
G. Bebis et al. (Eds.): ISVC 2008, Part I, LNCS 5358, pp. 1102–1114, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Tracking Data Structures Coherency in Animated Ray
Tracing: Kalman and Wiener Filters Approach

Sajid Hussain and Håkan Grahn

Blekinge Institute of Technology
SE-371 79 Karlskrona, Sweden

{sajid.hussain,hakan.grahn}@bth.se
http://www.bth.se/tek/paarts

Abstract. The generation of natural and photorealistic images in computer
graphics, normally make use of a well known method called ray tracing. Ray
tracing is being adopted as a primary image rendering method in the research
community for the last few years. With the advent of todays high speed proces-
sors, the method has received much attention over the last decade. Modern
power of GPUs/CPUs and the accelerated data structures are behind the success
of ray tracing algorithms. kd-tree is one of the most widely used data structures
based on surface area heuristics (SAH). The major bottleneck in kd-tree con-
struction is the time consumed to find optimum split locations. In this paper, we
propose a prediction algorithm for animated ray tracing based on Kalman and
Wiener filters. Both the algorithms successfully predict the split locations for
the next consecutive frame in the animation sequence. Thus, giving good initial
starting points for one dimensional search algorithms to find optimum split lo-
cations – in our case parabolic interpolation combined with golden section
search. With our technique implemented, we have reduced the “running kd-tree
construction” time by between 78% and 87% for dynamic scenes with 16.8K
and 252K polygons respectively.

1 Introduction

Ray tracing is one of the most widely used algorithms for interactive graphics applica-
tions and geometric processing. The performance of these algorithms is accelerated
by using bounding volume hierarchies (BVH). BVHs are efficient data structures used
for intersection tests or culling in computer graphics. Ray tracing algorithms compute
and transverse BVHs in real time to perform intersection test.

While ray tracing has evolved into a real time image synthesis technique in the last
decade, more efficient hardware, effective acceleration structures and more advanced
transversal algorithms have contributed to the increased performance. Among differ-
ent acceleration structures [3][4], kd-trees have given better or at least comparable
performance in terms of speed as compared to others [1]. These structures are more
efficient if built using surface area heuristics (SAH) [2].

Interactive ray tracing demands fast construction of BVHs but an optimized fast
construction of kd-tree is very expensive for large dynamic scenes. Although efforts
are being made to optimize kd-tree construction for large dynamic scenes [5] [6] [7]

 Tracking Data Structures Coherency in Animated Ray Tracing 1103

[8] [9], there still lies a gulf between kd-tree construction and interactive large dy-
namic scene applications.

In this paper, we present an approach to improve and optimize the construction of
kd-trees for dynamic ray tracing. We are concerned about the decision of the separa-
tion plane location. In most of the dynamic scenes used in research, consecutive
frames do not depict considerable differences in terms of geometry information. Our
approach is to make use of this particular property for constructing kd-tree structures.
We start with the approach used in [9] for static scenes, where parabolic interpolation
is combined with golden section search to reduce the amount of work done when
building the kd-trees. We further extend this approach for dynamic scenes and make
use of the vector Kalman and Wiener filters to predict the split locations for the next
consecutive frame. The same golden section search and parabolic interpolation is then
used to find the minimum but this time the predicted location is used as a starting
point, hence reducing the number of steps used to find the minimum of the parabolic
cost function. The vector Kalman filter results are already presented in another IEEE
paper. Here, we extend the work by implementing Wiener filter and comparing the
results with that of the Kalman filter. We have evaluated our techniques against a
standard SAH algorithm for dynamic scenes with varying complexities and behav-
iours. With our algorithms, we have achieved average kd-tree built times of 30msec
for 16-17k triangles scene and 210msec for 252k triangles scene. This corresponds to
a reduction of the kd-tree construction time by between 78% and 87%.

The rest of the paper is organised as follows. Section 2 gives some related research
work on kd-tree construction followed by the theory behind SAH based kd-trees in
section 3. We describe the mathematics behind the Kalman and Wiener filters in
section 4 along with our proposed technique in section 5. Section 6 gives our imple-
mentation results and some discussion. We conclude the paper in section 7 with future
work.

