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ABSTRACT
A software architecture is one of the first steps towards

a software system. The design of the architecture is impor-
tant in order to create a good foundation for the system.
The design process is performed by evaluating architec-
ture alternatives against each other. A desirable property
of a good evaluation method is high efficiency at low cost.

In this paper, we investigate the use of continuous sim-
ulation as a tool for software architecture performance
evaluation. We create a model of the software architecture
of an existing software system using a tool for continuous
simulation, and then simulate the model. Based on the case
study, we conclude that continuous simulation is not feasi-
ble for software architecture performance evaluation, e.g.,
we identified the need of discrete functionality to correctly
simulate the system, and that it is very time consuming to
develop a model for performance evaluation purposes.
However, the modeling process is valuable for increasing
knowledge and understanding about an architecture.
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1. Introduction
The software architecture is fundamental for a software

system [6, 10, 18], as it often restricts the overall perfor-
mance of the final system. Before committing to a particu-
lar software architecture, it is important to make sure that
it handles all the requirements that are put upon it, and that
it does this reasonably well. The consequences of commit-
ting to a badly designed architecture could be disastrous
for a project and could easily make it much more expen-
sive than originally planned. Bad architecture design deci-
sions can result in a system with undesired characteristics
such as low performance, low maintainability, low scal-
ability etc. 

When designing the architecture for a system, the
architect often has the possibility to choose among a num-
ber of different solutions to a given problem. Depending
on which solution is chosen, the architecture evolves in
different ways. To be able to make a proper decision, the
architect needs to identify quantifiable advantages and dis-
advantages for each one. This can be done by using, e.g.,

prototyping or scenario-based evaluation [6]. A desirable
property of a good evaluation method is high efficiency at
low cost.

In this paper we evaluate the use of continuous simula-
tion for system architecture performance evaluation pur-
poses. The main idea is that tools for continuous
simulation can be used to quickly create models of differ-
ent architecture alternatives. These models can then be
used, through simulation, to evaluate and compare differ-
ent architectures to each other. The work presented has
been conducted in co-operation with Danaher Motion Särö
(referred to as “DMS”). We have co-operated with DMS to
use the software architecture of their Automated Guided
Vehicle (AGV) system (hereafter referred to as the “DMS
system”) as a case for the research. 

Unfortunately, we found that continuous simulation
does not work very well for software architecture perfor-
mance evaluation. First, when a continuous simulation
model is used only average flow values can be used to
parameterize the model. This makes the model less
dynamic and may have the consequence that the simula-
tion model can be replaced with a static mathematical
model. Second, it is impossible to address unique entities
when using continuous simulation. This is not always nec-
essary when simulating flows of information, but if the
flows depend on factors that are discrete in their nature,
for example vehicles in an AGV system, then continuous
simulation is a bad choice. 

We do however believe that an architecture modeling
tool that incorporates some simulation functionality could
be helpful when designing and evaluating software archi-
tectures. It could, e.g., provide functions for studying data
flow rates between entities in an architecture. Such a tool
would preferably be based on combined simulation tech-
niques, because of the need to model discrete events.

The rest of the paper is structured as follows: We begin
with an introduction to software architectures in Section 2.
In Section 3, we discuss some simulation approaches, and
in Section 4, we describe two software tools for continu-
ous simulation. Next, Section 5 introduces the AGV sys-
tem domain. Section 6 describes our attempts to model
and simulate the architecture of the DMS system. In Sec-
tion 7, we have a discussion of our results, and finally, in
Section 8, we present our conclusions.



2. Software architecture
There are many different definitions of what a software

architecture is, and a typical definition is as follows [10]:
A critical issue in the design and construction of any

complex software system is its architecture: that is, its
gross organization as a collection of interacting compo-
nents. 

In other words, through the creation of a software
architecture we define which parts a system is made up of
and how these parts are related to each other. The software
architecture of a system is created early in the design
phase, since it is the foundation for the entire system.

