
An Approach for Performance Evaluation of
Software Architectures using Prototyping

Frans Mårtensson, Håkan Grahn, and Michael Mattsson

Department of Software Engineering and Computer Science
Blekinge Institute of Technology

P.O. Box 520, SE-372 25 Ronneby, Sweden
{Frans.Martensson, Hakan.Grahn, Michael.Mattsson}@bth.se

ABSTRACT
The fundamental structure of a software system is

referred to as the software architecture. Researchers have
identified that the quality attributes of a software system,
e.g., performance and maintainability, often are restricted
by the architecture. Therefore, it is important to evaluate
the quality properties of a system already during architec-
tural design. In this paper we propose an approach for
evaluating the performance of a software architecture
using architectural prototyping. As a part of the approach
we have developed an evaluation support framework. We
also show the applicability of the approach and evaluate it
using a case study of a distributed software system for
automated guided vehicles.

KEYWORDS: Software architecture, performance
evaluation, architecture prototyping, architecture
evaluation.

1. Introduction
The size and complexity of software systems are con-

stantly increasing. During recent years, software engineer-
ing research has identified that the quality properties of
software systems, e.g., performance and maintenance,
often are constrained by their architecture [1]. Before
committing to a particular software architecture, it is
important to make sure that it handles all the requirements
that are put upon it, and that it does this reasonably well.
Bad architecture design decisions can result in a system
with undesired characteristics, e.g., low performance and/
or low maintainability.

When designing an architecture, there exists many dif-
ferent solutions to a given problem. Therefore, the design
of the architecture should be supported by a well-defined,
explicit method and reliable data predicting the effects of
design decisions, preferably in a quantifiable way. Exam-
ples of architecture evaluation methods are prototyping
and scenario-based evaluation [2]. Each method has its
own advantages and drawbacks, and there is no general
consensus that a certain method is the best. Which method
to use depends on time constraints and which quality
attributes that are to be evaluated.

One important quality attribute to evaluate during
architectural design is performance. Many times perfor-
mance problems are not detected until system integration
test, and thus are very costly to correct [3]. Some even
argue that a design change is at least ten times more
expensive after the code has been written than during
architectural design. Therefore, it is important to evaluate
the performance of a system as early as possible in the sys-
tem development process, i.e., during the architectural
design phase.

In this paper, we present an approach that assess the
performance characteristics of a software architecture, or a
part of it. We apply the approach in a case study, an auto-
mated guided vehicle (AGV) system, where an early ver-
sion of a communication component of the architecture is
evaluated in order to identify its performance characteris-
tics. The protypical method is based on an adaptation of
the simulation based evaluation method as described by
Bosch in [2]. We extend that approach by building an exe-
cutable prototype of the software architecture, and thus
evaluate the performance at the architectural level. The
extensions to Bosch’s method include, among others, the
introduction of an evaluation support framework for gath-
ering data in a consistent way during several subsequent
evaluations as well as evaluation of candidate implementa-
tions or technologies.

We will with some background about software archi-
tecture in Section 2. In Section 3, we describe the simula-
tion-based evaluation method, how we adapted it to
prototype-based evaluation, and finally describe the result-
ing evaluation approach. Then, in Section 4, we illustrate
the prototype based evaluation approach using a case
study where an evaluation is conducted on an AGV system
architecture. In Section 5 and Section 6 we discuss the
results of the case study and how the evaluation approach
worked, respectively. Finally, we conclude our study in
Section 8.

2. Software Architecture
Software systems are constructed with a requirement

specification as a base. The requirements in the require-
ment specification can be categorized into functional

requirements and non-functional requirements, also called
quality requirements. The design of software systems has
traditionally been centred around the functional require-
ments. Although software engineering practice was forced
to incorporate the quality requirements as well, software
engineering research focused on the system functionality.

