IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 9, NO. 2, JULY-DECEMBER 2010 1

ParMiBench - An Open-Source Benchmark for
Embedded Multiprocessor Systems

Syed Muhammad Zeeshan Igbal, Yuchen Liang, and Hakan Grahn, Member, IEEE
School of Computing, Blekinge Institute of Technology
SE-371 79 Karlskrona, Sweden
mzeeshan01@gmail.com, yuchen9760@gmail.com, hakan.grahn@bth.se

Abstract—Multicore processors are the main computing platform in laptops, desktop, and servers today, and are making their
way into the embedded systems market also. Using benchmarks is a common approach to evaluate the performance of a system.
However, benchmarks for embedded systems have so far been either targeted for a uni-processor environment, e.g., MiBench,
or have been commercial, e.g., MultiBench by EEMBC. In this paper, we propose and implement an open source benchmark,
ParMiBench, targeted for multiprocessor-based embedded systems. ParMiBench consists of parallel implementations of seven
compute intensive algorithms from the uni-processor benchmark suite MiBench. The applications are selected from four domains:

Automation and Industry Control, Network, Office, and Security.

Index Terms—Concurrent Programming, Multiprocessor Systems, Performance Evaluation.

1 INTRODUCTION

ULTICORE processors are the main technology
Min laptops, desktops, and server systems, e.g.,
AMD Opteron, Intel Core 2 Duo and Quad, and IBM
POWER4. Recently, multicore processors are paving
their way also into embedded systems for many
reasons, e.g., better performance and lower power
consumption as compared to uni-core processors.

A number of hardware vendors develop and mar-
ket system-on-chip (SoC) devices [5], and multicore
processors is predicted to be a key technology in
future high-performance embedded systems [3]. The
small increase in power consumption will likely be
justified by the large increase of computational power
available to the embedded system applications by
including multicore processors.

Benchmarks are used for assessing the (relative)
performance among various software and hardware
platforms [7], [9]. A benchmark is a set of applica-
tions whose execution results are the evidence of the
performance of an execution platform. A number of
benchmarks has been proposed including Dhystone,
LINPACK, SPEC, Whetstone, and MediaBench [9],
which focus on specific areas of computation.

The embedded systems domain comprises a wide
range of different types of applications. Is has been
noted that just one type of application is not enough
to characterize the embedded domain, and therefore,
a benchmark suite for this domain shall capure this
application diversity [4], [6]. Multibench and Core-
Mark [4] target benchmarking of embedded systems.

Manuscript submitted: 01-May-2010. Manuscript accepted: 09-Jun-2010.
Final manuscript received: 16-Jun-2010.

Multibench evalutes embedded multicore systems,
but the drawback is that it is commercial. CoreMark
targets several major tasks for embedded applica-
tions, it only tests the performance of a single core.
MiBench [6], which is distributed as open source, has
also been proposed for benchmarking of embedded
systems and comprises 35 sequential applications.
For general parallel systems, there exists a number
of benchmark suites, e.g.,, SPLASH-2 [10] and PAR-
SEC [2]. However, to the best of our knowledge no
open source benchmark suite exists that specifically
targets parallel embedded systems.

We propose ParMiBench, an open source paral-
lel benchmark suite targeted for embedded systems.
Seven applications from MiBench [6] are included in
the proposed benchmark suite and they are selected
from four application domains: automotive/industrial
control, office, network, and security. The parallel
implementations have been done using Pthread and
standard C. The performance of ParMiBench is eval-
uated in terms of speedup of the parallel imple-
mentations against the sequential ones. A complete
description of ParMiBench along with performance
characterizations of the applications are presented
in [8].

2 MIBENCH

MiBench [6], on which ParMiBench is based, has been
proposed for benchmarking of uniprocessor-based
embedded systems. It tries to capture the application
diversity of the embedded system area and consists
of 35 embedded applications from six application
domains:

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 9, NO. 2, JULY-DECEMBER 2010 2

e Automotive and Industrial Control, which
demonstrates applications in embedded control
systems, deals with performance of basic math,
bit manipulation, data input/output, etc.

o Consumer Devices, which covers many con-
sumer devices, e.g., scanners, digital cameras,
and PDAs, and focuses on multimedia applica-
tions with, e.g., image manipulation.

o Office Automation, which includes text manip-
ulation algorithms to represent office machinery
like printers, fax machines, and word processors.

o Networking, which wrap up switches and
routers, and performs shortest path calculations,
tree and table lookups, and data input/output.

o Security, which includes various algorithms re-
lated to data encryption, decryption, and hashing.

e Telecommunications, which accentuate on voice
encoding/decoding, check sum calculation, and
frequency analysis.