2 Related Work

kd-tree construction has mainly focused on optimized data structure generation for
fast ray tracing. The state-of-the-art ()logO n n algorithm has been analysed in depth

by [10] and [11]. Further in [12], the theoretical and practical aspects of ray tracing
including kd-tree cost function modelling and experimental verifications have been
described. Current work in [5] and [13] also aims at fast construction of kd-trees. By
adaptive sub-sampling they approximate the SAH cost function by a piecewise quad-
ratic function. There are many different other implementations of the kd-tree algo-
rithm using SIMD instructions like in [14]. Another approach is used by [15], where
the author experiments with stream kd-tree construction and explores the benefits of
parallelized streaming. Both [5] and [15] demonstrate considerable improvements as
compared to conventional SAH based kd-tree construction.

The cost function to optimally determine the depth of the subdivision in kd-tree
construction has been given by several authors. In [16], the authors derive an expres-
sion that confirms that the time complexity is less dependent on the number of objects
and more on the size of the objects. They calculate the probability that the ray inter-
sects an object as a function of the total area of the subdivision cells that (partly)

1104 S. Hussain and H. Grahn

contain the object. In [2], the authors use a similar strategy but refine the method to
avoid double intersection tests of the same ray with the same object. They determine
the probability that a ray intersects at least one leaf cell from the set of leaves within
which a particular object resides. They use a cost function to find the optimal cutting
planes for a kd-tree construction. A similar method was also implemented in [17].
Recently, kd-tree acceleration structures for modern graphics hardware have been
proposed in [8] and [18], where the authors experiment kd-tree for GPU ray tracers
and achieve considerable improvement.

3 SAH Based kd-Tree Construction

In this section, we give some background about the kd-tree algorithm, which will be
the foundation for the rest of the paper. Consider a set of points in a space Rd, the kd-
tree is normally built over these points. In general, kd-trees are used as a starting point
for optimized initialization of k-means clustering [19] and nearest neighbour query
problems [20]. In computer graphics, and especially in ray tracing applications, kd-
trees are applied over a scene S with bounding boxes of scene objects.

The kd-tree algorithm subdivides the scene space recursively. For any given leaf
node Lnode of the kd-tree, a splitting plane splits the bounding box of the node into two
halves, resulting in two bounding boxes, left and right. These are called child nodes
and the process is repeated until a certain criterion is met. In [1], the author reports
that the adaptability of the kd-tree towards the scene complexity can be influenced by
choosing the best position of the splitting plane.

The choice of the splitting plane is normally the mid way along a particular coordi-
nate axis [21] and a particular cost function is minimized. In [2], SAH is introduced
for the kd-tree construction algorithm which works on probabilities and minimizes a
certain cost function. The cost function is built by firing an arbitrary ray through the
kd-tree and applying some assumptions. Fig. 1 uses the conditional probability P(y|x)
that an arbitrary fired ray hits the region y inside region x provided that it has already
touched the region x. Bayes rule can be used to calculate the conditional probability
P(y|x) as

(|) ()
(|)

()

P x y P y
P y x

P x
= . (1)

P(x|y) is the conditional probability that the ray hits the region x provided that it has
intersected y, and here P(x|y) = 1. P(x) and P(y) can be expressed in terms of areas [1].
In Fig. 2, if we start from the root node or the parent node and assume that N is a set of
all elements in the root node and the ray passing the root node has to be tested for in-
tersection with all the elements in N. If we assume that the computational time it takes
to test the ray intersection with elements n N⊆ is Tn, then the overall computational
cost C of the root node would be

1

N

n
n

C T
=

=∑ . (2)

 Tracking Data Structures Coherency in Animated Ray Tracing 1105

Fig. 1. Visualization of conditional probability P(y|x)

After further division of root node (Fig. 2), the ray intersection test cost for each
left and right child nodes changes to CLeft and CRight. Thus the overall new cost be-
comes CTotal and

Total Trans Right LeftC C C C= + + , (3)

where CTrans is the cost of traversing the parent or root node. The equation can be writ-
ten as

1 1

Left RightN N

Total Trans Left i Right j
i j

C C P T P T
= =

= + +∑ ∑ , (4)

where

Left Right
Left Right

A A
P and P

A A
= = . (5)

Where A is the surface area of the root node and the area of two child nodes are ALeft
and ARight. PLeft and PRight are the probabilities of a ray hitting the left and the right child
nodes. NLeft and NRight are the number of objects present in the two nodes and Ti and Tj
are the computational time for testing ray intersection with the ith and jth objects of the
two child nodes. The kd-tree algorithm minimizes the cost function Ctotal, and then
subdivides the child nodes recursively.