During recent years, the domain of software architec-
ture [1, 4, 5] has emerged as an important area of research
in software engineering. This is in response to the recogni-
tion that the architecture of a software system often con-
strains the quality attributes. Thus, architectures have
theoretical and practical limits for quality attributes that
may cause the quality requirements not to be fulfilled. If
no analysis is done during architectural design, the design
may be implemented with the intention to measure the
quality attributes and optimize the system at a later state.
However, the architecture of a software system is funda-
mental to its structure and cannot be changed without
affecting virtually all components and, consequently, con-
siderable effort.

Software architecture can be divided into three problem
areas, i.e., designing, describing, and evaluating a software
architecture. In this paper we focus on evaluating software
architectures, and in particular evaluating their perfor-
mance. Four approaches to architecture evaluation can be
identified, i.e., scenarios, simulation, mathematical model-
ling, and experience-based reasoning. Smith [3] discusses
an approach to modelling system performance mathemati-
cally, although one may require simulation in certain
cases. Our approach relies on the construction of an exe-
cutable prototype of the architecture.

3. The prototype-based evaluation approach
In the core of the prototype-based evaluation approach

is the architecture prototype that approximates the behav-
ior of the completed software system. When we were
asked to perform the evaluation of the AGV system (see
Section 4), we were unable to find a description of the
steps involved in creating an architecture prototype. As a
result we decided to take the basic workflow from simula-
tion based evaluation as described in [2] and adapt it to our
needs. We will in the following section give a short intro-
duction to the steps involved in performing a simulation-
based architecture evaluation. We will then describe the
changes that we made to that approach, and finally
describe the resulting prototype-based evaluation
approach.

3.1. Simulation based architecture evaluation
A simulation-based evaluation is performed in five

steps [2]:

1. Define and implement context.

2. Implement architectural components.

3. Implement profile.

4. Simulate system and initiate profile.

5. Predict quality attribute.

Define and implement context. In this first step two
things are done. First, the environment that the simulated
architecture is going to interact with is defined. Second,
the abstraction level that the simulation environment is to
be implemented at is defined (high abstraction gives less
detailed data, low abstraction gives accurate data but
increases model complexity).

Implement architectural components. In this step the
components that make up the architecture are imple-
mented. The component definitions and how the compo-
nents interact with each other can be taken directly from
the architecture documentation. The level of detail and
effort that is spent on implementing the architecture com-
ponents depends on both which quality attribute that we
are trying to evaluate and the abstraction level that we
have chosen to conduct the simulation at. If we are going
to evaluate several quality attributes, then we will most
likely have to implement more functionality than if we
focus on only one.

Implement profile. A profile is a collection of scenarios
that are designed to test a specific quality attribute. The
scenarios are similar to use-cases in that they describe a
typical sequence of events. These sequences are imple-
mented using the architectural components that are going
to be evaluated. This results in a model of the system com-
ponents and their behavior. How a profile is implemented
depends on which quality attribute we are trying to assess
as well as the abstraction level that is necessary for getting
relevant data.

Simulate system and initiate profile. The simulation
model is executed. During the execution data is gathered
and stored for analysis. The type of data that is gathered
depends on which quality attribute that we want to evalu-
ate.

Predict quality attribute. The final step is to analyse the
collected data and try to predict how well the architecture
fulfills the quality requirements that we are trying to eval-
uate. This step is preferably automated since a simulation
run usually results in a large amount of raw data.

3.2. Adaptations to the evaluation method
The workflow from the simulation-based evaluation

had to be adapted to incorporate steps that we wanted to
perform in our prototype-based evaluation. The main
changes that we made were to introduce an evaluation sup-
port framework and put more emphasis on iteration in the
evaluation process. We also did minor changes in the
existing steps. These changes are described in more detail
when we present our case study.

3.2.1. Evaluation support framework
We added the step of creating an evaluation support

framework for use during the evaluation. A layered view
of where the support framework is placed is shown in Fig-
ure 1. We choose to create the evaluation support frame-
work for two reasons.

First, it makes us less dependent on the architecture
component that we want to evaluate. The framework
decouples the architecture component that we are evaluat-
ing from the architecture model that is used to generate
input to the component. This increases the reuseability of
the architecture model as it only depends on the API pro-
vided by the framework and not directly on the architec-
ture component.

