
0018-9162/97/$10.00 © 1997 IEEE July 1997 63

Boosting the
Performance of
Shared Memory
Multiprocessors

S hared memory multiprocessors make it prac-
tical to convert sequential programs to paral-
lel ones in a variety of applications. Most such

machines incorporate caches in each node, to allow
data replication, and use a cache coherence proto-
col to ensure that a processor accesses the latest
copy of the replicated data.

An emerging class of shared memory multi-
processors—nonuniform memory access machines
with private caches and a cache coherence (CC) pro-
tocol—use a directory-based write-invalidate
scheme. They are also sequentially consistent, which
simplifies program development because it guaran-
tees that the result of every execution is as if the oper-
ations from each processor are completed in the
order set forth in the program. Among these sequen-
tially consistent CC-NUMA machines are Stanford
University’s Dash, MIT’s Alewife, Convex’s Exemp-
lar, NUMA-Q from Sequent Computer Systems, and
the most recent Origin 2000 from Silicon Graphics
Inc. Although machines with this architecture offer
much promise in boosting the performance of par-
allelized programs, they suffer delays from cache
misses (data is not close to the processor) and inval-
idations (the deletion of stale copies)—both of which
cause the processor to stop until the problem can be
resolved.

Invalidations and the resulting cache misses typi-
cally take tens or hundreds of processor cycles in the
Dash and Alewife, even though both use an efficient
mechanism to interconnect processing nodes.

In this article we review four proposed opti-
mizations to sequentially consistent CC-NUMA
machines. The four differ with respect to which
application features they attack, what hardware
resources they require, and what constraints they
impose on the application software. However,
their common goal is to reduce the time lost

through cache misses and/or invalidations:

• Release consistency.1 The idea here is to relax
the order in which memory operations are per-
formed between two synchronization points.
Release consistency models further classify
acquire (lock) and release (unlock) requests so
that write requests can actually overlap.

• Adaptive sequential prefetching.2 The goal of
this cache protocol optimization, which we
developed at Lund University, is to enhance the
performance of applications that suffer from
many misses. The idea is to exploit the merits of
bigger cache blocks without introducing the
penalties caused by sharing them.

• Migratory sharing detection.3 The idea here is sim-
ply to detect when several processors read and
modify cache blocks in turn and remove all inval-
idations. This decreases the number of cycles the
processor is stalled.

• Hybrid update/invalidate with a write cache.4,5

In this optimization, the idea is to enhance basic
write-update protocols to cut down update traf-
fic, thus making the use of an update-based
coherence policy (as opposed to a write-inval-
idate policy) feasible.

Our review is based on parallel application case
studies and detailed architectural simulations con-
ducted at Lund University and the University of
Southern California. Our goal was to measure the
degree of performance improvement using these four
optimizations in isolation and in combination and to
look at the trade-offs in hardware and programming
complexities. We used a consistent framework and
four applications, which we describe later, to pin-
point application characteristics that cause perfor-
mance problems.

Proposed hardware optimizations to CC-NUMA machines—shared memory
multiprocessors that use cache consistency protocols—can shorten the
time processors lose because of cache misses and invalidations. The
authors look at cost-performance trade-offs for each.

Per
Stenström
Chalmers
University of
Technology

Mats
Brorsson
Lund
University

Fredrik
Dahlgren
Chalmers
University of
Technology

Håkan
Grahn
University of
Karlskrona-
Ronneby

Michel
Dubois
University of
Southern
California

R
e

se
a

rc
h

 F
e

a
tu

re

.

64 Computer

EVALUATION FRAMEWORK
To make sure that we fairly evaluated each opti-

mization and its trade-offs, we used the CacheMire
Test Bench6 to develop a detailed simulation model
of a generic CC-NUMA machine. Figure 1 shows the
organization of one of its 16 processing nodes.

Memory hierarchy
A central part of the processing node is the two-

level cache hierarchy, which consists of a fast on-chip,
direct-mapped, write-through first-level cache. This

cache is connected via its write buffer to the slower
off-chip second-level cache.

The off-chip second-level cache acts as a shield for
the long latency of memory operations that are typi-
cal of CC-NUMA architectures. Performance centers
on the miss penalty of the second-level cache (the num-
ber of cycles the processor is stalled on a miss). First,
the second-level cache is larger, so first-level cache
misses are likely to hit there. Also, the second-level
cache implements parts of the directory-based write-
invalidate protocol, which enables replication of mem-
ory blocks across nodes.

The second-level request buffer (dashed lines)
applies only to the proposed optimizations, which we
describe later.