Fig. 2. Scene division and corresponding kd-tree nodes

As shown in [15], the cost function is a bounded variation function as it is the dif-
ference of two monotonically varying functions CLeft and CRight. In [15], this important
property of the cost function has been exploited to increase the approximation accu-
racy of the cost function and only those regions that can contain the minimum have
been adaptively sampled. We have used the technique in [9] called golden section
search to find out the region that could contain the minimum and combined it with
parabolic interpolation to search for the minimum. Further, we predict the minimum
of the cost function (split locations) for next consecutive frame using the Kalman
filter. We use predicted split locations as starting points for kd-tree construction over
consecutive frames. In next section, we present some mathematics behind the Kalman
and Wiener filter.

Ray

x
y

1106 S. Hussain and H. Grahn

4 The Kalman and Wiener Filters

The Kalman filter is named after its inventor Rudolf Emil Kálmán in 1960 [22]. The
Kalman filter presents a recursive approach to discrete data linear filtering and predic-
tion problems. The filter estimates the state of underlying discrete time controlled
process nx ∈ℜ which is presented by the following difference equation.

1 1 1k k k kx Ax Bu w− − −= + + , (6)

with the measurement or observation mz ∈ℜ and presented by

k k kz Hx v= + . (7)

The random variables kw and kv are process and measurement noises respec-

tively, and assumed to be independent, white and normally distributed with zero mean
and covariance matrices Q and R .

() () () ()0, , 0,p w N Q p v N R≈ ≈ . (8)

Matrix A in equation 7 is an n n× matrix and it represents the state relationship
from previous time step 1k − to current time step k . The 1n × matrix B relates the
optional control input u to the state x . The m n× matrix H in equation 7 relates the
state kx to the measurement kz . More detailed introduction about the Kalman filter

could be found in [24], we will just describe some basic steps of the filter.
The Kalman filter has two main steps called time update (prediction) and meas-

urement update (correction). The prediction state projects the current state estimate
ahead in time and the correction state adjusts the projected estimate by an actual
measurement at that time. The filter prediction and update steps are described as fol-
lows (the details could be found in [23] along with the derivation).

Time update:

1 1

1

: ,
: .

k k k
T

k k

Prediction x A x Bu
Error Covariance Projection P AP A Q

−∧ ∧

− − −
−

= +
= +

 (9)

Measurement update:

()

()

1
,

,

.

T T
k k k

k k k

k k k

Kalman Gain : K P H HP H R

State Ahead Correction : x x K z H x

Error Covariance Correction : P I K H P

−

− −∧ ∧ ∧

−

= +
⎛ ⎞

= + −⎜ ⎟
⎝ ⎠= −

 (10)

In signal processing, the class of linear optimum discrete time filters is collectively
known as Wiener filters. The Wiener filter is the filter first proposed by Norbert Wie-
ner in 1949 [25]. Based on statistical approach the goal of the Wiener filters is to filter
out noise that has corrupted the signal. Consider ()u t to be a signal input to the Wie-

ner filter, corrupted by additive noise ()v t . The estimated output ()y t is calculated by

means of a filter ()w t using the following convolution equation

 Tracking Data Structures Coherency in Animated Ray Tracing 1107

() ()*(() ())y t w t u t v t= + (11)

We define the error ()e t as

() () ()e t u t y tα= + − , (12)

and the squared error is 2 ()e t . Depending on the value of α the problem can be for-

mulated as prediction (0α >), filtering (0α =) and smoothing (0α <). For discrete
time series, consider the block diagram in Fig.3 built around a linear discrete time
filter. The filter input consists of a time series and the filter is itself characterized by
the impulse response ()w n . At some discrete time n , the filter produces output de-

noted by ()y n . This output is used to provide an estimate of desired response denoted

by ()d n . With the filter input and desired response representing single realizations of

respective stochastic processes, the estimation is ordinarily accompanied by an error
with statistical characteristics of its own. In particular, the estimation error denoted by

()e n is defined as the difference between the desired response ()d n and the out-

put ()y n .

() () ()e n d n y n= − (13)

The requirement is to make the estimation error ()e n as small as possible in some

statistical sense. Two assumptions about the filter are made for simplicity. It is linear
and operates in discrete time, which makes the mathematical analysis simple and the
implementation using digital hardware and software. The impulse response of the
filter could be finite or infinite and there are different types of statistical criterion used
for the optimization. We use here, Finite Impulse Response (FIR) filter and mean
square value of the estimation error. We thus, define the cost function as the mean
square error.

