RTEC. It is not possible to
guarantee that the time it takes to deliver a message will be con-
stant when using neither the NDC Dispatcher nor TAO RTEC,
but the NDC Dispatcher’s behavior is more predictable.

450

400 MWWMWW

350

ms

250 M

200

4 200 400 600 800 1000 1200 1400 1600 1800 2000
message number

— WorkerA — WorkerB — WorkerC — WorkerD

NDC Dispatcher message delivery time (moving average).

100

Evaluation Results

Evaluating Software Quality Attributes of Communication Components in an Automated Guided Vehicle System

Figure 5.5

5.4.3

850

800 A
750 |1 t]

ot

0 200 400 600 800 1000 1200 1400 1600 1800 2000
message number

')
g 650 i

w

600

550

[=—WorkerA — WorkerB — WorkerC — WorkerD

TAO RTEC message delivery time (moving average).

Inter Process Communication

The inter process communication is evaluated in two different
environments; when the communicating processes are on the
same computer and when they reside on two different computer
connected by a network.

In Table 5.2 we present the message delivery times when the
processes reside on the same computer. We find that TAO RTEC
takes 2,0 milliseconds on average to deliver a message, while
NCC only takes 0,8 milliseconds to deliver a message. Much of
the difference comes from the fact that TAO RTEC offers much
more flexibility, e.g., communication one-to-many, while NCC
only provides one-to-one communication. Another contributing
factor is that TAO RTEC runs the event channel in a separate
process from the prototypes. This results in an added delay as
messages are sent to the event channel process before they are
delivered to the recipient process. NCC on the other hand, deliv-
ers the messages directly to the recipient process.

The inter process communication in Table 5.3 shows that TAO
RTEC takes on average 2 milliseconds to deliver a message from
one computer to another in our test environment. NCC takes on
average 1 millisecond. The extra time needed for TAO RTEC to
deliver a message is, as discussed earlier, a result of the longer
code path involved due to the use of CORBA, and the need of an
intermediary process for distributing the messages to the sub-
scribers. The gain of using this component is added flexibility in
how messages can be distributed between subscribers on differ-

Evaluation Results 101

Evaluating Software Quality Attributes of Communication Components in an Automated Guided Vehicle System

Table 5.2

Table 5.3

Table 5.4

ent computers. In comparison, the NCC component is only able
to pass messages from one point to another, making it less com-
plex in its implementation.

Communication times between processes running on the
same computer.

TAO RTEC NCC

Inter process 2,0 ms 0,8 ms

Communication times between processes running on
different computers.

TAO RTEC NCC

Inter process over network 2,0 ms 1,0 ms

In Table 5.4 we present the amount of data that is transmitted
(and in how many TCP/IP packages) over the network by proto-
types using TAO RTEC and NCC, respectively. In the architec-
ture model, both prototypes perform the same work and send the
same number of messages over the network. In the table we see
that both components send about the same number of TCP/IP
packages (TAO RTEC sends 37 more than NCC). The difference
is located to the initialization of the prototypes where a number
of packages are sent during ORB initialization, name resolution,
and subscriptions to the event channel etc. When we look at the
amount of data sent in the packages we see that TAO RTEC
sends about 55% more data than NCC does. This indicates that
NCC has less overhead per message than TAO RTEC has. Both
components do however add considerably to the amount of data
that is generated by the model, which generated 6 kb of data in
300 messages.

Network traffic generated by TAO RTEC and NCC.

TAO RTEC NCC
TCP/IP packages 800 packages 763 packages
Data over network 137 kb 88 kb

102

Evaluation Results

Evaluating Software Quality Attributes of Communication Components in an Automated Guided Vehicle System

544

Table 5.5

In summary, we find that TAO RTEC has half the performance of
both the NDC Dispatcher and NCC for both intra- and inter-proc-
ess communication. However, TAO RTEC has the advantage that
it can handle both intra- and inter-process communication using
the same communication component, while the NDC Dispatcher
and NCC can handle only one type of communication (either
intra-process or inter-process).

Maintainability Results

The measures that we gathered using CCCC are listed in Table
5.5, and the metrics are defined as follows. Modules (MOD) is
the number of classes and modules with identified member func-
tions. Lines of code (LOC) and Lines of comments (COM) are
measures for the source code, and a combination of them gives
an indication of how well documented a program is (LOC/COM
and LOC/MOD). The COM measure can also be combined with
the cyclomatic complexity (CYC) to give an indication of how
well documented the code is in relation to the code complexity.
The cyclomatic complexity is also used in combination with the
module count in order to give an indication of the program com-
plexity per module (CYC/MOD). When analyzing the results we
put the most weight on compound measures such as the maintain-
ability index, cyclomatic complexity per comment, and cyclo-
matic complexity per module.

Metrics from the CCCC tool [58].

. NDC TAO
Metric Dispatcher Nce RTEC
Modules (MOD) 23 57 3098
Lines of code (LOC) 533 23982 312043
Lines of comments
(COM) 128 19827 78968
LOC/COM 4,164 1,210 3,952
LOC/MOD 23,174 420,737 100,724
Cyclomatic
complexity (CYC) 69 3653 34927
CYC/COM 0,539 0,184 0,442
CYC/MOD 3,0 64,088 11,274
Maintainability 128,67 50,88 78.91
Index

Evaluation Results 103

Evaluating Software Quality Attributes of Communication Components in an Automated Guided Vehicle System

5.4.5

The NDC Dispatcher is the smallest of the three components with
533 lines of code in 23 modules (see Table 5.5). The complexity
per module is the lowest but the complexity per comment is the
highest of all the components. While working with this compo-
nent we found it easy to use and easy to get an overview of. The
component also has the highest maintainability index (128,67) of
the three components, indicating a high maintainability.

NCC is 23982 lines of code in 57 modules. It is also the most
commented component of the three, which is shown in the low
cyclomatic complexity per comment value. However, there are
indications in the LOC/MOD and CYC/MOD measures that the
component has very large modules. This can make NCC difficult
to overview, thus lowering its maintainability. The maintainabil-
ity index supports this assessment, since NCC is the component
with the lowest maintainability index (50,88) indicating poor
maintainability.

TAO RTEC is 312043 lines of code in 3098 modules. This is by
far the largest component of the three. Although the parts that are
used for the real-time communication channel are smaller (we
gathered metrics for all the parts of TAO) it is still difficult to get
an overview of the source code. The maintainability index for
TAO RTEC (78,91) puts it in the medium maintainability cate-
gory. We do, however, think that the size of the component makes
it difficult to maintain within the company. The question of main-
tainability is relevant only if one version of TAO is selected for
continued use in the company. If newer versions of TAO are used
as they are released then the maintenance is continuously done by
the developer community around TAO. On the other hand, there
is a risk that API:s in TAO are changed during development,
breaking applications. But since the application developers are
with the company, this problem is probably easier to deal with
than defects in TAO itself.

Portability Results

Based on our experiences from building the prototypes we found
that moving the prototypes from the Windows-based to the
Linux-based platform was generally not a problem and did not
take very long time (less than a day per prototype). Most of the
time was spent on writing new makefiles and not on changing the
code for the prototypes.

104

Evaluation Results

Evaluating Software Quality Attributes of Communication Components in an Automated Guided Vehicle System

5.5

Both the NDC Dispatcher and TAO RTEC are developed on top
of the ADAPTIVE Communications Environment (ACE) [79].
ACE provides a programming API that has been designed to be
portable to many platforms. Once ACE was built on the Linux
platform it was easy to build the prototypes that used it.

NCC was originally written for the Win32 API and uses a
number of portability libraries built to emulate the necessary
Win32 APIL:s on platforms other than windows. Building the pro-
totype using NCC was not more complicated than those using the
NDC Dispatcher or TAO RTEC.