Figure 2 shows the four levels of the memory hier-
archy of the machine in Figure 1. The first- and
second-level caches constitute the first two levels. If
the block is not in the second-level cache, the proces-
sor sends a miss request to the third level of the mem-
ory hierarchy, the home node memory, or home.
Home is the memory with the page that has the miss-
ing block and is identified by the least significant bits
of the physical page address. When home is the local
node, the second-level cache controller fills the first-
and second-level caches by accessing the node mem-
ory module via the local bus, as Figure 1 shows.
Otherwise, it sends a miss request outside the local
node through the network interface.

The problem
Home can respond to a second-level cache miss only

if the memory copy is up to date. If some other node
has modified the block (as indicated by the state of the
memory copy), the directory entry identifies the
remote node that keeps the only copy and the home
memory controller forwards the miss request to that
node. Here’s the problem: Although the processor can
service load operations satisfied by the first two hier-

Network
interface

P
4

Kbytes

First-level
cache

First-level
write buffer

Second-level
cache

(8 entries)

64
Kbytes

Second-level
request buffer

(16 entries)

On-chip mechanisms

Lo
ca

l b
u

s

Memory

The processor is a single-issue
Sparc with a cycle time of 10 ns.

A hit is serviced with no delay; with
the assumed processor technology,
a hit is carried out in 10 ns.

A first-level cache miss that hits in
the SRAM-based second-level cache
has a block fill penalty of 60 ns.

A second-level cache miss is serviced by
the home node memory if the memory
block is up to date. If home is the local
node, a block fill takes 300 ns; otherwise
it takes on average 750 ns.

If the home node memory block is not
up to date, a remote node supplies the
block. This costs on average 1,430 ns if
the local, home, and remote nodes
are different.

First-level
cache

P

Second-level
cache

Home
node memory

Remote
node memory

Figure 1. Processing node organization in our generic multiprocessor model.

Figure 2. Memory hierarchy and miss penalties in the generic multiprocessor
system.

.

archical levels within a handful of cycles, it may need
as many as two node-to-node transfers to satisfy the
third level and four transfers to satisfy the fourth level.
This typically takes tens to hundreds of cycles.

Another problem is that a second-level cache block
may reside in many caches and writes to such a block
must delete stale copies. As with miss request trans-
actions, if no other node has a copy, the cache con-
troller requests an exclusive copy from home directly;
if other caches have copies, home must send explicit
invalidations to eliminate these copies and wait for
acknowledgments before it can notify the local proces-
sor to proceed. This is a severe performance bottle-
neck in sequentially consistent systems.

The four optimizations we describe attempt to
address these problems in various ways.

Assumptions
Each node in the generic CC-NUMA machine con-

tains a Sparc processor clocked at 100 MHz. The first-
level cache and its write buffer run at the same speed
as the processor. The second-level cache and its request
buffer are built-in SRAM technology with an access
time of 50 ns. The memory is built with DRAMs and
has an access time of 90 ns. The first-level cache is
4 Kbytes, the second-level cache is 64 Kbytes, and the
line size is 16 bytes. The caches are small—partly to
compensate for the small application data sets we
used. The first-level write buffer holds eight entries,
and the second-level request buffer holds 16.

Our four-by-four mesh interconnect clocks at 100
MHz and transports flits (packets) of 64 bits; a mes-
sage with a single flit travels from one node to another
in 53 ns, on average. Figure 2 shows the miss penal-
ties that result from our timing assumptions.

We used the MP3D, Water, LU, and Ocean appli-
cations, which were developed by researchers at
Stanford University. We picked these programs more
to demonstrate interesting performance effects than
to form a representative application mix. In this way
we hoped to see the spectrum of problems the opti-
mizations could address.

RELEASE CONSISTENCY
Because process coordination in programs that rely

on a shared memory model is often based on explicit
synchronizations such as lock (acquire), unlock
(release), and barriers, correctness is not compromised
if the order in which memory operations are per-
formed is relaxed between two synchronization
points. Under a weakly ordered 7 model, invalidations
do not cause access penalties as long as the processors
await pending invalidations at synchronization points.

Release consistency 1 is a refinement of the relaxed
consistency model, in which synchronizations are fur-
ther classified into acquire-release pairs. The model

assumes the following when two processors issue
memory requests to the same variable and at least one
of these is a write request:

• The two requests are separated by a release-
acquire pair.

• Write requests can overlap as long as they com-
plete before the processor issues a release request.

Hardware/software costs
This technique can hide the latency of an invalida-

tion transaction, which can be long. However, it is not
without cost to both software and hardware design.

