
Improving image quality by SSIM based increase of
run-length zeros in GPGPU JPEG encoding

Stefan Petersson
Department of Creative Technologies

Blekinge Institute of Technology
SE-37179 Karlskrona, Sweden
Email: Stefan.Petersson@bth.se

Håkan Grahn
Department of Computer Science and Engineering

Blekinge Institute of Technology
SE-37179 Karlskrona, Sweden
Email: Hakan.Grahn@bth.se

Abstract—JPEG encoding is a common technique to compress
images. However, since JPEG is a lossy compression certain
artifacts may occur in the compressed image. These artifacts
typically occur in high frequency or detailed areas of the image.
This paper proposes an algorithm based on the SSIM metric
to improve the experienced quality in JPEG encoded images.
The algorithm improves the quality in detailed areas by up to
1.29 dB while reducing the quality in less detailed areas of
the image, thereby increasing the overall experienced quality
without increasing the image data size. Further, the algorithm
can also be used to decrease the file size (by up to 43%) while
preserving the experienced image quality. Finally, an efficient
GPU implementation is presented.

I. INTRODUCTION

JPEG encoding is a very common technique to compress
images. JPEG encoding is adaptable in the sense that one can
adjust the compression ratio, i.e., a low compression leads to
high quality images but large files sizes and high compression
leads to lower quality images but small file sizes. Thus, there
is a trade-off between the image quality and the file size of
the image. One problem with JPEG encoding is that certain
artifacts may occur in high contrast or high frequency areas,
as shown in Figure 1 and addressed in e.g. [10]. The problem
can be reduced by increasing the JPEG quality factor, but at
the cost of increased data size.

Fig. 1: JPEG artifacts are common in areas where abrupt
changes in contrast are present.

Several approaches have been proposed to enhance JPEG
encoding for different situations, e.g., using adaptive re-
gions [15] or based on the human perception [3], [8], [9], [11].
The Structural SIMilarity (SSIM) index [12] measures the sim-
ilarity between two images and has been used to improve video
encoding [13], [14] and also for image compression [4]. The
standard SSIM equation used to compare images is presented
in Equation 1. Often an unnecessary amount of high frequency
information is preserved when encoding low-quantized JPEG
image data. Therefore, we propose an algorithm to decrease

the encoded data size by removing frequency information
based on an SSIM guided approach.

SSIM (x, y) =
(2µxµy + C1) (2σxy + C2)(

µ2
x + µ2

y + C1

) (
σ2
x + σ2

y + C2

) (1)

In this paper, we present an SSIM-based algorithm to

(i) decrease the compressed image file size by maintaining
a high quality in high contrast areas, e.g., text, thin lines,
etc., and decreasing the quality in the rest of the image
to a lower but still acceptable level, or

(ii) iteratively increase the JPEG quality factor in high con-
trast or high frequency areas and lower the quality in
low-frequency areas, while maintaining the same file size.

Our algorithm uses the SSIM index on 8x8 luminance pixel
blocks to identify high contrast blocks, and then reduce the
compression ratio of those blocks. Similarly, for low con-
trast blocks our algorithm increase the compression rate by
increasing run-length zeros, and thus reduce the quality of
those blocks.

We have implemented our algorithm by extending a high
performance GPU-based implementation of a baseline JPEG
encoder [6]. The baseline GPU encoder execution performance
in comparison to the CPU based libjpeg-tugbo encoder is
shown in Figure 2. An image is encoded targeting a specific
JPEG quality and the algorithm reduces the data size based
on metric information and is not able to increase quantitative
metric results.

0 20 40 60 80 100
0

18

36

54

72

90

JPEG Quality

E
nc

od
e

Ti
m

e
(m

s)

GPU encoder 4:4:4 GPU encoder 4:2:2 GPU encoder 4:2:0
libjpeg-turbo 4:4:4 libjpeg-turbo 4:2:2 libjpeg-turbo 4:2:0

Fig. 2: JPEG encoder benchmark results in [6].