3 PARMIBENCH

ParMiBench is a benchmark that specifically evaluates
the performance of multiprocessor-based embedded
systems. It mainly assesses and evaluates the per-
formance features in terms of speedup. Its structure
refers to EEMBC and MiBench that organize the se-
lected applications according to some categories or
application domains. A categorized benchmark en-
ables the users to examine their design more effec-
tively for a particular market segment of embedded
devices [6]. ParMiBench provides four categories: Au-
tomation and Industry Control, Network, Office, and
Security.

MiBench is a widely used benchmark for
uniprocessor-based embedded systems, and we
have selected seven applications from MiBench for
parallelization and inclusion in ParMiBench. The
difference between the applications in ParMiBench
as compared to those in MiBench is that they run
on multiprocessor-based embedded systems, i.e., the
ParMiBench applications are parallel versions of the
same applications found in MiBench. The parallel
implementations of all applications can be run on
Unix/Linux platforms supporting Pthreads and C.
All ParMiBench applications are compiled with the
GNU Compiler Collection (GCC).

The major design decisions in ParMiBench are as
follows. The whole input data are read into memory,
workers access it and write the result into unique
files or buffers in order to reduce I/O waiting time.
The work is equally distributed among workers by
using static load balancing. Improper load balancing
increases the discrepancy of execution time between
subtasks. In most cases, coarse-grained task decom-
position has been used to reduce synchronization
and communication overhead. An input data partition
strategy is used where data dependency is a bottle-
neck and it is difficult to partition the program logic.

ParMiBench exercises the target platform mainly
from the scalability perspective. It exercises the CPU
and memory performance of a system, while keep-
ing the synchronization and communication over-
head low. Further, it does not particularly stress 1/0
operation. It helps to answer the question how a
given platform scales for a certain set of data. In [8],
performance metrics such as speedup, overhead, and
efficiency are discussed in more detail.

3.1 Bitcount

Bitcount measures the processor’s bit manipulation
ability by counting the number of bits using different
counting strategies. It has nine sub-algorithms whose
outputs are the number of bits in the input data which
value is 1. Bitcnts is an entry program that can invoke
each sub-algorithm to count the number of bits. The
other eight sub-algorithms implement different bit
counting strategies.

The parallel Bitents, Bitent_1, and Bitstring algo-
rithms are implemented using a combination of recur-
sive and data decomposition techniques. The division
into tasks as well as the partitioning of the input data
is done to obtain a good load balance on each proces-
sor. The other sub-algorithms are invoked as units by
the parallel Bitents, in which the data decomposition
strategy is preferably used.

3.2 Susan

Susan is an image recognition application, which
recognizes corners and edges in Magnetic Resonance
Images of the brain. It is used for vision-based quality
assurance, and performs adjustments for threshold,
brightness, spatial control, and image smoothness.
The small input data is a black-white image of a
rectangle while the large input is a complex picture.

Susan is composed of different functions, and these
functions are all parallelized by using data decom-
position. The decomposition is applied on the outer-
most for loop, which iterations are decomposed ac-
cording to the number of workers.

3.3 Basicmath

Basicmath is used for benchmarking mathematical
calculations in embedded processors, which some-
times do not have dedicated hardware support. It
performs simple mathematical calculations, e.g., cubic
function solving, angle conversions from degrees to
radians, and integer square root. The input data set
used for benchmarking is a fixed set of constants.
The parallelization of Basicmath is done by data
partitioning, i.e., the number domain for different
functions is partitioned into different sets. The tasks
are implemented through a master-worker strategy,
which comprises different stages: data limits defini-
tion, subtasks creation and allocation, worker initial-
ization, workers performing their work, and finally,

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 9, NO. 2, JULY-DECEMBER 2010 3

the master collects the data returned by the different
workers.