The components in an architecture represent the main
computational elements and data storage elements. The
architecture is created on a high level of abstraction which
makes it possible to represent an entire subsystem with a
single component. The communication between the com-
ponents can be abstracted so that only the flow of informa-
tion is considered, rather than technical details such as
communication protocol etc. Individual classes and func-
tion calls are normally not modelled in the architecture.

With the creation of the software architecture, design-
ers get a complete view of the system and its subsystems.
This is achieved by looking at the system on a high level
of abstraction. The abstracted view of the system makes it
intellectually tractable by the people working on it and it
gives them something to reason around [2]. 

The architecture helps to expose the top level design
decisions and at the same time it hides all the details of the
system that could otherwise be a distraction to the design-
ers. It allows the designers to make the division of func-
tionality between the different design elements in the
architecture and it also allows them to make evaluations of
how well the system is going to fulfill the requirements
that are put upon it. The requirements on system can be
either functional or non-functional. The functional
requirements specify what function the system shall have.
The non-functional requirements include, e.g., perfor-
mance, maintainability, flexibility, and reusability. 

Software architectures are often described in an ad hoc
way that varies from developer to developer. The most
common approach is to draw elements as boxes and con-
nections simply as connecting lines. A more formal way of
defining architectures is to use an architecture description
language (ADL) that is used to describe the entities and
how they connect to each other. Examples of existing
ADL:s are ACME [9] and RAPIDE [12], which are still
mainly used for research. ADL:s have been successfully
used to describe new architectures and to document and
evaluate existing architectures [8].

A software architecture is, among other things, created
to make sure that the system will be able to fulfill the
requirements that are put upon it. The architecture usually
focuses more on non-functional requirements than on
functional ones. The non-functional requirements are for
example those that dictate how many users a system
should be able to handle and which response times the sys-

tem should have. These requirements does not impact
which functionality the system should provide or how this
functionality should be designed. They do however affect
how the system should be constructed. 

It is important to evaluate different software architec-
ture alternatives and architectural styles against each other
in order to find the most appropriate ones for the system.
There exists a number of evaluation methods, e.g., mathe-
matical model-, experience-, and scenario-based methods
[6]. The process of evaluating the software architectures is
mainly based on reasoning around the architecture and the
chosen scenarios. How successful this evaluation is
depends currently heavily on the level of experience of the
people performing it. More experienced people are more
likely to identify problems and come up with solutions.

It is during this evaluation phase that we believe that it
would be useful to use continuous simulation for evaluat-
ing the performance of software architectures. It could be
used as a way of quickly conducting objective compari-
sons and evaluations of different architectures or scenar-
ios. The advantage over other evaluation methods, for
example experience-based evaluation, is that simulation
gives objective feedback on the architecture performance. 

3. Model and simulation
A model is a representation of an actual system [5], or a

“selective abstraction” [14], which implies that a model
does not represent the system being modeled in its whole.
A similar definition is that a model should be similar to
but simpler than the system it models, yet capture the
prominent features of the system [13]. To establish the
correctness of a model, there is a need for model valida-
tion and verification. Validation is the task of making sure
that the right model has been built [3, 13]. Model verifica-
tion is about building the model right  [3, 15]. 

A simulation is an imitation of the operation of a real-
world process or system over time [5, 13, 20]. A simula-
tion can be reset and rerun, possibly with different input
parameters, which makes it easy to experiment with a sim-
ulation. Another important property of simulation is that
time may be accelerated, which makes simulation experi-
ments very efficient [17].

The state of a simulation is a collection of variables that
contain all the information necessary to describe the sys-
tem at any point in time [4]. The input parameters to a sim-
ulation are said to be the initial state of the simulation. The
state is important for pausing, saving, and restoring an
ongoing simulation, or for taking a snapshot of it. A simu-
lation model must balance the level of detail and number
of state variables carefully in order to be useful. The goal
is to find a tradeoff between simplicity and realism [13].