* 2() () | () |J E e n e n E e n⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦ . (14)

Where E denotes the statistical expectation operator. The requirement is therefore to
determine the operating conditions under which J obtains its minimum value. Further
detail reading about the Wiener filter could be found in [26].

Fig. 3. Block diagram of adaptive control of statistical filtering problem

()u n
_ ()e n

()y n

()d n

+0

()
N

i
i

i

G z w z−

=

=∑

Adaptive
Mechanism

1108 S. Hussain and H. Grahn

We have used an adaptive mechanism Least-Means-Square (LMS) to adaptively
update the weights of the Wiener filter taps. The order of the Wiener filter increases
as we receive more and more samples (samples in this case are the split locations
determined for the kd-tree construction). We use one Wiener filter with adaptive
weights update mechanism for each node in the kd-tree of a frame. Fig. 3 also shows
the block diagram of adaptive weight control mechanism combined with statistical
filtering problem.

The Wiener filter weights are updated by the adaptive mechanism and the follow-
ing equations govern the adaptive update of the Wiener filter weights.

1

0

() () ()
M

i
i

y n w n u n i
−

=

= −∑ , (15)

(1) () () () 0,1,.... 1i iw n w n u n i e n i Mμ+ = + − = − . (16)

Where ()e n is the error calculated from equation 13 and μ is the step size normally

between 0 and 1.

5 Fast Construction of kd-Trees

We combine golden section search and parabolic interpolation [9] with the Kalman
and Wiener filters to construct kd-trees for animated ray tracing. We take advantage
of the fact that adjacent frames in animated ray tracing do not depict a dramatic
change in most of the animated scenes (we are talking about scenes normally used by
the research community in computer graphics).

The algorithm we present here is simple to describe. In our algorithm, we start with
the technique described in [9] and construct the kd-tree for the first frame of an ani

Fig. 4. Wiener filter adaptive prediction

()y n
()u n

(1)u n −
()e n

()y n()u n
Wiener Wiener

()d n

Adaptive
Mechanism

()d n

 Tracking Data Structures Coherency in Animated Ray Tracing 1109

mated scene. Thus, we manage to acquire one sample (sample in our case is the split
plane location for a node of the kd-tree) for our prediction filters. We then use the
Kalman and Wiener filters to predict split plane locations for the next consecutive
frame. The algorithm also keeps track of kd-tree depth and split orientations. We then
apply golden section combined with parabolic interpolation for a one dimensional
search of split plane but this time the starting point for the one dimensional search is
the predicted split location. This gives us a very fast convergence towards the cost
function optimum. Fig. 5 gives an example how the prediction step works for Wiener
filters.

The ()d n in Fig.5 is the desired response or in other words is the actual split plane

location for a particular axis. We require memory to store the tap values of the Wiener
filter ()iw n and the past inputs ()u n i− in equation 15. The Wiener adaptive filter we

have implemented here is an order of 6 (no. of taps) and the adaptive mechanism
with 0.5μ = . The beauty of the Kalman filter is that we do not need any previous

history to predict the future. This gives us memory free prediction compared to Wie-
ner filter. What we do need is the memory to store the predicted values in the predic-
tion step of the Kalman filter. The same memory locations are updated during the
update step. Note that in the Kalman filter step, we use initial split positions informa-
tion from the first frame and add measurement noise to construct virtual next observa-
tions. We then predict the actual split positions for the next frame based on these
virtual next observations. In the last step, we update the information for the Kalman
filter parameters based on actual split locations information returned by the one
dimensional search Algorithm 1. In Wiener filter prediction step, we do not need the
virtual information and we predict next split plane position based on previous values.
We use the predicted position as a staring point for one dimensional search algorithm
(golden section search combined with parabolic interpolation [9]) and refine our pre-
diction results. The refined split plane position is then used as a desired response