Related Work

Prototypes are commonly used in interface design, where differ-
ent alternatives to graphical user interfaces can be constructed
and tested by users and developers [15]. The use of prototypes
for architecture simulation and evaluation has been described and
discussed in [11, 63]. The goal is to evaluate architectural alter-
natives before the detailed design documents have been devel-
oped, making it possible to obtain performance characteristics for
architecture alternatives and hardware platform working together.
Other commonly used performance models are queueing net-
works, stochastic petri nets, stochastic process algebra, and simu-
lation models [8]. Software Performance Engineering based and
architectural-pattern based approaches both use information
obtained from UML design documents (Use Case, System
Sequence, and Class diagrams) for the evaluation of the software
architecture. This makes it possible to make performance evalua-
tions as soon as the design of the system begins to take shape. A
weakness of these performance evaluation models is that it is dif-
ficult to capture the dynamic properties of the executing code
when it interacts with the operating system.

Several methods for evaluating one aspect of a components qual-
ity attributes have been described [91]. Most of the methods
focus on the evaluation of different performance aspects of com-
ponents. However, when selecting components it is likely that
more than the performance attribute is of interest for the develop-
ers, this result in a need to perform evaluations for several quality
attributes for the components. Qualities such as maintainability

Related Work 105

Evaluating Software Quality Attributes of Communication Components in an Automated Guided Vehicle System

5.6

can be quantified and compared using for example the maintain-
ability index [69]. Using tools for static analysis of the source
code of the components makes it possible to extract complexity
and maintainability metrics for components.

Methods for assessing several quality attributes during an evalua-
tion exist in several architecture level evaluation methods. Meth-
ods such as the scenario-based Software Architecture Analysis
Method (SAAM) [47] and Architecture Tradeoff Analysis
Method (ATAM) [49], as well as the attribute-based ABAS [51]
method can be used to assess a number of quality attributes using
scenario-based evaluation. Especially ATAM tries to handle sev-
eral quality attributes and their impact on the software architec-
ture simultaneously. The evaluation methods that we used in this
chapter can be used to supply input for both SAAM and ATAM.
In addition, the method that we have used in this chapter can also
complement the results from SAAM and ABAS, i.e., they focus
around qualitative reasoning while our method provides quantita-
tive data. Together, the methods can address a broader spectrum
of quality attributes.

Conclusions

In this chapter we have used a prototype-based evaluation meth-
ods for assessing three quality attributes of three different com-
munication components. We have shown that it is possible to
compare the three evaluated components in a fair way using a
common framework for building the prototypes and analyzing
the resulting data. The components were one COTS component,
i.e., The ACE Orb Real-Time Event Channel (TAO RTEC), and
two inhouse developed components, the NDC Dispatcher and
NCC. For each of the components we have evaluate three quality
attributes: performance, maintainability, and portability. The per-
formance and maintainability are evaluated quantitatively, while
portability is evaluated qualitatively.

The performance measurements show that TAO RTEC has half
the performance of the NDC Dispatcher in communication
between threads within a process. Our results also show that TAO
RTEC has approximately half the performance of NCC in com-

106

Conclusions

Evaluating Software Quality Attributes of Communication Components in an Automated Guided Vehicle System

munication between processes. On the other hand, TAO RTEC
provides functionality for both intra- and inter-process communi-
cation, while the NDC Dispatcher and NCC only support one
type of communication.

As for the maintainability, the NDC Dispatcher has the highest
maintainability index of the three components (it indicated a high
maintainability for the component). NCC turned out to have the
lowest maintainability index (so low that it indicated a low main-
tainability for the component). However, even though NCC has
the lowest maintainability index of all the components, we think
that it is rather easy for the company to maintain since it has been
developed within the company and is well documented. TAO
RTEC is the largest of the three components, with a medium high
maintainability index, and the knowledge of how it is constructed
is not within the company. Therefore, we think that TAO RTEC
is less maintainable for the company. On the other hand, the com-
pany can take advantage of future development of TAO RTEC
with little effort as long as the API:s remain the same.

Finally, considering the portability aspects. All three evaluated
components fulfill the portability requirement in this study. We
had no problems moving the prototypes from a Windows-based
to a Linux-based platform.

Acknowledgments

This work was partly funded by The Knowledge Foundation in
Sweden under a research grant for the project “Blekinge - Engi-
neering Software Qualities (BESQ)” http://www.bth.se/besq. We
would like to thank Danaher Motion Sar6 AB for providing us
with a case for our case study and many interesting discussions
and ideas.

Conclusions 107

Evaluating Software Quality Attributes of Communication Components in an Automated Guided Vehicle System

108 Conclusions

Forming Consensus on Testability
in Software Developing
Organizations

6.1

Frans Martensson, Hakan Grahn, and Michael Mattsson

Introduction

In software developing organizations there exist a number of
roles. These roles range from, e.g., project managers through
software and hardware engineers to test engineers. As an organi-
zation grows and evolves, new people are introduced to the dif-
ferent roles. Each person brings their own knowledge and
experience to the organization based on their background and
education. Their background thus influences how they practice
their role. As a result, an organization that from the beginning
had a shared set of definitions and understandings between peo-
ple in different roles, can after some time end up in a state where
this is no longer the case. Roles can start to have different mean-

Introduction 109

Forming Consensus on Testability in Software Developing Organizations

ings of the same concept. But, when people in different roles no
longer understand what a concept means to another role in the
organization, it can become a source of misunderstandings, and
also generate additional costs.

For example, an organization decides that the software system
that they are developing needs to be improved, and a set of desir-
able quality attributes and requirements is selected. The changes
made to a software system can be driven by many sources, rang-
ing from business goals, e.g., new functionality requested by the
customers, to pure maintenance changes, e.g., error corrections.
In addition, the developers designing and implementing the sys-
tem also have an impact on how the system changes. Therefore, it
is important that all roles in the organization have an understand-
ing of what the quality attributes mean to the other roles. One
important quality attribute for a software system is testability
[61, 39, 42], having high testability simplifies the task of validat-
ing the system both during and development and maintenance
[88].

In this chapter we examine a software developing organization.
We look for different definitions of and views on testability
between different roles in the organization. We devise a question-
naire and use it to gather the opinions and views on testability of
the people in the organization. The questionnaire is then followed
up with some additional questions raised during the analysis of
the responses. The follow-up questions were posed during tele-
phone interviews. Finally we analyze and discuss the results of
the examination. We plan a workshop where we will try to iden-
tify the reasons for the different opinions of the respondents,
other than the ones that we have identified from the question-
naire.

The rest of the chapter is organized as follows. In the next section
we introduce software testing and testability. Then, in Section
6.3, we define the basis for our case study, e.g., the goals and par-
ticipants in the study. In Section 6.4 and Section 6.5, we present
the results from our questionnaire along with an analysis of them.
Then, in Section 6.6 we discuss the validity of our findings.
Finally, we conclude our study in Section 6.7.

110

Introduction

Forming Consensus on Testability in Software Developing Organizations

6.2

Software Testing and Testability

Software testing is the activity of verifying the correctness of a
software system. The goal is to identify defects that are present in
the software so that they can be corrected. Several classes of tests
exist and the tests can be performed on a number of levels in the
system. Typical tests used in software development are unit tests,
regression tests, integration test, and system tests.

Different types of tests can be introduced at different points in the
software life cycle. Unit tests are often introduced during the
implementation phase, and focus on testing a specific method or
class in the software system. Unit tests can be constructed by the
developer as he writes the program code and used as a verifica-
tion that the code that has been produced meets the requirements
(both functional and non-functional) posed by the requirements
specification.

Test types used later in the development cycle are, e.g., integra-
tion tests and system function tests. The integration tests test that
the software modules that have been developed independently of
each other still work as specified when they are integrated into
the final system configuration. Integration testing becomes par-
ticularly important when the development organization is geo-
graphically dispersed, or when parts of the system have been
developed with only little interaction between different develop-
ment teams. System tests verify that all the integrated modules
provide correct functionality, i.e., correct according to the
requirements specification. System tests view the system from
the user’s point of view and look at the complete system as a
black box which the user interacts with using some sort of user
interface.