Continuous simulation is a model in which the system
changes continuously over time [20]. A continuous simu-
lation model is characterized by its state variables, which
typically can be described as functions of time. The model
is defined by equations for a set of state variables [5], e.g,



dy/dt = f(x, t). This simulation technique allows for
smooth system simulation, since time is advanced continu-
ously, i.e. changes occur over some period of time.

When using the discrete simulation technique, time is
advanced in steps based on the occurrence of discrete
events, i.e., the system state changes instantaneously in
response to discrete events [13, 20]. The times when these
events occur are referred to as event times [4, 16]. In an
event-driven discrete simulation, events are popped from a
sorted stack. The effect of the topmost event on the system
state is calculated, and time is advanced to the execution
time of the event. Dependent events are scheduled and
placed in the stack, and a new event is popped from the top
of the stack [11]. With the discrete simulation technique,
the ability to capture changes over time is lost. Instead, it
offers a simplicity that allows for simulation of systems
too complex to simulate using continuous simulation [20]. 

Combined continuous-discrete simulation is a mix of
the continuous and discrete simulation techniques. The
distinguishing feature of combined simulation models is
the existence of continuous state variables that interact in
complex or unpredictable ways with discrete events. There
are mainly three fundamental types of such interactions
[1, 11]: (i) a discrete event causes a change in the value of
a continuous variable; (ii) a discrete event causes a change
in the relation governing the evolution of a continuous
variable; and (iii) a continuous variable causes a discrete
event to occur by achieving a threshold value.

A software system can be modeled and simulated using
either discrete or continuous simulation techniques. When
looking at the software architecture of a system, communi-
cation between the components can be viewed as flows of
information, disregarding discrete events. By leaving out
the discrete aspects of the system, continuous simulation
can be used to study information flows. It is our assump-
tion that it is simpler to model a software architecture for
continuous than for discrete simulation, because low-level
details can be ignored.

A good example of a low-level detail is a function call,
which is discrete since it happens at one point in time. By
looking at the number of function calls during some
amount of time, and the amount of data sent for each func-
tion call, the data transferred between the caller and the
callee can be seen as an information flow with a certain
flow rate. Some reasons that make this advantageous are:

• It is valid to consider an average call frequency and 
to disregard variations in call interval etc.

• Multiple function calls between two components can 
be regarded as one single information flow.

• Accumulated amounts and average values are often 
interesting from a measurement perspective.

4. Software tools
Once a model has been constructed, we want to run it to

see what results it produces. If it is a simple model then it
might be possible to simulate it using pen and paper or

perhaps a spreadsheet. But if the model is too complex for
“manual” execution then it becomes necessary to use some
kind of computer aid. Since we in this paper focus on the
possibilities of using continuous simulation in architecture
evaluation, we look at GUI-based general-purpose simula-
tion tools that require little knowledge about the underly-
ing mathematical theories. 

The first tool that we evaluated was the STELLA 7.0.2
Research simulation tool, which is a modeling and simula-
tion software for continuous simulation that is created and
marketed by High Performance Systems Inc. The second
tool was Powersim Studio Express 2001, created by Pow-
ersim. This is a similar tool that offers more functionality
than STELLA as it is based on combined simulation, and
has some more advanced features. Both tools are based on
the concept of Systems Thinking [14] for the creation of
models, and both programs are capable of performing the
simulation directly in the program and also to perform
some basic analysis. 

In both STELLA and Powersim, models are con-
structed from a number of basic building blocks which are
combined in order to build a model. The model is simu-
lated by the use of entities that are sent through the model.
The flow of entities can then be measured and analyzed.
We use snapshots of the STELLA tool, but they look very
similar in Powersim and they work in a similar fashion. In
Figure 1 we show the five basic building blocks Stock,
Flow, Converter, Connector, and Decision Process.

Stocks are used to represent accumulation of entities
various ways. Flows are used to connect stocks and to
enable and control the flow of entities between them. Con-
verters are often used in order to modify the rate of flows,
and to introduce constants in a model. Connectors are used
to connect, e.g., stocks and flows so they can exchange
information. To make a model less complex it is possible
to hide parts of it by using decision processes. 

