
A Method for an Accurate Early Prediction of Faults in Modified Classes

Piotr Tomaszewski, Håkan Grahn, Lars Lundberg
School of Engineering

Blekinge Institute of Technology
SE-372 25 Ronneby, Sweden

{piotr.tomaszewski, hakan.grahn, lars.lundberg}@bth.se

Abstract

In this paper we suggest and evaluate a method for
predicting fault densities in modified classes early in
the development process, i.e., before the modifications
are implemented. We start by establishing methods that
according to literature are considered the best for
predicting fault densities of modified classes. We find
that these methods can not be used until the system is
implemented. We suggest our own methods, which are
based on the same concept as the methods suggested in
the literature, with the difference that our methods are
applicable before the coding has started. We evaluate
our methods using three large telecommunication
systems produced by Ericsson. We find that our
methods provide predictions that are of similar quality
to the predictions based on metrics available after the
code is implemented. Our predictions are, however,
available much earlier in the development process.
Therefore, they enable better planning of efficient fault
prevention and fault detection activities.

1. Introduction

A majority of software systems evolve during their
lifetime. This system evolution causes many changes
to be introduced in the original source code. Such code
modifications are an important source of faults [9, 13,
20, 21]. It is widely known that faults are one of the
major cost drivers in software development projects.
Activities connected with fault handling account for a
significant part of the project budget, e.g., in the study
reported in [4] 45% of the project resources were
devoted to testing and simulation. Therefore, any
method that reduces the cost associated with faults
handling is likely to bring significant project cost
savings.

The fact that about 60%-80% of the faults can be
found in about 20% of the code modules [1, 11] and
that about half of the code modules are usually defect

free [1] shows that there is a potential for savings if we
manage to focus our fault handling efforts on the
portion of the code that actually contains faults. A
popular method for identifying fault-prone code is
using a fault prediction model (e.g., [6, 11, 13-15, 22]).
If we assume that the cost of finding faults in a class is
proportional to the size of the class (like in [2, 3]) then,
by selecting classes with the highest fault densities,
such a prediction model increases the fault detection
efficiency (i.e., the number of faults found per amount
of code analyzed). As a result, more faults are removed
within a given budget. Therefore, in this study we build
models that predict fault density.

Fault prediction models are usually based on
different characteristics of the software, e.g., design or
code metrics (e.g., [6, 22]). Some of those metrics are
available only after the system is implemented, e.g.,
the number of lines of code or McCabe complexity [7].
There are also metrics that are available before the
coding has started. For example, many design metrics,
like the number of methods or coupling [5], can be
calculated from the design documentation. Prediction
models based on such design metrics are able to
identify fault-prone classes even before these classes
are actually modified. Being able to identify the most
fault-prone classes so early in the development process
makes it possible to apply preventive measures to such
classes. For example, they can be assigned to more
experienced developers or an increased number of code
reviews/inspections can be planned for such classes.

There are a lot of studies that attempt to predict
faults in the modified code units [8, 10, 17, 19-21].
One general conclusion from these studies is that the
most promising indicator of fault density of a modified
code unit is the relative size of the modification of this
code unit, i.e., the size of the modification divided by
the size of the whole code unit (see Section 2 for
details concerning these studies).

In this paper we apply the idea of a relative
modification size to the metrics that are available

22nd IEEE International Conference on Software Maintenance (ICSM'06)
0-7695-2354-4/06 $20.00 © 2006

before the system is implemented. We define a number
of metrics, available at design time, that approximate
the relative size of the modification. We evaluate their
ability to predict fault densities of classes before these
classes are implemented. We show that our metrics are
able to predict fault densities of classes with accuracy
similar to the accuracy of a prediction based on metrics
that are available after the code is implemented.

Our evaluation is based on data describing three
releases of two telecommunication systems developed
by Ericsson. These are large systems (about 1000
classes, 500 KLOC each) that are mission-critical for
mobile network operators. Because of that, they
undergo extensive and therefore expensive quality
assurance before they are released to the market. The
systems are mature and have been available on the
market for over six years.