Catching defects early in the development process is an impor-
tant goal for the development organization. The sooner a defect is
identified the sooner it can be corrected. Software defects can be
at the code level, in algorithms, but also at the design or architec-
ture level. Defects at the design and architecture levels become
more expensive to correct the later in the development cycle that
they are identified, since larger parts of the design have been
implemented. Hence the earlier that the testing can begin, the
more likely it will be that the completed software will be correct.
Several development methods exist that put emphasis on testing,
e.g., agile methods.

Software Testing and Testability 111

Forming Consensus on Testability in Software Developing Organizations

During software development different roles focus on different
types of tests, depending on the organization. It is common that
the programmers create and implement the unit tests while they
implement their part of the system. Later tests, such as integra-
tion and particularly system tests, are usually done by a dedicated
test team that has software testing as their main task.

One way of simplifying the repetition of tests is to automate the
process. This is useful for, e.g., regression, unit, and performance
tests. Automated testing can be implemented as a part of a daily
build system. Test cases that have been automated can be exe-
cuted once a build cycle is completed. Report generation and
comparison to previous test results can be created as feedback to
the developers. An example of such a system is Tinderbox by the
Mozilla Foundation [66]. During the daily build it is also possible
to collect data regarding source code metrics, e.g., the Maintaina-
bility Index [69] can be computed.

A software system that makes the testing activity easy to perform
is described as having a high testability. Testability is a quality
attribute [19] of a software system. It describes how much effort
that is required to verify the functionality or correctness of a sys-
tem, or a part of a system. One aspect of testability is to give the
software testers useful feedback when something goes wrong
during execution. Testability exists at a number of levels ranging
from methods/classes through subsystems and components up to
the system function level. Several definitions of testability exist,
e.g., [601,39,42].

“Attributes of software that bear on the effort needed to
validate the software product.” [61]

“Testability is a measure of how easily a piece of
hardware can be tested to insure it performs its
intended function.” [39]

“The degree to which a system or component facilitates
the establishment of test criteria and the performance
of tests to determine whether those criteria have been
met.” [42]

112

Software Testing and Testability

Forming Consensus on Testability in Software Developing Organizations

6.3

An important observation is stated in [61]:

“Testability is predicted on the definition employed,
and there are numerous definitions. All definitions are
legitimate; however, it is necessary to agree on
terminology up front to avoid misunderstandings at test
time.”

The statement above leads us to the first focus in this study, i.e.,
how to identify different definitions of testability between roles
in an organization. The second focus in our study is to identify
those metrics the software developers and testers believe have an
impact on testability. We focus our investigation on static analy-
sis of a software system. Dynamic analysis requires an executa-
ble system, and that is out of scope of this study. Static analysis
typically collects metrics by analyzing the complexity of the
source code. Looking for and counting the number of statements
in and the structure of the code. There are metrics that can be col-
lected at the method/algorithm level but there are also a number
of object oriented metrics that can be collected at the design
level, e.g., inheritance depth, number of methods in a class, and
coupling.

Objectives and Methodology

Our case study was performed at a company that develops
embedded control and guidance systems for automated guided
vehicles. The company has worked with software development
for more than 15 years, and has a development organization con-
sisting of about 20 software engineers, 5 project managers, 3
product managers, and 2 software test engineers.

The company expressed concerns that there were misunderstand-
ings between organizational roles regarding software testability
and software testing. As part of the BESQ project we devised this
study to evaluate how the people in different roles in the organi-
zation define testability. We look for disagreement between the
roles as well as within the roles.

Three roles (groups) are included in this case study: software
engineers, test engineers, and managers. The group of software
engineers includes the programmers and designers that develop
the software for the control system. The group of test engineers

Objectives and Methodology 113

Forming Consensus on Testability in Software Developing Organizations

includes people that perform system function testing of the com-
pleted software system. Finally, the third group consists of the
project managers and product managers. Project managers man-
age the groups of software and test engineers, and make sure that
the software development is proceeding according to schedule.
The product managers represent the customers’ interest in the
development process, and are responsible for forwarding the
requirements from the customers during the development and
maintenance of the software.

Together with representatives from the company we determined
two short-term objectives as well as one long-term objective. The
two short-term objectives were:

1. To see how testability is defined by different roles in the
organization.

2. To identify a set of software metrics that the developers indi-
cate as useful when determining the testability of source code.

3. The third, long-term, objective will only be discussed briefly
in this case study. We will not try to implement any changes
in the organization yet.

4. Based on the results from objective 1, try to create a unified
view of the testability concept within the organization.

To fulfil the first objective we need to determine the current state
of the organization. We use a questionnaire to gather the required
information, which also enables us to analyze the results rela-
tively easy. The questionnaire contains a set of statements regard-
ing testability, and the respondents indicate to what extent they
agree or disagree with each statement.

The second objective require a number of software engineers to
grade a set of source code metrics. The idea is to identify which
source code metrics that the respondents believe have an impact
on the testability of a system. This information is also collected
through the questionnaire. For each metric, the respondent indi-
cates whether he/she believes the metric has a positive or nega-
tive impact on testability, and how large the impact would be.
This part of the questionnaire is divided into two sub parts; one
that focuses on metrics that can be collected from C/C++ code,
and one that focuses on metrics that only are relevant for C++
code, i.e., object oriented structural metrics [13, 20].

114

Objectives and Methodology

Forming Consensus on Testability in Software Developing Organizations

6.4

The third objective will be addressed through a workshop where
the results of the survey will be presented to participants from the
different roles. The intention is to discuss with them the different
testability definitions that exist as well as the other roles’ views
on testability and expectations on their own role.

The questionnaire addressing the first two objectives contains 65
questions, which are divided into three categories. Category one
contains questions related to the role of the respondent in the
organization as well as background and previous experience. The
second category contains questions regarding how the respondent
view testability. This is formulated as a number of statements that
the respondent agree or disagree with. The statements are graded
using a five point Likert scale [77]. The scale ranges from 1 to 5,
where 1 is that the respondent does not agree at all, 3 indicates
that the respondent is neutral to the statement, and 5 indicates
that the respondent strongly agrees with the statement. The third
category contains a number of source code metrics that is used to
assess the testability of C/C++ source code. These metrics are
also graded using a five point Likert scale. For each question we
also ask how sure the respondent is on the answer. These ques-
tions are also graded using a Likert scale.

The questionnaire was distributed as an Excel file via e-mail and
the respondents sent their replies back via e-mail. Together with
the Excel file we sent a short dictionary with descriptions of con-
cepts and definitions that were used in the questionnaire. This
was done in order to minimize the amount of questions that the
respondents might have and to make sure that all respondents
used similar definitions of basic concepts. We sent the question-
naire to all people with the roles that we wanted to examine.

Results and Analysis of Testability
Statements

We distributed 25 questionnaires and got 14 responses, resulting
in a 56% response rate. The number of responses for each of the
groups is found in Table 6.1. The number of responses was to few
to apply statistical methods. Instead, we rely on quantitative and
qualitative reasoning based on the answers. The first part of the
questionnaire (general testability statements) was answered by all

Results and Analysis of Testability Statements 115

Forming Consensus on Testability in Software Developing Organizations

6.4.1

Table 6.1

14 respondents, and the second part (C/C++ metrics) was
answered only by the software engineers.

The number of replies divided per role.

Role Nr of replies
Software Engineer 9

Test Engineer 2
Project/Product Manager 3

Total number of replies 14

The statements in the first part of the questionnaire are listed in
Table 6.2, and are all related to definitions of testability. The
statements can be grouped into three groups: S1, S3, S5, S6 and
S12 are related to the size and design of a software module, S2,
S4, and S7 are related to the size of a software module only, and
S8, S9, S10, and S11 are related to the internal state of a module.