Once the model is completed it is possible to run it.
Both Powersim and STELLA are capable of accelerating
the simulation time. The tools can visualize simulation
outputs and results as the simulation runs, e.g., time-
graphs, time-tables and value labels. Powersim also has
the possibility to export results to a standard file format.

We used Powersim for the following three reasons: (i)
Powersim has the ability to check the consistency of the
model via the use of units on every flow; (ii) Powersim
offers the possibility to create discrete flows and visually
distinguish them in a model; and (iii) STELLA crashed
repeatedly when we tried to use the decision process func-
tions, and also sometimes even during normal work. The
unreliability of the tool made us hesitant to use STELLA.

Figure 1: Examples of basic building blocks.



5. AGV systems
An AGV (Automated Guided Vehicle) system is an

automatic system that usually is used for materials han-
dling in manufacturing environments, e.g., car factories
and metal works. They are however not restricted to these
environments and can be used in very different environ-
ments such as hospitals and amusement parks. 

An AGV is usually a driverless battery-powered truck
or cart that follows a predefined path [7]. A path is divided
into a number of segments of different lengths and curva-
tures. There can be only one vehicle on a segment at any
given time. The amount of computational power in a vehi-
cle may vary depending on how advanced the behavior of
the vehicle is. With more computational power, it is possi-
ble to let the vehicle be autonomous. However, computa-
tional power costs money, and with many vehicles, a
computationally strong solution can be expensive. 

The management and control of the AGV system is
usually handled by a central computer that keeps track of
all the vehicles and their orders. This computer maintains
a database of the layout of the paths that the vehicles can
use to get to their destinations [7]. With this information it
acts as a planner and controller for all the vehicles in the
system, routing traffic and resolving deadlocks. The cen-
tral server gets orders from, e.g., production machines that
are integrated with the AGV system.

In order for the AGV system to work it must be possi-
ble to find the position of the vehicles with good precision.
This is achieved by the use of one or more positioning and
guidance systems, e.g., electrical track, optical guidance,
and magnetic spots. With electrical track guidance, the
vehicle path is defined by installing a guidance wire into
the floor of the premises. Optical guidance is achieved for
example by the use of a laser positioning system which
uses reflectors placed on the walls of the premises in order
to calculate an accurate position of the AGV as it moves.
Magnetic guidance works by the use of magnetic spots,
which are placed on the track. The vehicles have magnetic
sensors that react on the presence of the spots. 

In an AGV system it is desirable to minimize the com-
munication between the server and the clients. The choice
of communication strategy affects the amount of informa-
tion that is communicated in the system. 

An early communication strategy was to let the vehi-
cles communicate with the server only at certain desig-
nated places. As a result, the vehicles can only be
redirected at certain points, since the server has no control
of a vehicle between communication spots. A more
advanced way of communicating is via the use of radio
modems. The early modems however had very low band-
width, which imposed limitations on the amount of infor-
mation that could be transferred. This limitation has
diminished as advancements made in radio communica-
tion technology have increased the amount of available
bandwidth. The next step in communication is to make use
of cheaper off-the-shelf hardware such as wireless LAN,

e.g., IEEE 802.11b. An advantage with using such a strat-
egy is that an existing infrastructure can be used. 

We mention here two alternative ways to design an
AGV system, and they are interesting because they repre-
sent the extremes of designing a system architecture. The
goal of a centralized approach is to put as much logic in
the server as possible. Since the vehicles cannot be totally
free of logic (they have to have driving logic at least), the
centralized approach is in practise distributed. However,
we may choose different degrees of centralization by
transferring modules from the vehicle logic to the server
logic. In an entirely distributed approach there is no cen-
tralized server, thus making the system less vulnerable to
failure. This requires all information in the system to be
shared among, and available to, all vehicles, which can be
realized, e.g., by using a distributed database solution.