3.4 Patricia

A Patricia trie is a sparse leaf-nodes based data struc-
ture used instead of a full tree. Branches with only
a single leaf node in a Patricia trie are collapsed
upwards in the trie to reduce the traversal time as
compared to full trees, but at the expense of code
complexity. In many network applications are routing
tables represented by Patricia tries. The input data set
is an IP traffic list from active web servers.

The addressing function has been parallelized by
partitioning the IP addresses list into sublists using a
master-worker strategy. Each sublist is assigned to the
available number of processors.

3.5 Dijkstra

Dijkstra calculates the single-source and all-pairs
shortest paths in a graph represented by an adjacency
matrix.

Dijkstra single-source shortest path has been par-
allelized using two strategies: single and multiple
queue implementations. In the first one, all processors
share a single queue, whereas in the second one,
each processor maintains a local queue. In the all-
pairs shortest path problem, parallel Dijkstra uses a
data decomposition strategy in such a way that one
processor handles one vertex to get its single-source
shortest paths.

3.6 Stringsearch

The Stringsearch benchmark finds a specific word in a
number of given phrases by employing case sensitive
or insensitive comparison algorithms.

The partitioning strategy is to partition the entire
pattern collection into a number of sub-pattern col-
lections according to the number of workers allocated.
The size of each sub-pattern collection contains [n/p]
successive patterns. The static master-worker model
is composed of three phases. In first phase, a file
containing the search string and a file containing the
patterns are read. For load balancing, the number
of patterns to search for is equally divided to the
available workers, i.e., the number of tasks generated
is equal to the number of workers. In the second
phase, workers are created as work is allocated. The
workers search in parallel for the patterns, where
each worker uses the sequential implementation of
the string search algorithms. Each worker stores the
results in memory. Finally, in third phase, the master
displays the found strings.

TABLE 1
Input data set sizes.

[Algorithm [Summary
Bitcount An input of long type (31 bits with 1).
Bitents: 112500 iterations.
Bitent_1: 200000 iterations.
Bitstring: 9200 iterations.
Susan PGM picture: 2.8 MB
Basicmath Small data set: 500 Mega numbers
Large data set: 1 Giga numbers
Patricia Text file containing 5000 IP addresses
Dijkstra All-pairs: 160x160 matrix
(shortest path) | Single-source: 2000x2000 matrix
Stringsearch Input data set size: 16 MB, 32 MB
1024 patterns or keys of length (m): 5
SHA 16 text files of sizes 300 to 911 kB
3.7 SHA-1

The Secure Hash Algorithm (SHA-1) is an itera-
tive one-way hash function cryptographic algorithm,
which can process a message to produce a message
digest. It generates digital signatures used in the
secure exchange of cryptographic keys.

SHA-1 is parallelized using a static master-worker
strategy composed of four different stages. The first
stage starts by deciding the input partition size (the
input is a number of files for which a digest is
calculated) and task generation. In the second stage,
all files” data whose digest that need to calculated are
read into memory by the master. The worker creation
is done in the third stage. Each worker calculates the
digest and writes it to the memory location assigned
to them. The master waits for the workers to finish
their work. Finally, the master writes the output into
separate digest files.

4 PERFORMANCE EVALUATION
41

All performance measurements are done on a server
with two 2.0 GHz Intel Xeon E5335 quad-core pro-
cessors (i.e., 8 cores in total), 16 GB of main memory,
15,000 rpm SAS disks, and running Ubuntu 8.04. A
summary of the input data set sizes used for testing
of the parallel applications is given in Table 1.

Evaluation Methodology

4.2 Performance Results

The performance results in terms of speedup for all
applications are shown in Fig. 1.

Linear speedup is achieved in parallel Basicmath
and it scales well for large data set sizes. The best
speedup of parallel Bitcount is obtained by using 6
processors but with 8 processors, a decreasing trend is
observed. The parallel Dijkstra implementation of the
All-Pairs shortest path solution gives linear speedup.
However, the two implementations for the single-
source shortest path solution, i.e., single and multiple
queues, give small increments in speedup. However,

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 9, NO. 2, JULY-DECEMBER 2010 4