The analysis is done in several steps. First, we compare the
responses by the people within each group (role) in order to eval-
uate the agreement within the group. Second, we compare the
answers between the groups in order to evaluate agreement or
disagreement between the groups. Third, we compare the expec-
tations the software engineers and test engineers have on each
other regarding testability.

Consistencies Within the Roles

The first analysis of the responses is to look for inconsistencies
within the roles. We want to see if all respondents in a role give
similar answers, and if they differ, where the inconsistencies are.
The answers are summarized so the frequency of each response is
identified, and we also evaluate the distribution of responses. The
responses for each question is grouped into four categories for
further analysis. The categories are defined as:

1. Consensus. There is a clear consensus between the respond-
ents.

2. Consensus tendency. There is disagreement but with a ten-
dency towards one side or the other.

3. Polarization. There are two distinct groupings in the
responses.

116

Results and Analysis of Testability Statements

Forming Consensus on Testability in Software Developing Organizations

6.4.2

Statements regarding testability.

ID Statement

S1 Modules with low coupling have high testability.
S2 Functions with few parameters have high testability.
S3 Modules with high coupling have low testability.
S4 Modules with few lines of code have high testability.

Modules with few public methods in their interface have

S5 high testability.

S6 Modules with many public methods in their interface have
high testability.

S7 Functions with many parameters have high testability.

S8 If it is easy to select input to a module so that all execution
paths in it are executed, then it has high testability.

S9 If it is likely that defects in the code will be detected during
testing then the module has high testability.
If it is easy to set the internal state of a module during testing

S10 then it has high testability. Modules that can be set to a spe-

cific state makes it easier to retest situations where faults
have occurred.

If it is easy to see the internal state of a module then it has
S11 high testability. Modules that for example log information
that is useful to the testers/developers have high testability.

S12 If a module has high cohesion, then it has high testability.

4. Disagreement. There is a clear disagreement between the
respondents.

Statements that end up in categories Consensus and Consensus
tendency are ok, i.e., the respondents agree with each other and a
tendency can be seen even though the responses might spread
somewhat. The Polarization category is less good and indicates
that there exists two different views on the statement among the
respondents. The Disagreement category is also less good since
there are several views of the statement and no real consensus
among the respondents exists.

Software Engineers

The software engineers’ responses can be found in Table 6.3. The
responses to statements S1, S3, S5, and S10 belong to the Con-

Results and Analysis of Testability Statements 117

Forming Consensus on Testability in Software Developing Organizations

Table 6.3

sensus category since there are a clear consensus in the answers.
Statements S2, S6, S7, S9, and S11 we put in the Consensus ten-
dency category where we have a tendency towards agreement or
disagreement with the statement. In the Polarization category we
put statements S8 and S12 since there are two groupings in the
answers. Finally, in the Disagreement category we put statement
S4.

Summary of replies from the software engineers.

Answer: 1 2 3 4 5 Result Category
S1 0 0 0 2 6 Consensus

S2 0 1 2 2 3 Consensus tendency
S3 0 0 1 3 4 Consensus

S4 0 2 2 1 3 Disagreement

S5 0 1 4 2 1 Consensus

S6 2 2 3 1 0 Consensus tendency
S7 3 2 2 1 0 Consensus tendency
S8 0 0 3 0 5 Polarization

S9 0 0 3 2 3 Consensus tendency
S10 0 0 1 4 3 Consensus

S11 0 1 2 2 3 Consensus tendency
S12 0 0 3 1 4 Polarization

The answers show that there are good consensus among the soft-
ware engineers regarding coupling of modules, the number of
public methods, the number of function parameters, and their
relation to testability. There is also a high degree of consensus
that modules have high testability if defects will be detected dur-
ing testing, and if it easy to set and view the internal state of the
module.

The software engineers have different opinions about high cohe-
sion and the easiness of selecting input data for testing all execu-
tion paths. These issues are subjects for further investigation and
discussion in the organization. Finally, there is a large disagree-
ment if a module with few lines of code has high testability or
not.

118

Results and Analysis of Testability Statements

Forming Consensus on Testability in Software Developing Organizations

6.4.3

Table 6.4

It is good that so many statements are agreed upon by the
respondents. There are only two statements where the respond-
ents form two distinct groupings, and only one statement where
no clear consensus can be identified. This leads us to believe that
the software engineers, as a group, have a rather coherent view
on what testability is, although some disagreements exist.

Test Engineers

The responses from the test engineers can be found in Table 6.4.
The number of respondents in this role is only two. Therefore, it
is more difficult to place the statements in the four categories. In
category Consensus we put the statements S1, S3, S5, S6, S8, S9,
S10, and S12 since the respondents give similar responses to the
statements. Statements S2, S4, S7, and S11 are placed in category
Disagreement because the responses are further apart. The
responses could not be placed in the Polarization category since
they are spread between both agree and not agree to the state-
ments. The issues where there exist disagreements are functions
with few and many parameters, few lines of codes for a module,
and viewing the internal state.

Summary of replies from the test engineers.

Answer: 1 2 3 4 5 Result Category
S1 0 1 1 0 0 Consensus

S2 1 0 1 0 0 Disagreement
S3 0 2 0 0 0 Consensus

S4 0 1 0 0 1 Disagreement
S5 0 1 1 0 0 Consensus

S6 0 1 1 0 0 Consensus

S7 0 1 0 1 0 Disagreement
S8 0 0 0 1 1 Consensus

S9 0 0 0 2 0 Consensus
S10 0 0 0 1 1 Consensus
S11 0 1 0 0 1 Disagreement
S12 0 0 1 1 0 Consensus

Results and Analysis of Testability Statements 119

Forming Consensus on Testability in Software Developing Organizations

6.4.4 Managers
The responses from the managers can be found in Table 6.5.
They suffer from the same problem as the testers, i.e., we only
got three responses to the questionnaire from this role which
makes the categorization of the responses difficult. Statements S5
and S6 are placed in category Consensus, and statements S4 and
S9 in the category Consensus tendency. The rest of the state-
ments are placed in the Disagreement category since the respond-
ents disagree on the grading of the statements. When one of the
respondents agree then two disagree and vice versa. This group
of the respondents is the one that has the most disagreement in
their responses.
Table 6.5 Summary of replies from the managers.

Answer: 1 2 3 4 5 Result Category

S1 0 1 0 1 1 Disagreement

S2 0 2 0 1 0 Disagreement

S3 0 1 0 2 0 Disagreement

S4 0 1 1 1 0 Consensus tendency

S5 0 1 2 0 0 Consensus

S6 0 0 1 2 0 Consensus

S7 0 2 0 1 0 Disagreement

S8 0 1 0 1 1 Disagreement

S9 0 1 1 1 0 Consensus tendency

S10 0 1 0 2 0 Disagreement

S11 0 1 0 2 0 Disagreement

S12 0 1 0 2 0 Disagreement
From the managers viewpoint we see that the amount of public
methods has no impact if a model has high testability or not (S5
and S6). They also believe that defects detected in code and mod-
ules with few lines of code indicate high testability. For all other
statements there are differences in opinions, and this has to be
addressed.

120 Results and Analysis of Testability Statements

Forming Consensus on Testability in Software Developing Organizations

6.4.5

Table 6.6

Differences Between Roles

The next analysis step is to compare the view on testability
between the different groups (roles). In order to make the groups
easier to compare, we aggregate the responses for the groups.
The results of the aggregation can be found in Table 6.6. The
numbers are translated into their literal meaning, i.e., 5 - Strongly
agree, 4 - Agree, 3 - Neutral, 2 - Do not agree, and 1 - Strongly
disagree.

Aggregation of replies for the groups.