6. The experiment
The architecture studied is a client-server architecture

for a system that controls AGVs. The server is responsible
for such tasks as order management, carrier management,
and traffic management. It creates “flight plans” and
directs vehicles to load stations. The vehicles are “dumb”
in the sense that they contain no logic for planning their
own driving. They fully rely on the server system. A more
in-depth explanation of the system can be found in [19].

The communication between server and clients is han-
dled by a wireless network with limited capacity, set by
the radio modems involved. Topics of interest are for
example:

• Has the network capacity to handle communication 
in highly stressed situations with many vehicles?

• Can the system architecture be altered so less traffic 
is generated? 

• Can the system share an already present in-use wire-
less LAN? 

With this in mind, we decided to simulate the architec-
ture with respect to the amount of generated network traf-
fic. The intention is to provide a means for measuring how
communication-intense a certain architecture is. 

6.1. The system behavior
The purpose of the studied system is to control a num-

ber of AGVs. The AGVs must follow a pre-defined track
which consists of segments. A fundamental property of a
segment is that it can only be “allocated” to one AGV at a
time. Sometimes, several segments can be allocated an
AGV to prevent collisions. The primary controlling unit
for the system is an order. An order usually contains a
loading station and an unloading station. Once an order
has been created, the server tries to assign a vehicle to the
order and instructs the vehicle to carry it out. During the
execution of an order, the vehicle is continuously fed seg-
ments to drive.



In certain situations, deadlock conflicts can arise. A
deadlock occurs, e.g., when two vehicles are about to drive
on the same segment. A traffic manager tries to resolve the
deadlock, according to a set of deadlock avoidance rules.
As the number of vehicles involved in the deadlock
increases, it becomes harder and harder for the traffic
manager to resolve the situation.

Each vehicle, i.e., each client, contains components for
parsing drive segments fed from the server, controlling
engines and steering, locating itself on the map etc. The
vehicle is highly dependent on the drive commands sent
from the server; if the segment-to-drive list is empty, it
will stop at the end of the current segment. If the vehicle
gets lost and can’t rediscover its location, it will also stop.

The communication between server and clients is mes-
sage-based. The server sends vehicle command messages
to control the vehicles, and the vehicles respond to these
with vehicle command status messages. There are also sta-
tus messages, which are used to report vehicle status. 

6.2. The model
We will look at the flow of information over the net-

work in the system architecture. Thus, the communication
network plays a central role in the model, and the purpose
of all other entities is to generate input traffic to the net-
work. The network traffic in a client-server system has
two components; server generated traffic and client gener-
ated traffic. However, when measuring the network utili-
zation, the sum is interesting. In our model, the network
traffic is modelled as a whole. Further, the network is more
or less a “black hole”, since the output is discarded. 

Prior to constructing the model we had basic knowl-
edge of the behavior of both the server architecture and the

client architecture, e.g., which components that communi-
cate over the network. However, we had only vague
understanding of what caused communication peaks and
which communication that could be considered “back-
ground noise”. Therefore, we studied a version of the cur-
rent client-server system. The server system can handle
both real and simulated AGVs, which allowed us to run a
simulation of the real system in action, but with simulated
vehicles instead of real ones (30 vehicles were simulated). 

An example of logged network traffic can be seen as
the solid line in Figure 2 (the y-axis has no unit, because
the purpose is only to show the shape of the traffic curve).
In the left part of the diagram, all AGVs are running nor-
mally, but in the right part they are all standing still in
deadlock. Except for the apparent downswing in network
traffic during deadlock, no obvious visual pattern can be
found. When analyzing the traffic, we found that normal
status messages are responsible for roughly 90% of the
traffic, and that the number of status messages and the
number of vehicle command messages fluctuate over time.
However, the number of vehicle command status mes-
sages seems to be rather stable regardless of system state
(e.g. normal operation vs. deadlock). 