The rest of the paper is structured as follows: in
Section 2 we present work that has been done by others
in the area of fault prediction in modified code. Section
3 describes the metrics we have defined to predict fault
densities in modified classes. In Section 4 we present
our evaluation method. Section 5 presents the results of
the evaluation. In Section 6 we discuss our findings. In
the last section (Section 7) we present the most
important conclusions from our study.

2. Related work

As we indicated in the introduction there is a lot of
research that aims at predicting faults in evolving
systems. Nagappan and Ball [10] evaluated the
applicability of relative code churn measures to predict
the fault densities of software units. As relative code
churn measures they understand the amount of code
change normalized by the size of the code unit the
change was introduced to. Their study was based on
the code churn between Windows Server 2003 and
Windows Server 2003 Service Pack 1. The authors
concluded that the relative code churn measure could
be used as predictor of a system’s fault density. The
measures described in [10] are typical code metrics. To
calculate them the system must be implemented, which
limits the usage of the prediction models to after the
system is implemented.

Munson and Elbaum [9], analyzed large software
system and they also noticed that relative measures are
very good predictors of the fault-proneness of modified
code. The metric they evaluated was the relative
complexity of modified modules. They showed that
this metric was highly correlated with the fault density.

Selby [17] reached a similar conclusion. He
observed that the number of faults in a modified class
tends to increase with the size of the modification of

the class. The information about the modification of a
file was also considered very useful by Ostrand at al.
[12]. They noticed that modified files are very fault-
prone – more fault prone than new files.

We also performed studies [19, 21], in which we
built models that predict fault densities in modified
classes. We found that the most promising metric for
estimating the number of faults in the modified code
was the size of the modification, which we calculated
as a number of new and modified lines of code in the
class. As a consequence, the best fault density
prediction metric was the relative modification size,
obtained by dividing the size of the modification by the
size of the class.

In all studies described above the faults are
predicted in modified code, but only after the system is
implemented. There are also studies that report
promising results when it comes to predicting faults
before the implementation has started. For example,
Zhao at al. [22] compared the accuracy of fault
prediction using design metrics with the accuracy of
fault prediction using code metrics. The authors
concluded that the results obtained from models based
on design metrics are even more accurate than the
results obtained using code metrics only. The authors,
however, did not say if the modules analyzed were new
or modified. Also the design metrics collected are
mostly different SDL related metrics (the number of
SDL diagrams, the number of task symbols in SDL
descriptions, etc.), which limits their usage to systems
designed using SDL.

There are studies that evaluate the applicability of
other metric suits to predict faults. For example, Yu et
al. [15] evaluated the applicability of the most common
object-oriented metrics for predicting the number of
faults. The authors obtained rather promising results
but their study was based on new classes only.

To check if object-oriented metrics are also
applicable for predicting faults in modified code we
performed a study [20], in which we compared the
accuracy of fault predictions using object oriented
metrics with the accuracy of predictions using code
metrics. It turned out that our results were similar when
we used design or code metrics that described the
characteristics of a final system. However, when we
introduced the code metric describing the size of
modification, it largely increased the quality of
prediction using code metrics. This metric, alone,
achieved higher prediction accuracy than all metrics
describing the characteristics of a final system
combined into one multivariate prediction model.
Therefore, we concluded that to improve the quality of
early (i.e., available before implementation) prediction
of faults we must look for metrics that:
• describe the characteristics of the modification

22nd IEEE International Conference on Software Maintenance (ICSM'06)
0-7695-2354-4/06 $20.00 © 2006

• are available before the implementation is done
In this paper we suggest such metrics and we

evaluate their ability to predict fault proneness of
modified classes.