Second, all logging can be performed by the frame-
work, resulting in that neither the architecture model nor
the architecture component that are evaluated need to care
about the logging. This leads to both that the logging is
done in a consistent way independent of the underlying
architecture component, and that no change has to be
made to the architecture component when it is fitted to the
framework. All that is needed is a wrapper class that trans-
lates between the calls from the framework and the archi-
tecture component. A more thorough discussion on how
we constructed our framework can be found in section 4.2.

Iteration
During the development and execution of the prototype

we found that it became necessary to perform the develop-
ment of both the architecture model and the evaluation
support framework in an iterative way. We needed to reit-
erate steps two to five in order to make adjustments to the
way data was logged, and also to the behavior of the archi-
tecture model that was used. The need to make these
changes was identified first after an initial execution of the
simulation and analysis of the generated data. The positive
thing with adding an iteration is that the initial results can
be reviewed by experts (if such are available) that can
determine if the results are sensible or not, and if changes
to the model are necessary. We also got a confirmation that
the log analysis tools were working correctly.

3.3. Prototype based architecture evaluation
In order to perform a prototype based evaluation there

are some conditions that has to be fulfilled.
• First, there has to be at least one architecture defined,

if the goal of the evaluation is to compare alternative
architectures to each other then we will of course
need more.

• Second, if we want to evaluate the performance of
one or more candidates for a part of the software
architecture then these components has to be avail-
able. This is usually no problem with COTS compo-
nents but might pose a problem if the components are
to be developed in house.

In addition, it is a preferable, but not necessary condi-
tion, that the target platform (or equivalent) of the archi-
tecture is available. If it is possible to run the prototype on
the correct hardware, it will give more accurate results.

After integrating our adaptations in the evaluation
method we ended up with the following method for proto-
type based architecture evaluation.

1. Define evaluation goal.

2. Implement an evaluation support framework.

3. Integrate architectural components.

4. Implement architecture model.

5. Execute prototype.

6. Analyse logs.

7. Predict quality attribute.

8. If necessary, reiterate.

Define evaluation goal. Define what it is that should be
evaluated, are we looking at more one or more architecture
candidates or architecture components, and which quality
attributes are we interested in evaluating.

Implement an evaluation support framework. The
evaluation support framework’s main task is to gather data
that is relevant for fulfilling the evaluation goal that has
been defined. Depending on the goal of the evaluation, the
framework has to be designed accordingly, but the main
task of the support framework is always to gather data.
The support framework can also be used to provide com-
mon functions such as utility classes for the architecture
model.

Integrate architectural components. The component of
the architecture that we want to evaluate has to be adapted
so that the evaluation support framework can interact with
it.

Implement architecture model. Implement a model of
the architecture with the help of the evaluation support
framework. The model together with the evaluation sup-

Figure 1: A layered view of the prototype design.

Architecure Model

Evaluation Support
Framework

Architecture
Component

port framework and the component that is evaluated
becomes an executable prototype.

Execute prototype. Execute the prototype and gather the
data for analysis in the next step. Make sure that the exe-
cution environment matches the target environment as
close as possible.

Analyse logs. Analyse the gathered logs and extract infor-
mation regarding the quality attributes that are under eval-
uation. The analysis is with advantage automated as much
as possible since the amount of data easily becomes over-
whelming.

Predict quality attribute. Predict the quality attributes
that are to be evaluated based on the information from the
analysed logs.

If necessary, reiterate. This goes for all the steps in the
evaluation approach. As the different steps are completed
it is easy to see things that were overlooked during the pre-
vious step or steps. Once all the steps has been completed
and results from the analysis are available, you could let
an expert review them and use the feedback for deciding if
adjustments have to be done to the prototype. These
adjustments can be necessary in both the architecture
model and the evaluation support framework. Another
advantage is that it is possible to make a test run to vali-
date that the analysis tools are working correctly and that
the data that is gathered really is useful for addressing the
goals of the evaluation.