We evaluate the algorithm on all images in the Kodak
Lossless True Color Image Suite [5] and on two other test
images. Our results show that we can reduce the compressed
image size by up to 43% on a 2268x1512 pixel image as
compared to a standard JPEG encoder with the same quality
level (Q90). Our results also show that we can increase PSNR
by up to 1.29 dB in high contrast areas in the images in the
Kodak suite as compared to a standard JPEG encoder at JPEG
quality 90.

II. WHY ENCODE USING SSIM?

The SSIM index is a full reference metric, which means
that it relies on having a non-distorted source image when
compared to, for example, a lossy compressed version of
that source image. Different full reference metrics exist but
only a few of them are designed with focus on human eye
perception. The design goal of our algorithm is to reduce
image quality in areas where the human eye would not see a
noticeable difference. The SSIM metric is usually calculated
using luminance information only [12].

When encoding JPEG data, luminance and chrominance
planes are often separated and thereafter transformed to a
frequency domain using the Discrete Cosine Transform (DCT).
Previous work have shown that the SSIM index can be
calculated in DCT space [1], [7], making it even more suitable
for JPEG encoder integration since the already transformed
coefficients can be used directly without further processing. In
our algorithm the SSIM index is calculated using the formula
found in [7], which is presented in Equation 2. The input
signals {x,y} to the calculation are the DCT coefficient which,
in the formula, are represented by X(k) and Y (k). C1 and C2
are pre-calculated constants needed to stabilize the calculation
when means and variances get close to zero. In our algorithm,
the two constants are based on the number of bits needed to
represent the block DC coefficient.

SSIM (x,y) =

(
1− (X(0)− Y (0))

2

(X(0)2 + Y (0)2 +N · C1)

)
×1−

∑N−1
k=1 (X(k)−Y (k))2

N−1∑N−1
k=1 (X(k)2+Y (k)2)

N−1 + C2

 (2)

III. JPEG BLOCK SIMPLIFICATION ALGORITHM

When encoding baseline JPEG images, pixels are grouped
into blocks of 8x8 pixels. When computed using GPU hard-
ware, all 64 group pixels are computed in parallel. To calculate
the SSIM index in the space domain, Equation 1 is used. The
SSIM index can be computed from DCT coefficients [1], [7],
which is a major benefit when encoding JPEG data using
the proposed algorithm. In our implementation the formula
in Equation 2 was used.

The JPEG encoding algorithm consists of the following
steps, where entries highlighted in bold are additions proposed
in this paper to increase run-length zeros:

1) Apply color transform and level shift.

1 1 0 0 0 1 0 . . . 0

0 1 2 2 2 2 3 . . . 3

16 -5 4 0 0 0 0 . . . 0

1 2 6 0 0 0 0 . . . 0

16 -5 4 0 0 0 0 . . . 0

0 0 3 0 0 0 0 . . . 0

D
C

not
processed

after
im

age
quality

m
etric

calculations

RGB RGB RGB RGB RGB RGB RGB RGB . . . RGB

321 16 -5 0 0 0 4 00 . . . 0

Exclusive Prefix Sum

Compact and Store Previous Index

Calculate Preceding Zeroes

DC AC BITS . . . BC

Bit Count

Texture2D Resource

Color Transform

Chroma Subsampling

Forward Discrete Cosine Transform

Quantization

Quantization and dequantization to lower JPEG quality

Compute SSIM in FDCT domain

Insert zeros

Flag Non-Zero AC Coefficients

Build Bit-Strings

Exclusive Prefix Sum

Entropy Code AC Coefficients

Fig. 3: An overview of the GPU implementation of our JPEG
encoder. The highlighted three steps in the middle are modified
as compared to [6].

2) Transform colors using the DCT.
3) Quantize DCT coefficients using target JPEG quality

and round to nearest integer value.
4) To simulate decoding; de-quantize and round all

DCT coefficients to the nearest integer value.