SofWare Test engineers Managers

engineers
S1 Strongly agree Do not agree Neutral
S2 Strongly agree Do not agree Neutral
S3 Strongly agree Do not agree Neutral
S4 Agree Neutral Neutral
S5 Neutral Neutral Neutral
Sé Neutral Neutral Neutral
S7 Do not agree Do not agree Neutral
S8 Agree Strongly agree Neutral
S9 Agree Agree Neutral
S10 Agree Strongly agree Neutral
S11 Agree Agree Neutral
S12 Strongly agree Agree Neutral

From the aggregation we find that the software engineers and the
test engineers do not agree on three main statements (S1, S2, and
S3). These are statements that are related to the design and size of
software, i.e., coupling-cohesion vs. high-low testability and few
function parameters. For the remainder of the statements there is
mainly an agreement between the two roles.

Most of the managers’ answers are neutral in the aggregation.
The reason is that the responses from the managers had a large
spread. One respondent answered similarly to the software engi-
neers and another answered almost the direct opposite, and both
were very sure on their answers. The differences in opinion can
maybe be attributed to the backgrounds of the managers. One of
them had never worked with testing, while the other one had long

Results and Analysis of Testability Statements 121

Forming Consensus on Testability in Software Developing Organizations

test experience. The differences also make it hard to make state-
ments about the expectations on the other roles from the manag-
ers since they inside their group have different opinions, making
the relations to the other groups hard to interpret. As mentioned
earlier, this difference in opinions must be unified.

6.4.6 Understanding and Expectations Between
Software Engineers and Test Engineers
We made follow-up interviews which focused on how the
respondents perceive the expectations of the other roles that par-
ticipated. The additional questions regarding this aspect comple-
ment and further focus the results of the study. The follow-up
interviews were done over telephone. We did not include the
managers since they as a group had a to scattered view on the
statements. Hence, we discuss the expectations of the software
engineers on the test engineers in Table 6.7, and vice versa in
Table 6.8. For each statement the respondent answers what he/
she thinks that the people in other role would answer. This give
an indication of how much the roles are aware of each others
opinion of testability.
Table 6.7 Software engineers’ expected answers from the test
engineers.
Expected answers Actual answer
S1 Strongly agree Do not agree
S2 Agree Do not agree
S3 Strongly agree Do not agree
S4 Neutral Neutral
S5 Neutral Neutral
S6 Neutral Neutral
S7 Do not agree Do not agree
S8 Strongly agree Strongly agree
S9 Strongly agree Strongly agree
S10 Strongly agree Strongly agree
S11 Strongly agree Agree
S12 Agree Agree
122 Results and Analysis of Testability Statements

Forming Consensus on Testability in Software Developing Organizations

6.5

Table 6.8

Overall we conclude that the software engineers and the test
engineers seem to have a good understanding of each others
interpretation of testability. The answers only differ on three
statements, S1, S2, and S3, where both roles predicted different
answers from the other role than they actually gave. From the
interviews we think that the difference can be attributed to differ-
ent interpretations of the concepts of high and low coupling in
object oriented design.

Test engineers’ expected answers from the software
engineers.

Expected answers Actual answer
S1 Strongly agree Agree
S2 Neutral Agree
S3 Do not agree Strongly agree
S4 Strongly agree Agree
S5 Neutral Neutral
S6 Do not agree Do not agree
S7 Do not agree Do not agree
S8 Strongly agree Agree
S9 Strongly agree Agree
S10 Strongly agree Agree
S11 Strongly agree Agree
S12 Strongly agree Strongly agree

Selection of Testability Metrics

The second objective of our study is to identify and select a
number of software metrics that can be collected and used to
assess the testability of a system under development. The data for
this selection are collected through the second part of the ques-
tionnaire. The statements and questions from this part of the
questionnaire is presented in Table 6.9. Statements M1 to M9 are
general questions related to code size. Statements M10 to M23
are questions related to C and C++, since those are the major pro-
gramming languages used at the company. Finally, statements
M24 to M38 are related only to C++. The C++ related metrics
cover aspects such as class structures and inheritance while the
C/C++ metrics focus on metrics related to code structure, meth-

Selection of Testability Metrics 123

Forming Consensus on Testability in Software Developing Organizations

ods, and statements. The participants in the study answered both
in what way a statement impacts testability (improve or deterio-
rate) as well as how much it impacts testability relative to the
other metrics.

We got 5 responses where all questions were answered, and 4
responses where only questions M1 to M23 were answered. The
reason given by the respondents for not answering all questions
was usually that they felt unsure about the C++ statements since
they usually worked with the C programming language.

The results are analyzed in a similar way as in the previous sec-
tions. We aggregate the results and translate them from numbers
to their literal meaning in order to make the results easier to com-
pare as well as more readable. The mapping for the impact is
done as follows: 1 - Very small, 2 - Small, 3 - Average, 4 - Large,
5 - Very large, and for the direction: 1 - Very negative, 2 - Nega-
tive, 3 - No impact, 4 - Positive, 5 - Very positive. We focus our
analysis on the metrics that the respondents identify as the ones
with large positive or negative impact on the testability of a sys-
tem. The results of the aggregation is presented in Table 6.10
(large negative impact) and Table 6.11 (large positive impact).

Of the metrics with negative impact, see Table 6.10, we find that
the developers focus on memory management aspects of the
source code as well as the structural aspects. This is interesting as
there is usually little focus on what the source code actually does
and more on how understandable code is through its structure and
complexity [69]. This indicates that structural measures need to
be complemented with some measures of the occurrence of mem-
ory related operations in the source code. Traditional size meas-
ures such as the lines of code in files and methods are also
present in M1, M2, and MS5. Source code complexity measures
such as cyclomatic complexity [64] can also be seen in M17.
Finally, we find class structure and inheritance measures related
to object oriented metrics [13, 20] in M26 and M27.

The metrics that are graded as having a large positive impact on
the testability of a system is presented in Table 6.11. These met-
rics can also be divided into two groups: the first is related to
object oriented structure (M24, M28, M30, M31, and M32) and
the second is related to documentation, e.g., lines of comments
(M3) and descriptive function names (M6).

124

Selection of Testability Metrics

Forming Consensus on Testability in Software Developing Organizations

Table 6.9 Statements regarding how different code metrics impact

testability.
1D Metric Statement
M1 How many lines of code the module contains.
M2 How many lines of code that each function contains.
M3 How many lines of comments the module contains.
M4 How many lines of comments that each function contains.
M5 How many parameters that are passed to a function.
Mo The length of the function name.
M7 The length of the class name.
The number of lines of comments that are present directly
M8 . .
before a function declaration.
M9 The number of lines of comments present inside a function.
M10 The number of variables present in a struct.
M11 The size of macros used in a module.
M12 The number of macros used in a module.
M13 The number of functions in a module.
M14 The number of parameters of a function.
M15 The number of macros called from a module.
M16 The number of times that a struct is used in a module.
The number of control statements (case, if, then, etc.) in the
M17
module.
M18 The number of method calls that is generated by a method.
M19 The number of assignments that are made in a module.
M20 The number of arithmetic operations in a module.
M21 The presence of pointer arithmetic.
M22 The number of dynamic allocations on the heap.
M23 The number of dynamic allocations on the stack.
M24 The total number of classes in the system.
M25 The number of classes in a module (name space?).
M26 The number of interfaces that a class implements.
M?27 The number of classes that a class inherits.
M28 The number of classes that a class uses.
M29 The number of methods present in a class.
M30 The number of private methods present in a class.
M31 The number of public methods present in a class.
M32 The number of private variables in a class.
M33 The number of public variables in a class.
M34 The number of overloaded methods in a class.
M35 The number of calls to methods inherited from a superclass.
M36 The size of templates used in a module.
M37 The size of templates used in a module.
M38 The number of different template instantiations.

Selection of Testability Metrics 125

Forming Consensus on Testability in Software Developing Organizations

Table 6.10

Table 6.11

Metrics with large negative impact on testability.