4. A case study of an AGV system
The prototype based evaluation approach was specified

in order to perform an evaluation for Danaher Motion Särö
AB [6] that is developing a new version of a control sys-
tem for Automated Guided Vehicles (AGV:s). The system
consists of a central server that controls a number of vehi-
cles through a wireless network. Each vehicle has a client
that controls it and communicates with the server. The cli-
ent regularly position the vehicle through, e.g., laser mea-
surements. The position is then sent back to the server
which, based on the positioning information and informa-
tion stored in a map database, decides what the client is to
do next. Typical commands for the client is to drive a cer-
tain sequence of path segments, or load and unload cargo.

The client in the new system has a number of quality
requirements that has to be accommodated, for example
portability between different operating systems, scalability
in functionality, and cost efficiency. The cost efficiency of
the client is largely influenced by the price of the hardware
that is needed to provide the necessary processing power
to complete its computational tasks within a given timepe-
riod. This brings us to the performance of the client, since
an efficient client will be able to work on slower hardware
than a less efficient version, i.e., a more efficient client

will be more cost efficient. The target platform for the new
client is a Intel Pentium CPU at 133 MHz with an embed-
ded version of the Linux operating system.

The prototype based evaluation method is applied to
the architecture of the client and focus on how the internal
communication in the client is handled. The clients consist
of a number components that exchange information with
each other. The components are realised as a number of
threads within a process. In order to decrease the coupling
between the components it was decided to introduce a
component that provided a level of indirection between the
other components by managing all communication in the
client. This communication component is very crucial for
the overall performance of the client as all communication
between the other components in the client goes through
this component. The communication component handles
asynchronous communication only, the components com-
municate with each other by publishing telegrams (mes-
sages) of different types. Each component that is
interested in some type of information has to register as a
subscriber for that telegram type.

A first version of the communication component was
already in use for the development of the other compo-
nents. There were however some concerns regarding how
well the communication component would perform on the
target hardware for the new system. In order to verify that
the new client would be able to fulfill the performance
requirement it was decided that a performance evaluation
should be done before to much time was spent on further
development.

We will now go through the steps in the prototype-
based evaluation method and describe what we did in each
step. This will hopefully give the reader a more concrete
feeling for the tasks that have to be done.

4.1. Define the evaluation goal
We defined the goal of the evaluation to be the perfor-

mance of the communication component of the new AGV
client. The component is critical as it handles the dispatch-
ing of messages between all the components in the client.

Because of safety and requirements regarding the posi-
tioning accuracy of the vehicles, the client has to complete
a navigation loop within 50 ms. During this time a number
of messages has to be passed between the components of
the client. Together with the communication a certain
amount of computation has to be performed in order to
decide where the vehicle is and necessary course correc-
tions. The amount of computation that has to be done var-
ies only slightly from one loop to the next, so what
remains that can affect the time it takes to complete the
loop is the time it takes for the components to communi-
cate with each other. In order to determine how good the
communication component was we decided to gather the
following three datapoints:

• The time it takes for a component to send a message.

• The time it takes for the communication component
to deliver the message (message transit time).

• The time it takes to complete a navigation loop in our
architecture model.

Aside from the pure performance questions there were
two additional questions, i.e., questions that we did not
intend to focus the prototype on but that we would keep an
eye out for in order to get a feel for how the communica-
tion component handled them.

• Is there a large difference in performance between
Linux and Windows 2000? This was a concern raised
by some of the engineers developing the system.

• How easy is it to port the communication component
from Windows 2000 to Linux?

So now we have defined the goal of our evaluation and
we have defined the data that we will need in order to per-
form the evaluation.

4.2. Implement an evaluation support
framework

Based on the defined goal of the evaluation we created
an evaluation support framework that would handle the
gathering of data as well as separate the communication
component from the architecture model. The conceptual
model for the evaluation support framework that we con-
structed consisted of four main concepts: worker, log,
framework, and communication component.

• A worker is someone that performs work such as cal-
culations based on incoming data. A worker can both
produce and consume messages. Instances of the
worker are used to create the architecture model.

• The log is used to store information regarding the
time it takes to perform tasks in the system. The
framework uses the log to store information regard-
ing sent and received messages.