3. Predictor metrics

As we indicated in previous sections, our goal is to
find metrics that are available at the time when the new
release of the system is already designed, but not yet
implemented. The metrics should describe the relative
size of modification (RelMod), i.e., the size of the
modification divided by the size of the class:

)Size(Class
ication)Size(ModifRelMod = (1)

In studies where the prediction is performed after
the code is implemented, such a metric was shown to
be very successful for predicting fault densities of
modified files (see Section 2 for details). However, the
task of obtaining such a metric is significantly simpler
when the code is implemented. At that time we can
simply measure Size(Modification), i.e., the number of
added and changed lines of code in the class, and
Size(Class), i.e., the number of code lines in the class.
Both values are easily available from version control
systems. However, at the design time none of these
metrics are available. For that reason, they must be
approximated by some other metrics.

Typically size metrics measure the length of code
and therefore they are based on counting the number of
some language constructs, e.g., the number of
statements, the number of code lines, or the number of
operands. Even though all these metrics do not
measure exactly the same thing, they usually tend to be
highly correlated, which makes it possible to predict
one of them using another. One size metric of that kind
that is available from the design documentation is the
number of methods (NoM). This metric was shown to
be a very good predictor of the final size of the system
measured in the number of code lines [16].

In our study two metrics are based on the concept of
counting methods:

• NoM– the Number of Methods in the Class, which
we use as a Size(Class) metric

• NoACM – the number of Added or Changed
Methods in the Class, which we use as a
Size(Modification) metric

One can argue that one problem with using NoM as
a size metric is that the average size of a method (in
lines of code) may be different in different classes.

Studies like [16] show, that these differences tend to
average out at the project level. However, since for
modified classes we actually have information about
the average size of the method, we decided to check if
using this information improves the accuracy of a
prediction. The average size of a method can be
calculated from the previous release of the system.
Therefore, we introduced a new metric ApproxSize
(approximated size of the class) which we define in the
following way:

PrevRel

PrevRel
CurRel NoM

Size
NoMApproxSize •= (2)

where CurRel indicates that the metric concerns the
release for which we perform predictions, while
PrevRel indicates that a certain metric concerns the
previous release of the system. Obviously, we use
ApproxSize as Size(Class) metric.

Based on the metrics introduced above (NoM,
NoACM, and ApproxSize) we defined two metrics
describing the relative size of the modification.

The first one, RelModNoM, measures the
modification as the number of new or modified
methods in the class in relation to the number of all
methods in the class:

NoM
NoACMRelMod NoM = (3)

The second one, RelModApproxSize, uses the
ApproxSize metric to approximate the size of the class.
Therefore, RelModApproxSize is defined in the following
way:

ApproxSize
NoACMRelModApproxSize = (4)

4. Evaluation method

The evaluation of our metrics is performed using
the data collected from three releases of two large
telecommunication systems developed by Ericsson.
From now on, we call these systems System A1,
System A2, and System B, where System A1 and
System A2 are two consecutive releases of one system.
As we indicated in Section 1, these systems are large,
they comprise of about 1000 classes and about half a
million code lines each. In the releases under study a
significant amount of code was introduced as a
modification of already existing classes. In System A1
44% of the code was introduced as the modifications of
existing classes, in System A2 43% of the code

22nd IEEE International Conference on Software Maintenance (ICSM'06)
0-7695-2354-4/06 $20.00 © 2006

introduced in this release was introduced in existing
classes. In System B 37% of the code written in this
release was written in existing classes. An interesting
thing is that 78%, 60% and 62% of faults that were
found in System A1, System A2, and System B,
respectively, were located in modified classes. This
clearly suggests that modified classes are an important
source of faults.

We evaluate our metrics (RelModNoM,, and
RelModApproxSize) from the perspective of their
applicability to predict the fault proneness of modified
classes. We order classes in the order of their
decreasing fault density. We evaluate the different
metrics by plotting the percentage of faults that would
be detected if analyzing a system according to its
suggestion against the accumulated percentage of the
code that would have to be analyzed. Since our
prediction method is meant for modified classes in our
evaluations we use only modified classes from the
respective systems.