()d n and the error ()e n is then calculated for further use in the adaptive weights

update mechanism (Fig.5 shows the process visually). The OptSplit function in
Algorithm 1 takes KalmanStruct/WienerStruct which includes all the infor-
mation about Kalman/Wiener Orientation (KalmanOrient/WienerOrient),
Kalman/Wiener Depth (KalmanDepth/WienerDepth) and Kalman/Wiener
predicted optimum split location (KalmanStartPt/WienerStartPt). The algo-
rithm itself finds the optimal split orientation for a given depth information and
compares it with that of the Kalman/Wiener Orientation. If the two orientations
match, the algorithm uses the start point as predicted by the Kalman/Wiener filter.
Otherwise, it starts looking for an optimum from extreme positions. Kalman/Wiener
Orientation (KalmanOrient/WienerOrient), Kalman/Wiener Depth (Kal-
manDepth/WienerDepth) are the two vectors which store the orientation and
corresponding depth information from the previous consecutive frame. The objective
behind the orientation match is to track the requirements for orientation change be-
cause of the dynamic scene. If there is no match, we update the Klaman/Wiener filter
parameters with the new orientation and apply the one dimensional search algorithm
starting from extreme boundaries of the particular bounding box.

1110 S. Hussain and H. Grahn

Algorithm 1 – Optimum Split Search

function OptSplit(Polygons, AABB, KalmanStruct/WienerStruct)
Orient = OptSplitOrient(Polygons);
Extreme = FindExtremes(Polygons, Orient);
if (Orient = KalmanOrient/WeinOrient and
 Depth = KalmanDepth/WienerDepth)

Optimum = OptSearch(Polygons, AABB, KalmanOri
ent/WienerOrient, KalmanStartPt/WienerStartPt);

else
 Optimum = OptSearch(Polygons, AABB, Orient);
return Optimum;

end function

6 Results and Discussion

We have tested our algorithm on a variety of animation sequences as shown in Fig. 6.
The scenes differ with triangular count and animation behaviour. The scenes consist
of regular sized and uniformly distributed triangles. We ran our kd-tree construction
algorithm and recorded the Kalman and Wiener filters prediction accuracy and the
time our algorithm took to build kd-tree for each frame in the sequence. We have
chosen MATLAB® and C++ for implementation of our algorithm. We have imple-
mented the Kalman and Wiener filters prediction routine in MATLAB® and kd-tree
construction routine in C++. The kd-tree construction is linked in MATLAB®
through Dynamic Link Library (DLL). Routines for PLY file reading are also imple-
mented in MATLAB®. The timing results shown in this paper are only for kd-tree
construction in DLL. We have performed all the simulations on a workstation with an
Intel Core2 CPU, 2.16 GHz processor and 2GB of RAM.

The scenes we have used in our simulations vary in terms of their complexities and
behaviors. Fig. 6 shows three different animation sequences. In Fig. 7 we analyze cost
functions change in cloth-ball (92.2K – 73 Frames) animations for the two axis (y and
z) as shown in Fig. 6 (cloth-ball animation) for each scene and for only root node split
positions. We also plot actual split positions and predicted split positions of the Kal-
man and Wiener filters. Note that the actual split positions have been calculated on
bases of Surface Area Heuristics (SAH).

Let’s analyse Fig. 7 closely, the upper two sub-figures in Fig.7. (left to right) show
cost function shift for each frame in cloth-ball animation sequence for y and z axis
respectively. The minimums of these parabolic cost functions are the optimum split
plan locations. The bottom sub-figure in Fig. 7 shows the actual optimum split plan
locations change over time and predicted split plan locations by the Kalman and Wie-
ner filters (time axis is no. of frames in this case) for only y axis of cloth-ball anima-
tion. Note the settling time for Wiener filter in this case. The adaptive mechanism
controls the tap weights of the Wiener filter and tries to minimize the mean square
error between desired and predicted response. Our algorithm has successfully predicted
the split plan locations for consecutive frames. Hence, provides good initial guess for
one dimensional search (parabolic interpolation combined with golden section search).
If we closely analyse the prediction curves, we see that in almost all the cases, the
prediction error is very small. Since, the entire scene dataset exhibits a strong coher-
ency between consecutive frames; we have successfully exploited this property here.