We sought reasons for the traffic fluctuations, and
examined the log files generated. We found a connection
between order allocations and network traffic. An order
allocation takes place when a vehicle is assigned to a new
order, and this causes an increase in traffic. In Figure 2, a
correlation between the order allocations (dotted line) and
the network traffic (solid line) is observed. In particular,
during the deadlock there are no order allocations at all.
Mathematically, the correlation is only 0.6, which is not
very strong but enough for us to let order allocations play

Figure 2: Example of network traffic during a system run, with 
order allocations superimposed on the traffic diagram. 



the largest role in the model. The reason for an upswing in
traffic when an order allocation takes place is simple; it
changes the state of a vehicle from “available” to “mov-
ing”, and in the latter state the traffic per vehicle is higher.

The network is modelled as a buffer with limited stor-
age capacity. It holds its contents for one second before it
is released. Immediately before the network buffer is a
transmission buffer to hold the data that cannot enter the
network. If the network capacity is set too low, this buffer
will be filled. In a real system, each transmitting compo-
nent would have a buffer of its own, but in the model the
buffer acts as transmission buffer for all components. 

To model network congestion, the network buffer outlet
is described by a function that depends on the current net-
work utilization, e.g., it releases all network data up to a
certain utilization limit, and thereafter gradually releases
less data as the utilization increases. The data that remains
in the network buffer represents data that in a real system
would be re-sent. A visual representation of the modeled
network is seen to the left in Figure 3. The entity “Net-
work indata” in Figure 3 is at every time the sum of all
traffic generated in the model at that time. 

The primary controlling unit for the system is an order,
and order allocations generate network traffic. The amount
of traffic generated also depends on how many vehicles
that are available, processing orders, and in deadlock.
Therefore, we need constructs for the following:

• Order generation
• Order allocation

• Available vs. non-available vehicles
• Deadlock
Orders can be put into the system automatically or

manually by an operator. We have chosen to let orders be
generated randomly over time, but with a certain fre-
quency. Each time an order is generated, it is put in an
order buffer. As orders are allocated to vehicles, the num-
ber of orders in the buffer decreases. The order component
and the order allocator is shown to the right in Figure 3. 

For an order allocation to take place, there must be at
least one available order, and at least one available vehi-
cle. Then, the first order in queue is consumed and the first
available vehicle is moved to the busy-queue. The busy
queue contains several buffers to delay the vehicles’ way
back to the buffer for available vehicles and a mechanism
for placing vehicles in deadlock. In the deadlock mecha-
nism each vehicle runs the risk of being put in a deadlock
buffer. The risk of deadlock increases as more and more
vehicles are put into the deadlock buffer. Once in dead-
lock, each vehicle runs the chance of being let out of the
deadlock again. The chance for this to happen is inversely
proportional to the number of vehicles in deadlock. Figure
4 shows the construct describing the vehicle queues and
the deadlock mechanism. 

The remaining parts of the model fill the purpose of
“gluing” it together. They are simple constructs that, given
the current state of vehicles, generate the proper amounts
of traffic to the network.

Figure 3: Network component (left), and Order component and order allocator (right).

Figure 4: Vehicle queues and deadlock mechanism. 



6.3. Simulation parameters and results
In the current system, each vehicle is equipped with a

modem capable of transmitting 19 200 bps, while both the
network and the server system have higher capacity. We
therefore chose to set the network speed to 2 400 byte/s
(19 200 bps) in the simulation, since the first step was to
build a model that approximates the real system, rather
than to study the impact of different network speeds.

In our simulation, we let the order creation probability
be high enough to ensure that there is always at least one
order in queue when a vehicle becomes available. The
average order processing time is set to 230 seconds. This
is based on the average order processing time in the real
system when run with 1 vehicle. 

The probability for a vehicle to enter deadlock is set to
 where x is the number of vehicles

currently in deadlock, i.e., the probability increases as
more vehicles enter deadlock. The probability for a vehi-
cle to leave deadlock is set to  where y is the
number of vehicles currently in deadlock, i.e., the more
vehicles involved in a deadlock, the harder it is to resolve.

Table 1 contains data points measured in the real sys-
tem in standby state, i.e., when no vehicles were moving.
As seen in Figure 5, the traffic is linearly related to the
number of vehicles. The situation when all vehicles are
standing still is assumed to be similar to a deadlock situa-
tion, at least traffic-wise.  