To obtain a point of reference for our evaluations,
we introduce two theoretical reference models:
- Random model – the model describing a

completely random search for faults
- Best model – the model that makes only the right

choices about which classes to analyze first
The Random model provides a baseline for

evaluating our predictions, as it describes what results,
on average, we could expect if we analyzed the code
not following any model at all. On average, by
analyzing n% of code we find n% of faults. Therefore,
the Random model looks the same for all systems. By
comparing the performance of our prediction with the
Random model we can see if our prediction method
provides an improvement over not using any prediction
method at all.

The Best model provides a boundary of how good
the prediction can be. In this theoretical model the code
units are selected according to their actual fault
density. The Best model looks differently for different
systems, because it depends on the actual distribution
of faults in the system. By comparing the performance
of our prediction with the Best model we can see how
far our prediction is from the best possible prediction.

The models described above are theoretical models.
Other studies (see Section 2 for details) indicate that
the best prediction practically available can be obtained
by using the actual relative size of code modification.

Therefore, we additionally include this metric as a
point of reference. The relative size of code
modification (RelModCode) is defined as:

NoLOC
NoACLOCRelModCode = (5)

where NoACLOC is the number of added and
changed lines of code in the class, while NoLOC is the
total number of lines of code in the class. The reader
must bear in mind that RelModCode is available only
after the code is implemented. It can be seen as the
current “state-of-the-art” in prediction of fault densities
in the modified classes. Therefore, it is not evaluated in
our study but it is included in our evaluations as a point
of reference.

5. Results

The results of the evaluation using System A1 are
presented in Figure 1. As can be noticed, there is no
visible difference in the prediction quality between our
metrics (RelModNoM and RelModApproxSize) and the
relative modification metric measured after the code is
implemented (RelModCode). This indicates that the fault
densities of the classes in System A1 could be
predicted equally accurately before the system was
implemented and after the system was implemented.
There is no obvious difference between the
performance of RelModNoM and RelModApproxSize.

On average, our prediction models provide about
half of the maximum possible improvement over the
Random model. This is not any formal quantification,
but an observation based on the fact that in Figure 1
our predictions are placed more or less half way
between the Random model and the Best model.

The results of evaluation using System A2 are
presented in Figure 2. By analyzing Figure 2 we can
see that RelModCode and RelModApproxSize predict fault
densities with a similar accuracy. Therefore, the best
prediction available before the code is implemented
gives similar results as the best prediction available
after the code is implemented. The accuracy of
RelModNoM is actually similar to the accuracy of the
two remaining prediction models, apart from between
30% and 40% of code where it is clearly worse.

22nd IEEE International Conference on Software Maintenance (ICSM'06)
0-7695-2354-4/06 $20.00 © 2006

System A1

0

20

40

60

80

100

0 20 40 60 80 100

% of code

%
 o

f f
au

lts

Best model

RelModCode

RelModApproxSize

RelModNoM

Random

Figure 1. Evaluation of the applicability of metrics to predict the fault-densities of modified classes in
System A1.

System A2

0

20

40

60

80

100

0 20 40 60 80 100
% of code

%
 o

f f
au

lts

Best model
RelModCode
RelModApproxSize
RelModNoM
Random

Figure 2. Evaluation of the applicability of metrics to predict the fault-densities of modified classes in
System A2.

22nd IEEE International Conference on Software Maintenance (ICSM'06)
0-7695-2354-4/06 $20.00 © 2006

Similarly to the results obtained when evaluating
our prediction method using data from System A1, in
System A2 our predictions offer about half of the
maximal possible improvement.

The results of the evaluation of our prediction
methods using data collected from System B are
presented in Figure 3. In Figure 3 we can see that the
prediction using RelModCode is more accurate than any
of the two prediction methods available at the design
time. In practice, however, it is visible only when
between 20% and 40% of the code is considered.

In System B the prediction using RelModApproxSize
seems to be more accurate compared to the prediction
using RelModNoM, especially when low percentages of
the code are considered (up to 30%). However, as in
case of Systems A1 and A2, in System B the overall
difference in performance between RelModApproxSize and
RelModNoM is not large.