5) Calculate a reference SSIM index from the DCT
coefficients.

6) Iteratively identify the SSIM index below threshold
boundary by applying binary search of the requested
JPEG quality factor.

a) Quantize and round current DCT coefficients to
nearest integer value using the current iteration
JPEG quality factor.

b) De-quantize DCT coefficients and round to
nearest integer value.

c) Calculate SSIM index from the new DCT co-
effiecients.

d) Compare SSIM index with reference SSIM.
e) If comparison stays above threshold value, then

insert zeros in destination DCT matrix where
zeros are present in the current iteration DCT
matrix.

7) Quantize destination DCT matrix.
8) Entropy code DCT coefficients and output to final JPEG

data stream.
Figure 3 shows an overview of our GPU implementation

of the proposed algorithm. The three highlighted steps in the
figure are modified as compared to [6] as follows:

• Iteratively evaluate each 8x8 luma pixel block.
• Identify where to insert zeros by decreasing JPEG quality

(simplification is guided by JPEG standard quantization
matrix).

• Insert zeros until metric value stays above threshold value
(using either an absolute or percentage difference).

• When below threshold, continue standard encoding
scheme.

A standard JPEG image with quality 50 will have better
quantitative metric results compared to an image encoded with
quality 50 where SSIM simplification is enabled. To increase
image quality, multiple higher quality encodes have to be done,
until the simplified image has similar data size as the standard
baseline image. Our implementation ensures that the resulting
image encoding stays JPEG standard compliant, so existing
decoders can be used.

IV. EXPERIMENTAL EVALUATION

We evaluate the algorithm on all images in the Kodak
Lossless True Color Image Suite [5] and on two other test
images. All measurements are done on a computer running
Microsoft Windows 8.1 Pro x64, equipped with an Intel i7
860 CPU at 2.8 GHz, 8 GB RAM, and an AMD Radeon 7970
GPU. In all tests the chroma planes are subsampled according
to the 4:2:0 subsampling scheme and the SSIM threshold ratio
is set to 99%.

1) Reducing image size: Figure 4 shows how the proposed
algorithm is able to reduce data size with a SSIM index
preserved above the threshold ratio of 99%. This indicates that,
when encoding low-quantized JPEG data, an unnecessary large
amount of frequency information is stored. The PSNR value of
the SSIM-based encoded image shows that the reduced image

(a) 2268x1512 source RGB image (b) Baseline, Q90, 343,314 bytes

(c) Proposed, Q90, 197,641 bytes (d) PSNR diff (a) and {(b),(c)}.

Fig. 4: An example image comparison.

is worse as compared to the baseline encoded image. However,
according to the SSIM index, the decreased quality will have
low impact when presented to a human viewer. When encoding
a baseline image with same size as the one in Figure 5b, the
proposed technique has a higher SSIM index. Note that the
SSIM-based encoded image is significantly smaller, i.e. 43%
smaller, than the baseline encoded image.

2) Increasing image quality: When increasing the base
JPEG quality the proposed encoder algorithm has the potential
of maintaining that quality in sensible areas where the SSIM
index has a steep decrease rate. Each 8x8 block is separately
encoded and the total data size of all blocks are not known
until the entire image is encoded. To redistribute image quality,
the source image is re-encoded until the total data size is close
or equal to the data size of the baseline encoded image.

To show the performance of the quality increasing behavior,
a high-resolution (3072x2048 pixels) artificial image from
www.imagecompression.info was encoded. The image was
encoded using the baseline JPEG encoder and by the proposed
algorithm. The encoded results, with similar data size output,
are presented in Figure 5. Green areas shows areas with
improved quality, red areas have decreased quality, and blue
areas have the same quality in the baseline and the SSIM
guided encoders.

When comparing image parts at 25x zoom level, as shown
in Figure 5c and Figure 5d, we see that the proposed technique
has potential to increase both qualitative and quantitative
image quality in image areas that are sensible to quantization
artifacts. Given the same JPEG data file size, the proposed
SSIM guided algorithm could encode the image with JPEG
quality 81 as compared to the baseline encoder that only could
reach image quality 75.