ID Metric Impact Direction

M How many lines of code the mod- Large Negative
ule contains.

M2 How many lln?s of code that each Large Negative
function contains.

M5 How many parameters that are Large Negative
passed to a function.

The number of control statements .
mi7 (case, if, then, etc.) in the module. Large Negative
M21 ;Fi?e presence of pointer arithme- Large Negative
M22 The number of dynamic alloca- Large Negative

tions on the heap.

The number of dynamic alloca- .
M23 tions on the stack. Large Negative
M26 The n}lmber of interfaces that a Large Negative

class implements.

M27 The npmber of classes that a class Large Negative
inherits.

Metrics with large positive impact on testability.

ID Metric Impact Direction

M3 How many llt'leS of comments the Large Positive
module contains.

M6 The length of the function name. Large Positive

M24 The total number of classes in the Large Positive
system.

M28 The number of classes that a class Large Positive
uses.

M30 The nun}ber of private methods Large Positive
present in a class.

M31 The nurpber of public methods Large Positive
present in a class.

M32 The number of private variables in Large Positive

a class.

126

Selection of Testability Metrics

Forming Consensus on Testability in Software Developing Organizations

6.6

Table 6.12

Finally, we find three metrics that are graded as having a large
impact but rated as neither positive nor negative, see Table 6.12.
We interpret these results as an indecisiveness from the respond-
ents, that the metric should have an impact on testability but that
there is no feeling for towards which direction the impact is.

Metrics that have an unclear impact on testability.

1D Metric Impact Direction
MI3 The number of functions in a Large No

module. impact
M25 The number of classes in a mod- Large No

ule. impact
M33 The number of public variables in Large No

a class. impact

From the tables we can see that the common size and structure
metrics are identified as properties that impact the testability of a
system. But we also find properties related to memory manage-
ment and addressing (M22, M23, and M21). It is common to
focus the testability discussion on the understandability of the
source code and not so much on what the source code actually
does [36, 64, 69]. Our results indicate that memory management
metrics should be taken into account when assessing the testabil-
ity of software developed by this organization. We believe that
this is data that relatively easy can be gathered from the source
code.

Because of the developers’ interest in memory related operations,
we think that it would be interesting to complement existing test-
ability measures, such as the testability index [36], with these
metrics to see if the accuracy of the measure is improved. When
creating such a measure it would also be possible to tune it to the
developing organization and the systems they develop.

Discussion

In this section we shortly discuss some validity aspects in our
study. The first issue concerns the design of the questionnaire. It
is always difficult to know whether the right questions have been
posed. We believe that we at least have identified some important
issues considering the overall view on testability by different

Discussion 127

Forming Consensus on Testability in Software Developing Organizations

6.7

roles in the company. The questionnaire was discussed with com-
pany representatives before it was issued to the software develop-
ers. In future studies, the questionnaire can be further refined in
order to discern finer differences in peoples’ opinion on testabil-
ity. More statements would perhaps give a better result.

The second issue concerns the number of replies from the ques-
tionnaire, i.e., we only got 14 replies in total. The low number of
replies prohibit us from using statistical methods for analysis.
Instead, we have relied on qualitative reasoning and interviews to
strengthen the confidence in the results. Further, the low number
of respondents makes it difficult to generalize from the results.
An interesting continuation would be to do a replicated study in
another company.

The third validity issue is also related to the number of replies.
There is a clear imbalance in the distribution of replies, most of
the respondents were from one role, i.c., the software engineers.
This results in that there is higher confidence in the results from
one group than from the other groups. However, the difference in
the number of responses per group reflects the distribution of
people working in the different roles at the company.

Conclusions

Software testing is a major activity during software development,
constituting a significant portion of both the development time
and project budget. Therefore, it is important that different peo-
ple in the software development organization, e.g., software engi-
neers and software testers, share similar definitions of concepts
such as testability in order to avoid misunderstandings.

In this chapter we present a case study of the view on testability
in a software development company. We base our study on a
questionnaire distributed to and answered by three groups of peo-
ple: software engineers, test engineers, and managers. The ques-
tionnaire was then followed up by interviews.

Our results indicate that there is, in general, a large consensus on
what testability means within each group. Comparing the view
on testability by different groups, we find that the software engi-
neers and the test engineers mostly have the same view. How-
ever, their respective views differ on how much the coupling

128

Conclusions

Forming Consensus on Testability in Software Developing Organizations

between modules and the number of parameters to a module
impact the testability.

We also evaluate the expected impact of different code metrics on
testability. Our findings indicate that the developers think that
traditional metrics such as lines of code and lines of comments as
well as object oriented structure and source code complexity are
important. But we also found that the developers think that the
presence of memory operations, e.g., memory allocation, has a
negative impact on the testability of software modules. We think
that common weighted metrics such as testability index can be
complemented by the collection and integration of this informa-
tion, depending on the type of domain that the organization is
operating in.

Future work include organizing a workshop at the company
where both software developers and software testers participate.
The goal of the workshop will be to enhance the awareness of the
different views on testability, based on the results presented in
this chapter, and also to reach some agreement on testability
within the organization.

Acknowledgments

This work was partly funded by The Knowledge Foundation in
Sweden under a research grant for the project “Blekinge - Engi-
neering Software Qualities (BESQ)” http://www.bth.se/besq. We
would like to thank Danaher Motion Sérd AB for their time
answering our questions, as well as many interesting discussions
and ideas.

Conclusions 129

Forming Consensus on Testability in Software Developing Organizations

130 Conclusions

References

(2]

(3]

(3]

(6]

(8]

(9]

[10]

[11]

Alan, A., Pritsker, B.: “Principles of Simulation Modeling”,
in Handbook of Simulation. ISBN: 0-471-13403-1, Wiley,
1998.

Allen, R., Garlan, D.: "A Case Study in Architectural Modelling:
The AEGIS System," In proc. 8th International Conference
on Software Specification and Design, pp. 6-15, 1996.

Aquilani, F., Balsamo, S., and Inverardi, P.: "Performance Analy-
sis at the Software Architectural Design Level," Performance
Evaluation, vol. 45, pp. 147-178, 2001.

Avritzer, A. and Weyuker E. J.: "Metrics to Assess the Likelihood
of Project Success Based on Architecture Reviews," Empirical
Software Engineering, vol. 4(3), pp. 199-215, 1999.

Babar, M. A., Zhu, L., Jeffery, R.: "A Framework for Classify-
ing and Comparing Software Architecture Evaluation Methods,"
In proc. Australian Software Engineering Conference, pp.
309-318, 2004.

Barber, K. S., Graser, T., and Holt, J.: "Enabling iterative soft-
ware architecture derivation using early non-functional property
evaluation," In proc. 17th IEEE International Conference on
Automated Software Engineering, pp. 23-27,2002.

Balci, O.: "Principles and Techniques of Simulation Validation,
Verification, and Testing," In Proc. 1995 Winter Simulation
Conference, pp. 147-154, 1995.

Balsamo, S., Di Marco, A., Inverardi, P., and Simeoni, M:
"Model-based Performance Prediction in Software Development:
A Survey," [EEE Transactions on Software Engineering,
vol. 30(5), pp. 295-310, 2004.

Banks, J., Carson II J.S.: "Introduction to Discrete-Event Simula-
tion," Proc. 1986 Winter Simulation Conference, pp. 17-23,,
1986.

Banks, J.: Principles of Simulation, In Handbook of Simula-
tion. ISBN: 0-471-13403-1, Wiley, 1998.

Bardram, J. E., Christensen, H. B., and Hansen, K. M.: "Archi-
tectural Prototyping: An Approach for Grounding Architectural
Design and Learning," In Proc. 4th Working IEEE/IFIP Con-
ference on Software Architecture, pp. 15-24, 2004.