Also similarly to the previous cases (i.e., System A1
and System A2) in System B the early prediction
methods are stable in providing about a half of the
maximum possible improvement over the Random
model. The prediction using RelModCode seems to be
more accurate here than in the previous cases – in
Figure 3 the RelModCode for all percentages of the code
is closer to the Best model than to the Random model.

6. Discussion

Our findings clearly show that it is possible to
perform accurate predictions concerning the fault
densities of modified classes at the design stage, i.e.,
before these classes are actually implemented. Our
evaluation, in which we used three releases of large
telecommunication systems, showed that in all three
cases the quality of the prediction based on the data
available before the implementation was comparable
with the quality of the best prediction available after
the code was implemented. These findings are
promising, as they indicate that it is possible to obtain
the information that can be used for planning fault
detection and fault prevention activities at the time
when this information is most needed, i.e., early in the
development process.

The results indicate that our method of
approximating the size of code modification by using
the information about the number of new and modified
methods in the class works well and is accurate enough
for making predictions. Also both our methods for
approximating the final size of the class are accurate
enough. It seems, however, that the method, in which
we use the information about the size of the class from
before the modification is slightly more accurate

System B

0

20

40

60

80

100

0 20 40 60 80 100

% of code

%
 o

f f
au

lts

Best model
RelModCode
RelModApproxSize
RelModNoM
Random

Figure 3. Evaluation of the applicability of metrics to predict the fault-densities of modified classes in
System B.

22nd IEEE International Conference on Software Maintenance (ICSM'06)
0-7695-2354-4/06 $20.00 © 2006

compared to the method that takes only the number of
methods in the class into account. It can be observed
because the predictions obtained using this
approximation (i.e., RelModApproxSize) are very similar
to the predictions using the actual size of the class after
modification (i.e., RelModCode).

One reason for the higher accuracy of predictions
based on the number of methods and the size of the
class from previous release of the system as compared
to only using the number of methods might be that the
spread of sizes of methods seems to be smaller within
the classes than between classes. This can be explained
by the fact that there is usually one person responsible
for implementing a class and, therefore, this person’s
“programming style” may make the methods similar in
size. This is, however, only a hypothesis, which we
have not evaluated in this study.

On the other hand, by looking at figures 1-3 we see
that the actual difference between RelModApproxSize and
RelModNoM is, in practice, very small. It would indicate
that the sizes of the methods are not very different even
between classes. It can mean that there are some
common design practices that are followed by different
designers within the company, which make their
methods somewhat similar in size.

Even though, based on our evaluations, we would
rather suggest using RelModApproxSize, we must clearly
state that using RelModNoM also provides an
improvement over not using any prediction method at
all (i.e., following the Random model). The
improvement is not much smaller compared to using
RelModApproxSize. The main difference, as we see it, is
that RelModApproxSize seems to be more stable (see
Figure 2 and Figure 3). This is, however, only our
subjective judgment based on the observation of
figures 1-3, not supported by any formal statistical
analysis.

One can argue that one of the greatest advantages of
fault prediction models based on code metrics, as well
as those based on some design metrics, is that the
measurements necessary for predictions can be
obtained automatically. For example, for our
RelModCode it is possible to write an application that
will get as an input the code from current and previous
releases of the system, and as output will produce the
prediction. The information about class sizes and
modification sizes can be measured by a software tool,
e.g., LOCC [18], or can be obtained from a version
control system.

Such a full automation in case of our prediction
method will be hard to achieve. Some things, like class
size in the previous release of a system or the number
of functions in the planned release are relatively easy
to obtain automatically. Class size in the previous
release of the system can be measured using some code

measuring tool. If the design of the system is done
using, e.g., UML modeling language, it is also
relatively easy to extract the information about the
number of methods in the class in the designed system.
We are, however, not aware of any method for
automatically obtaining the information regarding the
number of new and modified methods in the class at
design time. Therefore, if such prediction method is to
be implemented, the company must introduce a
process, in which each designer manually quantifies
the number of methods to be modified and added to a
class when planning the modification of this class. This
should be a neither difficult nor expensive process. It
must, however, be used rigorously for our prediction
method to work.