• The framework provides a small API for the work-
ers. It is mainly responsible for sending relevant
events to the log but it also provides methods for
generating unique message id:s as well as sending
and receiving messages etc.

• The communication component is some kind of com-
munication method that we are interested in evaluat-
ing. This is the exchangeable part of the framework

The four concepts were realised as a small number of
classes and interfaces, as shown in Figure 2. The evalua-
tion support framework provided an abstract worker class
that contained basic functionality for sending and receiv-
ing messages. This class also generated log entries for
each event that happened (such as the sending or receiving
of a message). The class was also responsible for shutting
down the testing once a predetermined time had elapsed,
during the shutdown the log was flushed to disk. When

creating a worker the user extended the abstract class and
through that got all the messaging an logging functionality
ready to use. Only some initialization was left to be done.

The log was realised in a LogManager class that stored
log entries together with a timestamp for each entry. All
log entries were stored in memory during the execution of
the model and written to disk first after the execution had
ended. This construction was chosen as it ensured that
there, during execution, was no disk activity other than
what was initiated by the OS, workers, or communication
component.

The communication is represented by an interface in
the framework. The interface only provided basic methods
for starting up, configuring, shutting down, sending,
receiving, connecting and disconnecting. If a new commu-
nication component is to be tested, a wrapper class is writ-
ten that implements the communication interface and is
able to translate the calls from the framework to the com-
munication component.

4.3. Integrate architectural components
The communication component that we wanted to eval-

uate was integrated with the evaluation support frame-
work. The component provided asynchronous
communication based on publisher-subscriber, meaning
that all components that are interested in some type of
message subscribes to it using the communication compo-
nent. When a message is sent to the communication com-
ponent it is published to all the components that have
subscribed to that type of message.

The communication interface for the framework was
implemented by a wrapper class that passed on messages
to be sent and received. It also handled the translation of
telegram types from the support framework to the commu-
nication component.

Figure 2: A class diagram of the simulation frame-
work.

WorkerB

WorkerC

+configure()
+connect()
+disconnect()
+receiveMessage()
+sendMessage()
+run()

AbstractWorker

+abcConfigure()
+abcConnect()
+abcDisconnect()
+abcSetReceiver()
+abcSendData()

«interface»
Communication

NDCDispatcherComm

+abcLog()
+abcLogSetup()
+abcLogFlush()

LogManager

WorkerA

-End15

-End16

-End1

-End2

ActiveObjectBase

+consumeMsg()

«interface»
BaseConsumer

WorkerD

WorkerE

4.4. Implement architecture model
With the framework in place and ready to use we went

on to create the architecture model. It was built based on
the architecture of the navigation system and focused on
modeling the navigation loop. During the loop, several
components interact with each other and perform compu-
tations as a response to different messages, as shown in
Figure 3.

Workers B, C, and D are the most critical components
of the navigation loop. WorkerB initiates the loop when it
receives a message from WorkerA which sends a message
periodically every 50 ms. When workerB receives a mes-
sage it works for 1 ms and then sends a message with its
results. WorkerC then receives the message from workerB
and it proceeds to work for 5 ms before sending its mes-
sage. This message is in turn received by workerD that
also works for 5 ms before sending a new message. The
message from workerD is received by workerB which
notes that it has been received but does nothing more.
WorkerE has subscribed to all the message types that exist
in the model and thus receives all messages that are sent
between the other workers.

In order to keep the model simple and easy to under-
stand we simplified the interactions between the compo-
nents so that each component only published one type of
message.

Since we wanted to evaluate the performance of the
communication component without affecting the system
too much during execution we logged only time stamps
together with a small identifier in runtime. This kept the
time it took to create a log entry to a minimum. Log entries
were created every time a worker entered or returned from
the communication component and also when a message
was actually sent. When sending a message we logged a
time stamp together with the whole message.