131

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

(23]

Bass, L., Clements, P. and Kazman, R.: Software Architecture
in Practice. ISBN: 0-631-21304-X, Addison-Wesley, 2003.

Baudry, B., Le Traon, Y., and Sunyé, G.: "Testability Analysis of
a UML Class Diagram," In proc. of the 8th IEEE Symposium
on Software Metrics, pp. 56-63, 2002.

Bennett, B.; Satterthwaite, C.P.. "A Maintainability Measure of
Embedded Software," In proc. of the IEEE 1993 National
Aerospace and Electronics Conference, pp. 560-565, 1993.

Baumer, D., Bischofberger, W., Lichter, H., and Zullighoven, H.:
"User Interface Prototyping-Concepts, Tools, and Experience,"
In Proc. 18th International Conference on Software Engi-
neering, pp. 532-541, 1996.

Beck, K.: Extreme Programming Explained. ISBN: 0-201-
61641-6, Addison-Wesley, 2000.

Bengtsson, PO.: Architecture-Level Modifiability Analysis.
ISBN: 91-7295-007-2, Blekinge Institute of Technology, Disser-
tation Series No 2002-2, 2002.

Bengtsson, PO., Lassing, N., Bosch, J.: "Architecture Level
Modifyability Aalysis (ALMA)," Journal of Systems and
Software, vol. 69, pp. 129-147, 2004.

Bosch, J.: Design & Use of Software Architectures — Adopt-
ing and evolving a product-line approach. ISBN: 0-201-
67494-7, Pearson Education, 2000.

Bruntink, M. and can Deursen, A.: "Predicting Class Testability
using Object-Oriented Metrics," In proc. of the Fourth IEEE
International Workshop on Source Code Analysis and
Manipulation, pp. 136-145, 2004.

Buschmann, F., Meunier, R., Rohnert, H., Sommerland, P., and
Stal, M.: Pattern-Oriented Software Architecture - A Sys-
tem of Patterns. ISBN: 0-471-95869-7, Wiley, 1996.

Castaldi, M., Inverardi, P., and Afsharian, S.: "A Case Study in
Performance, Modifiability and Extensibility Analysis of a Tele-
communication System Software Architecture," In proc. 10th
IEEE International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunications Systems,
pp- 281-290, 2002.

Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J. and
Little, R.: Documenting Software Architectures: Views and
Beyond. ISBN: 0201703726, Addison-Wesley, 2002.

132

(24]

[25]

[26]

(27]

(28]

[29]

[30]

[31]

[32]

Davis, D. A.: "Modeling AGV Systems," In Proc. 1986 Winter
Simulation Conference, pp. 568-573, 1986.

Dobrica, L. and Niemela, E.: "A Survey On Architecture Analy-
sis Methods," IEEE Transactions on Software Engineering,
vol. 28(7), pp. 638-653, 2002.

Eikelmann, N. S. and Richardson, D. J.: "An Evaluation of Soft-
ware Test Environment Architectures,”" In proc. 18th Interna-

tional Conference on Software Engineering, pp. 353-364,
1996.

Engineering Village 2 (n.d.). Compendex & Inspec. Retrieved
February 1st, 2006.
Web site: www.engineeringvillage2.org

Etxeberria, L., Sagardui, G.: Product-Line Architecture: New
Issues for Evaluation, In Lecture Notes in Computer Science,
Volume 3714. ISBN: 3-540-28936-4, Springer-Verlag GmbH,
2005.

Franks, G., Hubbard, A., Majumdar, S., Petriu, D., Rolia, J., and
Woodside C.M.: "A Toolset for Performance Engineering and
Software Design of Client-Server Systems," In Performance
Evaluation, pp. 117-135, 1995.

Gamma, E., Helm, R., Johnson, R., and Vlissides J.: Design
Patterns, Elements of Reusable Object-Oriented Software.
ISBN: 0-201-63361-2, Addison-Wesley, 1994.

Gannod, G, Lutz, R.: "An Approach to Architectural Analysis of
Productlines," In Proc. 22nd International Conf. on Software
Engineering, pp. 548-557, 2000.

Garlan, D., Monroe, R., Wile, D.: "Acme: An Architecture
Description Interchange Language," In Proc. the 7th annual
IBM Center for Advanced Studies Conference, pp. 169-183,
1997.

Garlan, D.: "Software Architecture: A Roadmap," In proc. Con-
ference on The Future of Software Engineering, pp. 91-101,
2000.

Grahn, H., Bosch, J.: "Some Initial Performance Characteristics
of Three Architectural Styles," proc. First International
Workshop on Software and Performance, pp. 197-198, Santa
Fe, New Mexico, 1998.

Gunther, N.: The Practical Performance Analyst. ISBN: 0-
07-912946-3, McGraw-Hill, 1998.

133

[36]

[37]

[39]

[40]

[41]

[42]

[43]

Gupta, V., Aggarwal, K. K., and Singh, Y.: "A Fuzzy Approach
for Integrated Measure of Object-Oriented Software Testabil-
ity," Journal of Computer Science, vol. 1, pp. 276-282, 2005.

Héaggander, D., Bengtsson, PO, Bosch, J., Lundberg, L.: "Main-
tainability myth causes performance problems in parallel applica-
tions," proc. 3rd Annual IASTED International Conference
Software Engineering and Applications, pp. 288-294, Scotts-
dale, USA, 1999.

Héggander, D., Lundberg, L., and Matton, J.: "Quality Attribute
Conflicts - Experiences from a Large Telecommunication Appli-
cation," In proc. 7th IEEE International Conference of Engi-
neering of Complex Computer Systems, pp. 96-105, 2001.

Hare, M. and Sicola, S.: "Testability and Test Architectures,” In
IEEE Region 5 Conference, 1988: 'Spanning the Peaks of
Electrotechnology’, pp. 161-166, 1988.

Hofmeister, C., Nord, R. and Soni, D.: Applied Software
Architecture. ISBN: 0-201-32571-3, Addison-Wesley, 2000.

IEEE (n.d.). Institute of the Electrical and Electronics Engi-
neers. Retrieved January 18, 2005.
Web site: www.ieee.org

IEEE std 610.12-1990 (n.d.). I[EEE Standard Glossary of Soft-
ware Engineering Terminology. Retrieved January 19, 1990.
Web site: http://iceexplore.ieee.org/

ISO (n.d.). International Organization for Standardization.
Retrieved January 18, 2005.
Web site: www.iso.org

Kazman, R., Abowd, G, Bass, L., and Clements, P: "Scenario-
based Analysis of Software Architecture," IEEE Software, vol.
13, pp. 47-55, 1996.

Kazman, R., Barbacci, M., Klein, M., Carriere, S. J., and Woods,
S. G:: "Experience with Performing Architecture Tradeoff Anal-
ysis," In proc. of the 1999 International Conference on Soft-
ware Engineering, pp. 54-63, 1999.

Kazman, R. and Bass, L.: "Making Architecture Reviews Work
in the Real World," IEEE Software, vol. 19, pp. 67-73, 2002.

Kazman, R., Bass, L., Abowd, G., and Webb, M.: "SAAM: A
Method for Analyzing the Properties of Software Architectures,"
In proc. 16th International Conference of Software Engi-
neering, pp. 81-90, 1994.

134

(48]

[49]

[55]

[60]

Kazman, R., Bass, L., Klein, M., Lattanze, T., Northrop, L.: "A
Basis for Analyzing Software Architecture Analysis Methods,"
Software Quality Journal, vol. 13(4), pp. 329-355, 2005.

Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H.,
Carriere, S. J.: "The Architecture Tradeoff Analysis Method," In
proc. 4th IEEE International Conference on Engineering of
Complex Computer Systems, pp. 68-78, 1998.

King, P.. Computer and Communication Systems Perform-
ance Modelling. ISBN: 0-13-163065-2, Prentice Hall, 1990.