3) Redistributing the image quality: To further evaluate the
effectiveness of our simplification and quality redistribution
approach, we have encoded all images from the Kodak Loss-



(a) PSNR comparison between (b) and {(c),(d)}. The green areas indicate parts
of the image where the quality is improved, blue areas indicate maintained
quality and red areas indicate where the image quality has been decreased.

(b) 3072x2048 source RGB image, 25x zoom

(c) Baseline, 25x zoom, Q75, 445,772 bytes (d) Proposed, 25x zoom, Q81, 444,135 bytes

Fig. 5: An example image comparison. The green areas indicate parts of the image where the quality is improved, blue areas
indicate maintained quality and red areas indicate where the image quality has been decreased.

less True Color Image Suite [5]. The suite consists of 24
images with dimension of 768x512 pixels. The encoding was
done with the baseline JPEG encoder [6] and the proposed
SSIM guided encoder. All images were encoded with JPEG
qualities 50, 70 and 90. The encoded results were thereafter
compared, using Peak signal-to-noise ratio (PSNR), to each
suite reference image, respectively.

The comparison results are presented in the table of Fig-
ure 6. We start be observing that the differences between
the baseline and the SSIM guided encoders increase with
higher JPEG quality, as indicated by the PSNR difference
for the whole JPEG image. Next, we can also observe that
the variations in quality as compared to the original image
decrease with higher JPEG quality, as indicated by the standard
deviation.

The results indicate that the overall image quality has,
according to PSNR, decreased. For example, the average
PSNR value has decreased by 0.004 dB, 0.121 dB, and 1.537

dB for JPEG qualities 50, 70, and 90, respectively. However,
in high contrast areas as indicated by SSIM indicated (and
the human eye), the proposed algorithm improves PSNR on
average by 0.172 dB, 0.311 dB, and 0.588 dB for JPEG
qualities 50, 70, ad 90, respectively. In the best case, the PSNR
has increased by up to 1.290 dB for image quality 90.

V. CONCLUSION

In this paper we have presented an algorithm for (i) main-
taining or improving the quality in JPEG encoded images in
high-contrast areas of the image, or (ii) significantly reducing
the compressed image file size. We have implemented the
algorithm in an efficient GPU-based JPEG encoder. We also
present results where the potential of the simplification algo-
rithm is shown, both with artificial and non-artificial source
images. The results show that our algorithm improves the
image quality in high-contrast areas, thus reducing JPEG
encoding artifacts, and also increase the compression ratio in



PSNR PSNR Diff Baseline Proposed Diff Baseline Proposed Diff
Baseline Proposed red area red area green area green area

JPEG quality 50
Avg dB 32,249 32,245 -0,004 32,491 32,194 -0,297 31,297 31,469 0,172
Min dB 27,601 27,566 -0,096 27,693 27,56 -0,133 27,582 27,628 0,042
Max dB 35,089 35,129 0,083 35,843 35,446 -0,474 34,261 34,582 0,321
Std dB 2,013 2,034 0,050 2,292 2,222 0,093 1,916 1,980 0,088

JPEG quality 70
Avg dB 34,070 33,950 -0,121 35,055 34,276 -0,779 32,937 33,248 0,311
Min dB 29,763 29,789 -0,39 30,677 30,301 -0,376 29,408 29,572 0,135
Max dB 36,721 36,524 0,146 38,228 37,195 -1,207 35,898 36,357 0,574
Std dB 1,907 1,902 0,123 2,068 1,931 0,245 1,816 1,880 0,152

JPEG quality 90
Avg dB 38,284 36,747 -1,537 38,323 36,042 -2,281 37,999 38,587 0,588
Min dB 35,514 33,332 -3,073 35,419 32,675 -1,283 35,815 35,911 0,079
Max dB 40,312 39,110 -0,447 40,851 38,715 -3,630 40,481 40,780 1,290
Std dB 1,466 1,635 0,484 1,582 1,639 0,471 1,452 1,484 0,311

Fig. 6: Encoding comparison of the Kodak Lossless True Color Image Suite, in which each image has the dimension 768x512
pixels. The PSNR is compared between the baseline JPEG encoder [6] and the proposed algorithm.

low contrast areas where we can have lower image quality
without impacting the users’ perception of the image.