4.5. Execute prototype
The prototype was executed on three different hard-

ware platforms, these were all Intel Pentium based plat-

forms at the speeds of 133 MHz, 700 MHz, and 1200
MHz. The operating systems that were used were Linux,
Windows 2000, and Windows XP. The operating system
that the client is targeted for is Linux but all development
is performed on Windows 2000 and test runs of the system
are performed on the development platform. Therefore we
wanted to run our prototype on that operating system as
well. It also helped us to determine how portable the com-
munication component was.

The architecture prototype was executed during 20 sec-
onds on each platform and the logs from all runs were
gathered and stored for further analysis.

Each execution of the prototype resulted in roughly half
a megabyte of logged data. The data was stored in five
separate log files (one for each worker) and the individual
size of the log files varied between 50 and 150 KB. Each
log entry was between 50 and 70 bytes and we gathered
about 7000 log entries.

Based on the timestamps and identifiers from the logs
we were able to extract information regarding two things.

• The time it took from that a worker called the send
message function until the method returned. This
measure is important as it is the penalty that the
worker has to pay for sending a message.

• How long time any given message spent “in transit,”
i.e., how long time it took from that a worker sent a
message until it was received by the recipient or
recipients.

Measurements were also made in order to see how
much overhead that was added to the communication by
the evaluation support framework. We found that the
framework added a delay of between 6 to 15 percent to the
time it took to send a message. This results in 0.1 to 0.3 ms
on the average send of a message on the Pentium 133Mhz
based machine with Linux as OS (Table 1).

4.6. Analyse logs
We implemented a small program that parsed the gen-

erated logs and extracted the information that we wanted
from the data files. Based on the time stamps and identifi-
ers from the logs we were able to extract information that
we had defined as necessary for evaluating the communi-
cation component, namely:

• The time it takes for a component to send a message
(Table 1).

• The time it takes for the communication component
to deliver the message (Table 2).

• The time it takes to complete a navigation loop in our
architecture model (Table 3).

In all the tables, L stands for Linux, W2K stands for
Windows 2000, WXP stands for Windows XP. The num-
ber is the speed of the Pentium processor, N stands for
NFS mounted system and F stands for a system with a

Figure 3: The model of the different workers that
interact during the simulation.

flash memory disk. Windows 2000 and Windows XP test
used hard drives.

In Table 3 we can see that the average time that it takes
to complete a navigation loop on the L133 platforms is
22,8 ms. This figure can be broken down into two parts:
work time and message transit time. During the loop
workerB and workerC has to perform 10 ms of work and
besides this workerE has to perform 3 times 1 ms of work
resulting in 13 ms total work time. The average message
transit time of about 3,1 ms per message adds up to an
average of 9,3 ms for communication during the loop. The
figures add up to 22,5 ms for a navigation loop where only
three messages are delivered. The fact that we spend about
40% of the time on communicating is taken as an indica-
tion that the communication component is unsuitable for
the Pentium 133 MHz based system.

4.7. Predict quality attributes
Based on the information that were extracted from the

logs, we concluded that the 133 Mhz Pentium based plat-
form probably would be unable to fulfill the performance
requirements for the systems. The time it took to dispatch
a message was far to great to be able to handle the
amounts of messages that the real system would generate.

Regarding the additional questions about the difference
between operating systems and portability, we were able
to draw the following conclusions:

• We found that the expected difference in perfor-
mance between Windows 2000 and Linux didn’t
exist. The two operating systems performed equally
well in the evaluation with less than 1% performance
difference between the two.

• We showed that it would be easy to port the compo-
nent from one platform to another, and from one
compiler to another. All that was necessary for the
port to build on Linux was that the necessary make-
files were written. The high portability of the system
was attributed to the use of the ACE framework
together with following the ANSI C++ standard.

4.8. Reiterate if necessary
After a first iteration of all the steps in the evaluation

method, some questions were raised regarding how the
evaluation support framework handled the logging of data.
The first version of the support framework flushed the
communication logs to disk every 100 log entry. This
could cause the OS to preempt the architecture prototype
in order to complete the write operation. This in turn lead
to spikes in the time it took for a message to be sent and
received. In order to remove this problem the framework
was changed so that the logs were stored in memory dur-
ing the execution of the prototype and flushed to disk just
before the prototype exited.