Table 2 contains data points measured in moving state.
In Figure 5, we see that this traffic does not appear to be
linearly related to the number of vehicles. We suspect that
this has to do primarily with deadlock situations when the
number of vehicles is high. Otherwise it would mean that
for some certain number of vehicles (more than 30), there
would be no increase in traffic as more vehicles are added
to the system.  

To sum up, the traffic generated in different situations
is as follows, deduced from the data in Tables 1 and 2:

• Available vehicles and vehicles in deadlock generate 
on average 1.2 bytes/s of status messages per vehicle.

• Vehicles processing orders generate on average 17 
bytes/s of status messages per vehicle.

• The server sends 3.2 bytes/s of command messages 
per running vehicle.

• Each vehicle sends 0.5 bytes/s of command response 
status messages in standby state and 0.33 bytes/s in 
moving state.

We ran the simulation for different periods of time,
varying between 10 minutes and 10 hours. The behavior of
the model is rather predictable, as Figure 6 depicts. With
the limited set of controllable parameters in the model,
patterns in the simulation output are more apparent and
repetitive than in output from the real system. An impor-
tant reason for this is that we cannot take segment lengths,
vehicle position and varying order processing time into
account in the model. Furthermore, there may also be fac-
tors affecting the network traffic that we have not found.

One reason that we cannot say much about the simula-
tion results, is that its inputs do not match the inputs to the
real system. In other words, we cannot validate the model

Table 1: Traffic generated in standby state (avg. bytes/s)

No. of 
vehicles

Status 
msg.

Command 
msg.

Command 
status msg.

0 0 0 0
1 1.2 0 0.5
5 6.0 0 2.5

10 12.0 0 5.0
20 24.0 0 10.0

Penter 1 0 99, x 1+–=

Pleave 0 2, y=

Table 2: Traffic generated in moving state (avg. bytes/s)

No. of 
vehicles

Status 
msg.

Command 
msg.

Command 
status msg.

0 0 0 0
1 19.0 3.4 0.2
3 54.8 9.6 0.7
5 92.5 16.8 1.2
8 138.2 27.2 2.2
10 187.8 33.6 3.3
13 211.8 39.8 4.2
20 298.9 52.7 7.5
30 335.0 59.5 10.1
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Figure 5: Relation between number of vehicles 
and the generated traffic.
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using the simulation results. Even if we could extract all
external inputs to the real system, they would not all apply
directly to the model because of the approximations made. 

In the simulation output in Figure 6, we see that the
average network utilization in the simulation is higher than
in the real system (Figure 5). The reason is that the model
keeps vehicles busy as the number of vehicles increase,
while the real system is not because of the fact that dead-
locks and conflicts occur more often there. The lack of
variation in the traffic diagram in Figure 6 is an effect of
the fixed order processing time, and the fact that vehicles
do not enter deadlock until the end of the busy loop. 

6.4. Problems with the approach
One fundamental problem with the simulation tech-

nique we have focused on, is that it is not possible to dis-
tinguish between single “entities” that make up flows in
the simulation. An example is the balance of available
vehicles and vehicles in use. The time it takes for a vehicle
to process an order has to be set to some average time,
because the tool does not allow us to associate a random
process time with each vehicle. This has to do with the fact
that, in continuous simulation, entities are not atomic. 

A possible solution in our case would be to let each
vehicle be a part of the model instead of being an entity
that flows through the model. In such a model, however,
the complexity would increase with the number of vehi-
cles. In particular, to change the number of vehicles in the
model, one would have to modify the model itself, rather
than just one of its parameters.

One of the simulation parameters is the total number of
vehicles in the system. The number of vehicles must be
chosen carefully, as it has great impact on the efficiency of
the system as a whole. In addition, it is not possible to add
an arbitrary number of vehicles without taking into consid-
eration the size and complexity of the segment map. 