ACKNOWLEDGMENT

This work is part of the research project “Scalable resource-
efficient systems for big data analytics” funded by the Knowl-
edge Foundation (grant: 20140032) in Sweden.

REFERENCES

[1] S. S. Channappayya, A. C. Bovik, and R. W. Heath, “Rate Bounds
on SSIM Index of Quantized Images,” in IEEE Transactions on Image
Processing, vol. 17, no. 9, pp. 16241639, 2008

[2] A. Gupta, M. C. Srivastava, S. D. Pandey, and V. Bhandari, “Modified
Runlength Coding for Improved JPEG Performance,” in International
Conference on Information and Communication Technology (ICICT 07),
2007, pp. 235–237.

[3] Y. Jiang and M. S. Pattichis, “JPEG image compression using quantization
table optimization based on perceptual image quality assessment,” in 2011
Conference Record of the Forty Fifth Asilomar Conference on Signals,
Systems and Computers (ASILOMAR), 2011, pp. 225–229.

[4] Y. Kai and J. Hongxu, “Optimized-SSIM Based Quantization in Optical
Remote Sensing Image Compression,” in Sixth International Conference
on Image and Graphics (ICIG), 2011, pp. 117–122.

[5] Kodak Lossless True Color Image Suite, http://r0k.us/graphics/kodak/.
[6] S. Petersson, “Real-Time JPEG Compression using DirectCompute,” in

GPU Pro 4: Advanced Rendering Techniques, Editor W. Engel, pp. 337–
355, CRC Press, 2013.

[7] A. Rehman, Z. Wang, “SSIM-Inspired Perceptual Video Coding for
HEVC,” in 2012 IEEE Int’l Conf. on Multimedia and Expo (ICME), pp.
497–502, 2012.

[8] T. Richter, “Perceptual image coding by standard-constraint codecs,” in
Picture Coding Symposium (PCS 2009),pp. 1–4, 2009.

[9] R. Rosenholtz and A. B. Watson, “Perceptual adaptive JPEG coding,” in
Proc. of the 1996 International Conference on Image Processing vol 1,
pp. 901–904, 1996.

[10] G. A. Triantafyllidis, M. Varnuska, D. Sampson, D. Tzovaras, and M.
G. Strintzis, “An efficient algorithm for the enhancement of JPEG-coded
images,” Computers & Graphics, 27(4):529–534, Aug. 2003.

[11] C.-Y. Wang, S.-M. Lee, and L.-W. Chang, “Designing JPEG quantiza-
tion tables based on human visual system,” Signal Processing: Image
Communication, vol. 16, no. 5, pp. 501–506, Jan. 2001.

[12] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” IEEE
Transactions on Image Processing, 13(4):600–612, April 2004.

[13] W. Wu and X. Zhang, “Code performance improvement scheme for
X264 based on SSIM,” in 3rd IEEE International Conference on Network
Infrastructure and Digital Content (IC-NIDC), 2012, pp. 396–400.

[14] C.-L. Yang, R.-K. Leung, L.-M. Po, and Z.-Y. Mai, “An SSIM-optimal
H.264/AVC inter frame encoder,” in IEEE International Conference on
Intelligent Computing and Intelligent Systems, pp. 291–295, Nov. 2009.

[15] J. Zhao, Y. Shimazu, K. Ohta, R. Hayasaka, and Y. Matsushita, “A JPEG
codec adaptive to region importance,” in Proceedings of the fourth ACM
International Conference on Multimedia, pp. 209–218, 1996.