 Tracking Data Structures Coherency in Animated Ray Tracing 1111

Table 1. Conventional vs Modified kd-Tree Build Time

Modified kd-Tree Build (msec) Time
Reduced

Running Build

Scene

Primitives

Conventional
kd-Tree Build

(msec)
Initial
Build Kalman Wiener

Kalman/
Wiener

Horse
Animation

16.8K 135 135 30 28 78% / 79%

Elephant 84.6K 710 710 105 95 85% / 86%
Cloth-Ball 92.2K 802 802 120 105 85% / 87%

Bunny
Dragon

252.5K 1610 1610 210 195 87% / 88%

Fig. 6. Animation sequences (top to bottom): Horse (16.8K - 48 Frames), BunnyDragon
(252.5K - 16 Frames) and ClothBall (92.2K - 73 Frames)

Although, in all these scenes, there remain a constant number of polygons (triangles)
throughout a particular animation sequence, we see a random behaviour in the kd-tree
build time especially for Kalman filter. The phenomenon occurs due to random noise
added by the Kalman filter prediction steps, where we have constructed the virtual
observations by adding the measurement noise from equation 8. The added noise
maximum error difference is not greater than 1msec.

Table 1 shows the time difference between an initial build and a running build of kd-
tree data structures for each animation sequence used in this paper. See the considerable
improvement in the build time in running mode for both Kalman and Wiener filters. We
have not yet added the overhead of the Kalman and Wiener filters in Table 1. In MAT-
LAB®, the Kalman filter’s average aggregated overhead is approx. 400-450 msec and
that of Wiener filter is approx. 500-550 msec for the whole sequence of 50 frames with
average of 84K polygons (triangles) in each frame. We expect this time down to 100-
150 msec for Kalman filter and 150-200 msec for Wiener filter if efficiently imple-
mented in C++. So, in worst case we could add 4-5 msec per frame.

1112 S. Hussain and H. Grahn

Fig. 7. Actual and predicted split positions for Kalman and Wiener filters

7 Conclusion and Future Work

We have presented an algorithmic speedup technique for fast kd-tree construction for
animated ray tracing. The optimum split location search for kd-tree construction is the
main time consuming job. As many of the animation sequences used by research
community for animated ray tracing exhibit strong data structures coherency proper-
ties, we have made use of a Kalman and Wiener filters for predicting the next possible
data structure (kd-tree in our case) state of the animated sequence.

We use here the Kalman and Wiener filters and load it with initial split plan loca-
tions (we build kd-tree for starting frame in the sequence based on the technique de-
scribed in [9]). The filters then predict the next possible split locations for the next
frame in the sequence. We use these predicted locations as starting points for the one
dimensional optimum search algorithm. With best initial guess, the algorithm exhibits
very fast convergence and we see the results quite promising for the running kd-tree
build time as compared to static or initial kd-tree build. In the case of Kalman filter
we achieve 78% to 87% increase in kd-tree construction time for the scenes with as
low as 17K and as high as 252K polygons. The increase in kd-tree construction time
for Wiener filter is 79% to 88% for scenes with same complexities.

 Tracking Data Structures Coherency in Animated Ray Tracing 1113

We have implemented our proposed model in MATLAB® and C++. Main predic-
tion engine of the Kalman and Wiener filters is implemented in MATLAB®. C++
handles the kd-tree construction routines. We have demonstrated a considerable de-
crease in build time as compared to standard SAH based kd-tree.

References

[1] Havran, V.: Heuristic Ray Shooting Algorithms. PhD thesis, Faculty of Electrical Engi-
neering, Czech Technical University in Prague (2001)

[2] MacDonald, J.D., Booth, K.S.: Heuristics for Ray Tracing Using Space Subdivision. In:
Graphics Interface Proceedings 1989, Wellesley, MA, USA, June 1989, pp. 152–163.
A.K. Peters, Ltd. (1989)

[3] Stoll, G.: Part I: Introduction to Realtime Ray Tracing. In: SIGGRAPH 2005 Course on
Interactive Ray Tracing (2005)

[4] Zara, J.: Speeding Up Ray Tracing - SW and HW Approaches. In: Proceedings of 11th
Spring Conference on Computer Graphics (SSCG 1995), Bratislava, Slovakia, pp. 1–16
(May 1995)

[5] Hunt, W., Stoll, G., Mark, W.: Fast kd-tree Construction With An Adaptive Error-
Bounded Heuristic. In: Proceedings of the 2006 IEEE Symposium on Interactive Ray
Tracing, pp. 81–88 (September 2006)

[6] Wald, I., Havran, V.: On Building Fast kd-trees For Ray Tracing, and on Doing That In
O(N log N). In: Proceedings of the 2006 IEEE Symposium on Interactive Ray Tracing,
pp. 61–69 (September 2006)