One validity threat to our study is that the systems
on which we evaluate our models come from the same
company (i.e., Ericsson) and the same application
domain (i.e., telecommunications). As we indicated
before, it is possible that within this particular
company there is some kind of “style guide” that e.g.,
makes the differences between the method sizes small
and therefore makes the number of methods an
accurate predictor of the size measured in code lines.
We investigated this factor and, to our knowledge,
there is no such guide stated explicitly. It is however,
still possible that there is some implicit “programming
style” within the company that is followed by the
designers. This could potentially limit the applicability
of our findings to this company only. Therefore, to
further evaluate the models, an evaluation using data
describing systems developed in some other companies
and for different application domains would be
recommended.

7. Conclusions

The goal with this paper is to suggest and evaluate
a method for predicting fault densities in modified
classes early in the development process. In this study
we focus on predicting fault densities of classes before
they are actually modified. Access to information
about the fault-proneness of the classes before they are
modified enables more efficient planning of different
fault prevention and fault detection activities. For
example, in order to assign more experienced
developers to especially fault-prone classes, the
information about fault-proneness of the classes in the
system must be available before the coding actually
begins.

In our study we establish the current “state-of-the-
art” when it comes to predicting the fault densities of
modified classes. We find that the relative size of code
modification is considered as the best fault density

22nd IEEE International Conference on Software Maintenance (ICSM'06)
0-7695-2354-4/06 $20.00 © 2006

predictor, i.e., the size of the code modification divided
by the size of the class. This metric is available only
after the system is implemented, so it is not applicable
for the early prediction of fault-proneness.

Since the relative size of the modification is
considered as the best fault density predictor for
modified classes, we want metrics that approximate
this measure but that are available before the coding
starts. We suggest two such measures. Both of them
approximate the size of modification by counting the
number of added and modified methods in the
modified classes. As class size metric one of them uses
the number of methods in the class, while the other one
also incorporates the information about the average
size of the method in the previous release of a certain
class.

We evaluate both our prediction methods and
obtain promising results. Both our methods provide a
prediction of quality similar to the quality of the
prediction using the “state-of-the-art” solution that is
only available after the code is implemented. It means
that, by using our method, it is possible to obtain the
information of similar quality much earlier in the
development process.

Since the measurements necessary for our
prediction can not be obtained automatically we also
discuss the changes that need to be introduced to the
development process in order to collect all the data we
need for making our predictions. We conclude that,
even though the data must be collected manually, the
process of obtaining it is very simple and inexpensive.
It must, however, be followed rigorously for our
method to work.

Acknowledgments

The authors would like to thank Ericsson for
providing us with the data for the study and The
Collaborative Software Development Laboratory,
University of Hawaii, USA (http://csdl.ics.hawaii.edu/)
for the LOCC application.

This work was partly funded by The Knowledge
Foundation in Sweden under a research grant for the
project "Blekinge - Engineering Software Qualities
(BESQ)" (http://www.bth.se/besq).

References

[1] B. Boehm and V. R. Basili, "Software Defect Reduction
Top 10 List", Computer, vol. 34, 2001, pp. 135-137.

[2] L. C. Briand, J. Wust, J. W. Daly, and D. V. Porter,
"Exploring the relationship between design measures
and software quality in object-oriented systems", The

Journal of Systems and Software, vol. 51, 2000, pp. 245-
273.

[3] L. C. Briand, J. Wust, S. V. Ikonomovski, and L. H.,
"Investigating quality factors in object-oriented designs:
an industrial case study", Proc. of the 1999 Int'l Conf. on
Software Eng., 1999, pp. 345-354.

[4] M. Cartwright and M. Shepperd, "An empirical
investigation of an object-oriented software system",
IEEE Transactions on Software Engineering, vol. 26,
2000, pp. 786-796.