Klein, M., Kazman, R.: Attribute-Based Architectural Styles,
CMUY/SEI-99-TR-22, Software Engineering Institute, Carnegie
Mellon University, 1999.

Klingener, J. F.: "Programming Combined Discrete-Continuous
Simulation Models for Performance," In proc. 1996 Winter
Simulation Conference, pp. 883-839, 1996.

Larman, C., Basili, V. R.: "Iterative and Incremental Develop-
ments. A Brief History," Computer, vol. 36, pp. 47-56, June
2003.

Lassing, N., Bengtsson, P., Van Vliet, H., and Bosch, J.: "Experi-
ences With ALMA: Architecture-Level Modifyabilithy Analy-
sis," Journal of Systems and Software, vol. 61, pp. 47-57,
2002.

Lassing, N., Rijsenbrij, D., and van Vliet, H.: "Towards a
Broader View on Software Architecture Analysis of Flexibility,"
In Proc. Sixth Asia Pacific Software Engineering Confer-
ence, pp. -, 1999.

Lindvall, M., Tvedt, R. T., and Costa, P.: "An empirically-based
process for software architecture evaluation," Empirical Soft-
ware Engineering, vol. 8(1), pp. 83-108, 2003.

Littlefair, T.: "An Investigation Into the Use of Software Code

Metrics in the Industrial Software Development Environment,"
In Ph.D. thesis, pp. , 2001.

Littlefair, T. (n.d.). CCCC. Retrieved , 2004.

Web site: http://cccc.sourceforge.net/

Luckham, D. C.: "Rapide: A Language and Toolset for Simula-
tion of Distributed Systems by Partial Orderings of Events,"
DIMACS Partial Order Methods Workshop IV, pp. , Princeton
University, 1996.

Luckham, D., John, K., Augustin, L., Vera, J., Bryan, D., and
Mann, W.: "Specification and Analysis of Sytem Architecture

135

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

using RAPIDE," IEEE Transactions on Software Engineer-
ing, vol. 21(4), pp. 336-335, 1995.

Marciniak, J: Encyclopedia of Software Engineering 2:nd
ed.. ISBN: 0471210080, John Wiley & Sons, 2002.

Maria, A.: "Introduction to Modeling and Simulation," In proc.
1997 Winter Simulation Conference, pp. 7-13, 1997.

Martensson, F., Grahn, H., and Mattsson, M.: "An Approach for
Performance Evaluation of Software Architectures using Proto-
typing," In proc. International Conference on Software
Engineering and Applications, pp. 605-612, 2003.

McCabe, T. J.: "A Complexity Measure," [EEE Transactions
on Software Engineering SE-2,vol. , pp. 308-320, 1976.

Menascé, D., Almeida, V., and Dowdy, L.: Capacity Planning
and Performance Modelling. ISBN: 0-13-035494-5, Prentice
Hall, 1994.

Mozilla Foundation (n.d.). Tinderbox. Retrieved , 2006.
Web site: http://www.mozilla.org/projects/tinderbox/

Mukkamalla R., Britton M., Sundaram P.: "Scenario-Based
Specification and Evaluation of Architectures for Health Moni-
toring of Aerospace Structures," In proc. 21st Digital Avionics
Systems Conference, pp. -, 2002.

Object Management Group (n.d.). CORBA™/IIOP™ Specifi-
cation, 3.0. Retrieved , 2004.
Web site: www.omg.org

Pearse, T. and Oman, P.: "Maintainability Measurements on
Industrial Source Code Maintenance Activities," In Proc. Inter-

national Conference on Software Maintenance, pp. 295-303,
1995.

Pérez, M., Griman, A., and Losavio, F.: "Simulation-based
Architectural Evaluation for Collaborative Systems," In proc.
12the International Conference of the Chilean Computer
Science Society, pp. 204-213, 2000.

Perry, D. E. and Wolf, A. L.: "Foundations for the Study of Soft-
ware Architecture," Software Engineering Notes, vol. 17(4),
pp. 40-52, 1992.

Petriu, D., Shousha, C., and Jalnapurkar, A.: "Architecture-Based
Performance Analysis Applied to a Telecommunication System,"
IEEE Transactions on Software Engineering, vol. 26(11), pp.
1049-1065, 2000.

136

[79]

[80]

[82]

[86]

(87]

Pfleeger, S. L.: Software Engineering: Theory and Practise,
intl. ed. ISBN: 0-13-081272-2, Prentice Hall, 1998.

Ramani, S., Gokhale, S. S., and Trivedi, K. S.: "SREPT: Software
Reliability Estimation and Prediction Tool," Performance
Evaluation, vol. 39, pp. 37-60, 2000.

Reusner, R., Schmidt, H.W., Poernomo, 1. H.: "Reliability predic-
tion for component-based software architectures," Journal of
Systems and Software, vol. 66(3), pp. 241-252, 2003.

Richmond, B,: A4n Introduction to Systems Thinking. ISBN:
0-9704921-1-1, High Performance Systems Inc., 2001.

Robson, C.: Real World Research, 2nd ed. ISBN: 0-631-
21304-X, Blackwell Publishing, 2002.

Sargent, R.: "Validation and Verification of Simulation Models,"
In proc. 1999 Winter Simulation Conference, pp. 39-48,
1999.

Schmidt, D. et al. (n.d.). The ACE ORB. Retrieved , 2004.
Web site: http://www.cs.wustl.edu/~schmidt/TAO.htm

Schriber, T. J., Brunner, D. T.: How Discrete-Event Simulation
Software Works, In Banks, J.. ISBN: 0-471-13403-1, Wiley,
1998.

Shannon, R. E.: "Introduction to the Art and Science of Simula-
tion," In proc. 1998 Winter Simulation Conference, pp. 389-
393, 1998.

Shaw, M., and Garlan, D.: Software Architecture: Perspec-
tives on an Emerging Discipline. ISBN: 0-13-182957-2,
Prentice-Hall, 1996.

Smith, C. and Williams, L.: Performance Solutions. ISBN: 0-
201-72229-1, Addison-Wesley, 2002.

Sommerville, I.: Software Engineering, 6th ed. ISBN: 0-631-
21304-X, Addison-Wesley, 2001.

Svahnberg, M., Mattsson, M.: "Conditions and Restrictions for
Product Line Generation Migration," In proc. 4th International
Workshop on Product Family Engineering, pp. , 2002.

Thesen, A., Travis, L. E.: "Introduction to Simulation," In proc.
1991 Winter Simulation Conference, pp. 5-14, 1991.

Vieira, M. E. R., Dias, M. S., and Richardson, D. J.: "Analyzing
Software Architectures with Argus-1," In proc. the 2000 Inter-

national Conference on Software Engineering, pp. 758-761,
2000.

137

[88]

(89]

[90]

[91]

[92]

(93]

Voas, J. M., Miller, K.W.: "Software Testability: The New Verifi-
cation," IEEE Software, vol. 12(3), pp. 17-28, 1995.

Wang, J., He, X., and Deng, Y.: "Introducing Software Architec-
ture Apecification and Analysis in SAM Through an Example,"
Information and Software Technology, vol. 41, pp. 451-467,
1999.

Williams, L. G. and Smith, C. U.: "Performance Evaluation of
Software Architectures," In proc. Ist International Workshop
on Software and Performance, pp. 164-177, 1998.

Yacoub, Y.: "Performance Analysis of Component-based Appli-
cations," In proc. Second International Conference on Soft-
ware Product Lines, pp. 299-315, 2002.

Yacoub, S. M., Ammar, H. H., and Robinson, T.: "A Methodol-
ogy for Architectural-level Risk Assessment Using Dynamic
Metrics," In proc. International Symposium on Software
Reliability Engineering, pp. , 2000.

Zelkowitz, M. V. and Wallace, D. R.: "Experimental Models for
Validating Technology," Computer, vol. 31(5), pp. 23-31, 1998.

138

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