[7] Woop, S., Marmitt, G., Slusallek, P.: B-kd trees for Hardware Accelerated Ray Tracing of
Dynamic Scenes. In: Proceedings of Graphics Hardware (2006)

[8] Foley, T., Sugerman, J.: kd-tree Acceleration Structures For A GPU Raytracer. In: Pro-
ceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware,
pp. 15–22 (2005)

[9] Hussain, S., Grahn, H.: Fast kd-Tree Construction for 3D-Rendering Algorithms like Ray
Tracing. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Paragios, N., Tanveer, S.-M.,
Ju, T., Liu, Z., Coquillart, S., Cruz-Neira, C., Müller, T., Malzbender, T. (eds.) ISVC
2007, Part II. LNCS, vol. 4842, pp. 681–690. Springer, Heidelberg (2007)

[10] Wald, I.: Realtime Ray Tracing and Interactive Global Illumination. PhD thesis, Com-
puter Graphics Group, Saarland University, Saarbrucken, Germany (2004)

[11] Havran, V.: Heuristic Ray Shooting Algorithm. PhD thesis, Czech Technical University,
Prague (2001)

[12] Chang, A.Y.: Theoretical and Experimental Aspects of Ray Shooting. PhD Thesis, Poly-
technic University, New York (May 2004)

[13] Havran, V., Herzog, R., Seidel, H.-P.: On Fast Construction of Spatial Hierarchies for
Ray Tracing. In: Proceedings of the 2006 IEEE Symposium on Interactive Ray Tracing,
pp. 71–80 (September 2006)

[14] Benthin, C.: Realtime Raytracing on Current CPU Architectures. PhD thesis, Saarland
University (2006)

[15] Popov, S., Gunther, J., Seidel, H.-P., Slusallek, P.: Experiences with Streaming Construc-
tion of SAH KD-Trees. In: Proceedings of IEEE Symposium on Interactive Ray Tracing,
pp. 89–94 (September 2006)

[16] Cleary, J.G., Wyvill, G.: Analysis Of An Algorithm For Fast Ray Tracing Using Uniform
Space Subdivision. The Visual Computer (4), 65–83 (1988)

1114 S. Hussain and H. Grahn

[17] Whang, K.-Y., Song, J.-W., Chang, J.-W., Kim, J.-Y., Cho, W.-S., Park, C.-M., Song, I.-
Y.: An Adaptive Octree for Effi¬cient Ray Tracing. IEEE Transactions on Visualization
and Computer Graphics 1(4), 343–349 (1995)

[18] Horn, D.R., Sugerman, J., Houston, M., Hanrahan, P.: Interactive kd-tree GPU Raytrac-
ing. In: Symposium on Interactive 3D Graphics. I3D, pp. 167–174 (2007)

[19] Redmonds, S.J., Heneghan, C.: A Method for Initializing the K-Means Clustering Algo-
rithm Using kd-trees. Pattern Recognition Letters 28(8), 965–973 (2007)

[20] Stern, H.: Nearest Neighbor Matching Using kd-Trees. PhD thesis, Dalhousie University,
Halifax, Nova Scotia (August 2002)

[21] Kaplan, M.: The Use of Spatial Coherence in Ray Tracing. In: ACM SIGGRAPH 1985
Course Notes, vol. 11, pp. 22–26 (July 1985)

[22] Kalman, R.E.: A New Approach to Linear Filtering and Prediction Problems. Transaction
of the ASME—Journal of Basic Engineering, 35–45 (March 1960)

[23] Welch, G., Bishop, G.: An Introduction to Kalman Filter. Department of Computer Sci-
ence, University of North Carolina (July 2006)

[24] Grewal, M.S., Andrews, A.P.: Kalman Filtering, Theory and Practice. Prentice Hall,
Englewood Cliffs (1993)

[25] Wiener, N.: Extrapolation, Interpolation, and Smoothing of Stationary Time Series.
Wiley, New York (1949)

[26] Haykin, S.: Adaptive Filter Theory, 3rd edn. Prentice Hall, New Jersey (1996)

	Tracking Data Structures Coherency in Animated Ray Tracing: Kalman and Wiener Filters Approach
	Introduction
	Related Work
	SAH Based kd-Tree Construction
	The Kalman and Wiener Filters
	Fast Construction of kd-Trees
	Results and Discussion
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