As mentioned, the processing time for an order is set to
a fixed value due to limitations in the tool (and simulation
technique). In the real system, the processing time depends

on a number of factors, e.g., the vehicle’s location, the size
of the map, and where the loading stations are

Parameters that have to do with the segment map, such
as number of segments and segment lengths, are not
included in the model at all. For the same reason as the
processing time for an order is fixed, it had not been possi-
ble to include other than average values. 

In an architecture, the primary entities are components
that act together as a whole system. Connections between
components can be of the same importance as compo-
nents, but can also be assumed to simply exist when
needed. A reason for this may be that connections can be
realized by standardized protocols, e.g., CORBA. In a
simulation model like the one we have created, the con-
nections control how data are moved, and components are
often merely data generators or data containers, e.g., see
the network component in Figure 3. It represents a connec-
tion, but is not modeled as a simple connector. Instead, it is
a complex unit to show the characteristics it is supposed to
have. Thus, the components of the model do not map the
components of the architecture very well.

7. Discussion
We have found that the part of the simulation process

that was most rewarding was to develop the model. When
creating the model, you are forced to reflect over the
choices that has to be made in the architecture, resulting in
a deepened understanding of the system that helps to iden-
tify potential points of concern.

When creating a model of a system, lots of decisions
are taken to simplify it in order to speed up the modeling
process. A simplification of some system behavior may be
valid to make, but if it is erroneous it may as well render
the model useless. Therefore, each step in the modeling
has to be carefully thought through, something that slows
down the entire modeling process. 

A model easily becomes colored by the opinions and
conceptions of the person that creates the model. Two per-
sons may model the same system differently from each
other, which indicates that it is uncertain whether or not a
model is correct. Model verification and validation (see
chapter 3) are the apparent tools to use here, but it is still
inefficient to risk that a model is not objectively con-
structed. Therefore, we recommend that modeling always
should be performed in groups.

While experimenting with the simulation tool, we have
found that the ability to simulate a system is a good way to
provide feedback to the modeler. It is possible to get a
feeling for how the system is going to behave, which is a
good way to find out if something has been overlooked in
the architecture model. We believe this is independent of
the method of simulation that is being used. 

While building our experiment model we found that a
library of model building blocks would have been of great
help. The availability of a standardized way of modeling
basic entities such as processes, networks, etc. would bothFigure 6: Output from a simulation of 30 vehicles.



speed up the modeling process and allow modelers to
focus on the architecture instead of the modeling.

When simulating a software architecture, the focus can
be put on different aspects, e.g., network or CPU utiliza-
tion. The choice of aspect dictates what in the model that
has to be modeled in detail. In our experiment, we chose to
look at network utilization, and therefore it is the commu-
nication ways in the architecture that have to be specifi-
cally detailed. This is noticeable in that communication
channels in the model are complex structures rather than
simple lines as in an architecture diagram.

8. Conclusions
In this paper we have evaluated the applicability of

continuous simulation as a support tool during evaluation
of software architectures. Unfortunately, we conclude that
continuous simulation does not fit for evaluation of soft-
ware architectures. There are three reasons that make us
come to this conclusion.

First, if continuous simulation is to be used, then we
have to use average flow values when we parameterize the
model. This makes the model become less dynamic and
may have the consequence that the simulation model can
be replaced with a static mathematical model. 

Second, it is impossible to address unique entities when
using continuous simulation. This is not always necessary
when simulating flows of information, but if the flows
depend on factors that are discrete in their nature, for
example vehicles in an AGV system, then continuous sim-
ulation is a bad choice. 

Third, the process of creating a model for simulation
takes considerable time. Since an architecture evaluation
generally has to be completed within a limited time, mod-
eling becomes an impractical and uneconomical activity to
perform during an evaluation.

We do, however, still believe that an architecture mod-
eling tool that incorporates some simulation functionality
could be helpful when designing software architectures. It
could for example provide functionality for studying data
flow rates between entities in an architecture. Such a tool
would preferably be based on combined simulation tech-
niques, because of the need to model discrete factors.
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