BasicMath BitCount Dijkstra
9 2,5 9
8 8
Small dataset
7 2 7
—+Large dataset
o ® a o b
E 5 15 3 g
© © © R
g, o .%:: 2, All-Pair, N=160
& & 1 . & —=Single queue, N=2000
3 Bitcnts, Iter=112500 3 .
. ——Multiple queue, N=2000
2 0,5 —Bitcnt_1, Iter=200000 2
1 —Bitstring, Iter=9200 1 *—
0 0 0
1 2 4 6 8 1 2 4 6 8 1 2 4 6 8
#cores #cores #cores
Patricia and SHA-1 StringSearch Susan
2 8 s o
—-Smoothing -s
18 Patricia 45 File size = 16MB 7
1,6 S 4 -=-Edge -e -3
—-SHA-1 —File size = 32MB 6
1,4 3,5 o5 —-Corner -c
S 12 s 3 S
Tl T 25 T2
0,6 1,5 5
0,4 1
02 0,5 1
0 0 0
1 2 4 6 8 1 2 4 6 8 1 2 4 6 8
#cores #cores #cores
Fig. 1. Speedup measurements for the ParMiBench applications.
we observe that the speedup increases as the number ACKNOWLEDGMENTS

of processors increases.

In parallel Patricia, the maximum speedup is ob-
served for 6 processors. In case of SHA-1, a good
speedup for a small number of processors is observed,
but when the number of processors increases it goes
down. We observe in parallel SHA-1 that the number
of files are equally distributed among the workers
for load balancing purpose, but different file sizes
contribute to load unbalance. That effect is observed
as a reduced speedup.

Parallel Stringsearch scales well for large text files;
the speedup increases as the number of processors
increases. In parallel Stringsearch, we found from the
experiment that our approach scales well though we
increase our text file size two times. For a majority of
the functions in Susan a limited speedup is achieved.

5 CONCLUDING REMARKS

In this paper, we have proposed a parallel bench-
mark for multiprocessor-based embedded systems,
and presented the performance results on an eight-
processor machine. We have obtained a good speedup
for many of the applications as the number of pro-
cessors increases. We also found that the parallel
approaches scale well when we increase the prob-
lem size. Therefore, we hope that ParMiBench would
help potential users to evaluate the performance of
multiprocessor-based embedded systems. The source
code for ParMiPBench can be accessed through http:
/ /code.google.com/p/multiprocessor-benchmark/.

We would like to thank the anonymous reviewers for
many suggestions and helpful comments, which have
greatly improved the paper presentation.

REFERENCES

[1] K. Asanovic et al., “The Landscape of Parallel Computing
Research: A View from Berkeley”, Tech. report UCB/EECS-
2006-183, Dept. Electrical Eng. and Computer Science, Univ.
of Calif., Berkeley, 2006.

C. Bienia, S. Kumar,]J.P. Singh, and K. Li, “The PARSEC
Benchmark Suite: Characterization and Architectural Implica-
tions,” Proc. of the 17th Int’l Conf. on Parallel Architectures and
Compilation Techniques, pp. 72-81, 2008.

K. De Bosschere et al, “High-Performance Embedded Ar-
chitecture and Compilation Roadmap,” Transactions on High-
Performance Embedded Architectures and Compilers I, Lecture
Notes in Computer Science, Vol. 4050, pp. 5-29, 2007.

EDN Embedded Microprocessor Benchmark Consortium,
http://www.eembc.org.

L. Eggermont, Ed.,, “Embedded Systems Roadmap”, STW
Technology Foundation, http://www.stw.nl/Programmas/
Progress/ESroadmap.htm. 2002.

M.R. Guthaus et al., “MiBench: A free, commercially repre-
sentative embedded benchmark suite,” Proc. of the IEEE Int’l
Workshop on Workload Charac-terization (WWC-4), Dec. 2001.
J.L. Hennessy and D.A. Patterson, Computer Architecture: A
Quantitative Approach, Morgan Kaufmann Publishers, 1996.

Y. Liang and S.M.Z. Igbal, “OpenMPBench - An Open-Source
Benchmark for Multiprocessor Based Embedded Systems,”
Master thesis report MCS-2010:02, School of Computing,
Blekinge Institute of Technology, Sweden, Jan. 2010.

W.J. Price, “A Benchmark Tutorial,” IEEE Micro, 9(5):28-43,
Sep. 1989.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta,
“The SPLASH-2 programs: characterization and methodolog-
ical considerations,” Proc. of the 22nd Int'l Symp. on Computer
Architecture, pp. 24-36, 1995.

(2]

(3]

(4]

(5]

6]

(71

(8]

(9]
[10]