[5] S. R. Chidamber and C. F. Kemerer, "A metrics suite for
object oriented design", IEEE Transactions on Software
Engineering, vol. 20, 1994, pp. 476-494.

[6] K. El Emam, W. L. Melo, and J. C. Machado, "The
prediction of faulty classes using object-oriented design
metrics", The Journal of Systems and Software, vol. 56,
2001, pp. 63-75.

[7] N. Fenton and S. L. Pfleeger, Software metrics: a
rigorous and practical approach, 2. ed. London; Boston:
PWS, 1997.

[8] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy,
"Predicting fault incidence using software change
history", IEEE Transactions on Software Engineering,
vol. 26, 2000, pp. 653-661.

[9] J. C. Munson and S. G. Elbaum, "Code churn: a measure
for estimating the impact of code change", Proceedings
of the International Conference on Software
Maintenance, 1998, pp. 24-31.

[10] N. Nagappan and T. Ball, "Use of relative code churn
measures to predict system defect density", Proceedings
of the 27th International Conference on Software
Engineering ICSE 2005., 2005, pp. 284-292.

[11] N. Ohlsson, A. C. Eriksson, and M. Helander, "Early
Risk-Management by Identification of Fault-prone
Modules", Empirical Software Engineering, vol. 2,
1997, pp. 166-173.

[12] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, "Predicting
the Location and Number of Faults in Large Software
Systems", IEEE Transactions on Software Engineering,
vol. 31, 2005, pp. 340-355.

[13] M. Pighin and A. Marzona, "An empirical analysis of
fault persistence through software releases",
Proceedings of the International Symposium on
Empirical Software Engineering, 2003, pp. 206-212.

[14] M. Pighin and A. Marzona, "Reducing Corrective
Maintenance Effort Considering Module's History",
Proc. of Ninth European Conference on Software
Maintenance and Reengineering, 2005, pp. 232-235.

[15] Y. Ping, T. Systa, and H. Muller, "Predicting fault-
proneness using OO metrics. An industrial case study",
Proc. of The Sixth European Conference on Software
Maintenance and Reengineering, 2002, pp. 99-107.

[16] M. Ronchetti, G. Succi, W. Pedrycz, and B. Russo,
"Early estimation of software size in object-oriented
environments a case study in a CMM level 3 software
firm", Information Sciences, vol. 176, 2006, pp. 475-
489.

[17] R. W. Selby, "Empirically based analysis of failures in
software systems", IEEE Transactions on Reliability,
vol. 39, 1990, pp. 444-454.

22nd IEEE International Conference on Software Maintenance (ICSM'06)
0-7695-2354-4/06 $20.00 © 2006

[18] The Collaborative Software Development Laboratory,
University of Hawaii, USA;LOCC Project Homepage,
http://csdl.ics.hawaii.edu/Tools/LOCC/;2005

[19] P. Tomaszewski, J. Håkansson, L. Lundberg, and H.
Grahn, "The Accuracy of Fault Prediction in Modified
Code – Statistical Model vs. Expert Estimation",
Proceedings of the 13th Annual IEEE International
Conference and Workshop on the Engineering of
Computer Based Systems, 2006, pp.

[20] P. Tomaszewski, L. Lundberg, and H. Grahn, "The
Accuracy of Early Fault Prediction in Modified Code",

Fifth Conference on Software Engineering Research and
Practice in Sweden, 2005, pp. 57-63.

[21] P. Tomaszewski, L. Lundberg, and H. Grahn,
"Increasing the Efficiency of Fault Detection in
Modified Code" presented at Asian Pacific Software
Engineering Conference, APSEC, Taipei, Taiwan, 2005.

[22] M. Zhao, C. Wohlin, N. Ohlsson, and M. Xie, "A
comparison between software design and code metrics
for the prediction of software fault content", Information
and Software Technology, vol. 40, 1998, pp. 801-809.

22nd IEEE International Conference on Software Maintenance (ICSM'06)
0-7695-2354-4/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