5. Results from the case study
The evaluation we performed in the case study resulted

in that some fears regarding the performance of the new
client for the AGV system were confirmed and that the
developers took steps to investigate possible solutions to
the problem. The evaluation also successfully answered
the additional questions that were posed in the beginning
of the evaluation.

When the implementation of the new system had
become stable we made measurements on the new system
in order to validate the results from the prototype. The data
was gathered at the same points in the code as the evalua-
tion support framework did and the measurements showed
that the prototype produced the same message delivery
times as the real system.

Table 1: The table shows the time it took for a client to
execute the method for sending a message. Values are in

microseconds.

OS/
HW

L133
N

L133
F

L700
N

L700
F

W2K
700

WXP
1200

Min 1562 1571 88 90 88 38

Med 1708 1716 97 97 97 67

Max 2093 2601 645 280 645 163

Table 2: The table shows how long time a message spent
in transit from sender to receiver. Values are in

microseconds.

OS/
HW

L133
N

L133
F

L700
N

L700
F

W2K
700

WXP
1200

Min 921 922 55 55 55 18

Med 3095 3094 1174 1173 1174 1157

Max 9241 9228 5076 5061 5076 5063

Table 3: The table shows the time it took for the prototype
to complete a navigation loop. Values are in microseconds.

OS/
HW

L133
N

L133
F

L700
N

L700
F

W2K
700

WXP
1200

Min 22765 22712 12158 12158 12096 12067

Med 22840 22834 12161 12159 12130 12100

Max 23128 23128 12165 12163 12245 12190

6. Analysis of the evaluation method
We feel confident that the prototype based evaluation

approach is useful for assessing the performance charac-
teristics of an architecture component and also for evaluat-
ing the performance of architecture models derived from
proposed software architectures. New architecture models
are easily implemented using the evaluation support
framework and the amount of reuse, both in code and anal-
ysis tools makes the creation of a support framework and
analysis tools worth the effort.

The support framework separates the component that
we are evaluating from the architecture model, making it
possible to compare alternative components in a consistent
way as the data for the evaluation is gathered in the same
way independently of the component.

A concern that can be raised against the use of an eval-
uation support framework is that since a message has to go
through the framework classes before it reaches the com-
ponent that we are evaluating there is an added delay. In
our case study we found that the delay between that the
worker sent the message and that the message was actually
sent by the interaction component was quite small. The
framework added between 0,1 to 0,3 ms to the time it took
to send a message.

7. Future work
We plan to continue to use the test framework and the

test applications and try to evaluate other quality attributes
such as scalability and maintainability.

The test-framework and applications will be used to
perform follow-up evaluations at Danaher Motion Särö
AB in order to see how the communication component
develops, and ultimately to compare how well the original
estimations match the performance of the final system.

8. Conclusion
In this paper we have described the prototype based

architecture evaluation approach and the steps that it con-
sists of. The approach is based on the simulation based
evaluation approach but adds mainly the construction of
an evaluation support framework and a clearer focus on
iteration during the evaluation. The use of the evaluation

support framework simplifies the implementation of alter-
native architecture models, makes consistent gathering of
data simpler, and makes it possible to evaluate alternative
implementations of an architecture component.

The evaluation approach has been used to evaluate the
performance characteristics of a communication compo-
nent in an AGV system architecture. The evaluation
resulted in that a performance problem was identified and
that two additional questions were evaluated as well (Port-
ability and performance differences between Windows
2000 and Linux). Results from the case study were also
used to validate the evaluation approach once the new sys-
tem was stable, and showed that it produced accurate
results.

The case study illustrates the steps within the evalua-
tion process and can be seen as a guide for performing a
prototype based evaluation.

Acknowledgments
This work was partly funded by The Knowledge Foun-

dation in Sweden under a research grant for the project
"Blekinge - Engineering Software Qualities (BESQ)"
(http://www.ipd.bth.se/besq).

We would like to thank Danaher Motion Särö AB [6]
for providing us with a case for our case study and many
interesting discussions and ideas.

References
[1] L. Bass, P. Clements, and R. Kazman, Software Archi-

tecture in Practice, Addison-Wesley, 1998.
[2] Bosch J.: Design & Use of Software Architectures,

Pearson Education Limited, ISBN 0-201-67494-7.
[3] C. Smith and L. Williams, “Performance Solutions -

A Practical Guide to Creating Responsive, Scalable
Software,” Addison-Wesley, 2001.

[4] D.E. Perry and A.L.Wolf, ‘Foundations for the Study
of Software Architecture,’ Software Engineering
Notes, 17(4):40-52, October 1992.

[5] M. Shaw and D. Garlan, Software Architecture - Per-
spectives on an Emerging Discipline, Prentice Hall,
1996.

[6] Danaher Motion Särö AB, http://www.danahermo-
tion.se

	An Approach for Performance Evaluation of Software Architectures using Prototyping
	Frans Mårtensson, Håkan Grahn, and Michael Mattsson
	Department of Software Engineering and Computer Science
	Blekinge Institute of Technology
	P.O. Box 520, SE-372 25 Ronneby, Sweden
	{Frans.Martensson, Hakan.Grahn, Michael.Mattsson}@bth.se
	ABSTRACT
	KEYWORDS: Software architecture, performance evaluation, architecture prototyping, architecture evaluation.
	1. Introduction
	2. Software Architecture
	3. The prototype-based evaluation approach
	3.1. Simulation based architecture evaluation
	1. Define and implement context.
	2. Implement architectural components.
	3. Implement profile.
	4. Simulate system and initiate profile.
	5. Predict quality attribute.
	Define and implement context
	Implement architectural components
	Implement profile
	Simulate system and initiate profile
	Predict quality attribute

	3.2. Adaptations to the evaluation method
	3.2.1. Evaluation support framework
	Figure 1: A layered view of the prototype design.
	Iteration

	3.3. Prototype based architecture evaluation
	1. Define evaluation goal.
	2. Implement an evaluation support framework.
	3. Integrate architectural components.
	4. Implement architecture model.
	5. Execute prototype.
	6. Analyse logs.
	7. Predict quality attribute.
	8. If necessary, reiterate.
	Define evaluation goal.
	Implement an evaluation support framework.
	Integrate architectural components.
	Implement architecture model.
	Execute prototype.
	Analyse logs.
	Predict quality attribute
	If necessary, reiterate.

	4. A case study of an AGV system
	4.1. Define the evaluation goal
	4.2. Implement an evaluation support framework
	Figure 2: A class diagram of the simulation frame work.

	4.3. Integrate architectural components
	4.4. Implement architecture model
	Figure 3: The model of the different workers that interact during the simulation.

	4.5. Execute prototype
	4.6. Analyse logs
	Table 1: The table shows the time it took for a client to execute the method for sending a message. Values are in microseconds.
	Table 2: The table shows how long time a message spent in transit from sender to receiver. Values are in microseconds.
	Table 3: The table shows the time it took for the prototype to complete a navigation loop. Values are in microseconds.

	4.7. Predict quality attributes
	4.8. Reiterate if necessary

	5. Results from the case study
	6. Analysis of the evaluation method
	7. Future work
	8. Conclusion
	Acknowledgments
	References
	[1] L. Bass, P. Clements, and R. Kazman, Software Archi tecture in Practice, Addison-Wesley, 1998.
	[2] Bosch J.: Design & Use of Software Architectures, Pearson Education Limited, ISBN 0-201-67494-7.
	[3] C. Smith and L. Williams, “Performance Solutions - A Practical Guide to Creating Responsive, Scalable Software,” Addison-Wesley, 2001.
	[4] D.E. Perry and A.L.Wolf, ‘Foundations for the Study of Software Architecture,’ Software Engineering Notes, 17(4):40-52, October 1992.
	[5] M. Shaw and D. Garlan, Software Architecture - Per spectives on an Emerging Discipline, Prentice Hall, 1996.
	[6] Danaher Motion Särö AB, http://www.danahermo tion.se