Software cost results because the memory system
must distinguish between synchronization accesses to
the shared memory and to ordinary loads and stores,
which do not involve synchronizing. Consequently,
the program must always use synchronization primi-
tives such as acquire and release. Moreover, there is
added work when porting applications from uni-
processor environments that have been run in a con-
current (pseudoparallel) fashion. These applications
may use ordinary loads and stores to synchronize
because accesses from one process will be seen by oth-
ers in program order on uniprocessors. The program
being ported must have some way to identify ordinary
loads and stores before it will run correctly on a mul-
tiprocessor that supports a release consistency or other
form of relaxed consistency model.

Another cost is machine design. As we said, the
memory system must distinguish between ordinary
accesses (loads and stores) and synchronization
accesses. Moreover, if the processor is able to overlap
stores, its designer must include some buffering in the
memory hierarchy. This is represented by the last box
in Figure 1, the second-level request buffer. This com-
ponent (which sequentially consistent CC-NUMA
machines do not need) buffers each invalidation
request along with the data, thus freeing the second-
level cache to continue servicing requests from the
first-level cache. Besides acting as a first-in, first-out
mechanism, the second-level request buffer keeps
information about each outstanding request. Miss and
invalidation requests are retired from the buffer when
their acknowledgments come back from home.

Buffering outstanding write requests lets the
latency of pending invalidation requests overlap both
each other and local computation as long as the sec-
ond-level request buffer does not overflow. When the
buffer is full, the second-level cache controller blocks
the second-level cache at the next invalidation or
miss request, which can then back up the first-level
write buffer and eventually stall the processor. The
second-level cache must also make sure that when
the processor executes a release operation (a specially
tagged store access), the controller also completes all

We used the
CacheMire
Test Bench
to ensure
that we fairly
evaluated
each
optimization
and its
trade-offs.

July 1997 65

.

66 Computer

previous write requests posted in the second-level
request buffer before the controller issues the release
request.

Performance trade-offs
We compared the performance of a release consis-

tency machine against that of a sequentially consis-
tent machine using the relevant mechanisms and the
timing assumptions in the generic machine model,
described earlier. The sequentially consistent machine
is essentially the generic machine without the second-
level request buffer. The release consistency machine
is the complete generic model. Our goal in the com-
parison was to determine if the performance gains
outweigh the costs just described. Figure 3 shows the
execution times for the four applications.

To see how release consistency boosts application
performance, the figure breaks execution time into
components that reflect the cause:

• Busy, the fraction of time processors spend doing
useful work.

• Read, the read stall time, essentially the time the
processor spends servicing cache read misses.

• Write, the write stall time, in which a writing
processor must wait until an exclusive copy is
provided. This time does not occur in machines
with release consistency.

• Synch, the synchronization stall time, the time
spent acquiring and releasing locks. As Figure 3
shows, in sequentially consistent systems, cache-
miss and invalidation transactions cause signifi-
cant performance losses across all applications.
When release consistency is implemented instead,
execution time range decreases from 12 percent
(Water) to 39 percent (MP3D). This performance
must be traded off against the cost of providing

synchronizations to separate accesses to the same
variable by different processors. Also, the second-
level cache must be able to buffer write requests.
Fortunately, this buffer does not have to be very
large; we found that 16 entries can keep the
processors going.

However, release consistency still yields a high miss
rate, as Table 1 shows. The reasons stem from the
characteristics of the applications.

MP3D. MP3D simulates the movement of 10,000
particles in a wind tunnel for 10 time steps. Each
processor moves its particles by reading and modify-
ing the variables that reflect their positions and speed
in a space represented by a cell array. Particles may
end up in the same cell. This causes several proces-
sors to read a cell element and modify it in turn—the
migratory sharing access pattern, in which blocks that
contain cell elements literally migrate from cache to
cache, and each migration causes a cache miss fol-
lowed by an invalidation.

In Table 1, the total miss rate is the miss rate of
shared data accesses for each application. Cold misses
are caused by a processor’s first access to a particular
block; replacement misses are caused by the finite size
of the cache and/or by an imperfect address mapping.
Coherence misses, which are caused by invalidations,
dominate the miss rate. This is due to migratory shar-
ing, which also causes devastating write stall time in
the sequentially consistent machine (see Figure 3).

Water. Water implements a molecular dynamics
simulation of the forces and potentials in a system of
288 water molecules for four time steps. Again coher-
ence misses dominate because of the migratory shar-
ing as different processors access the molecule data
structures.

LU. LU performs the lower and upper decomposi-
tion of a 200 × 200 matrix. Each processor is assigned
a number of columns and first modifies its columns
before making them available to other processors.
Thus, most of the cache misses in this application are
cold and replacement misses, as Table 1 shows. The
miss rate has a dramatic effect on the read stall time
(see Figure 3). Because a processor stores consecutive
column elements at consecutive memory locations,
spatial locality (the probability that a processor
accesses adjacent memory locations) is very high.

Ocean. Ocean uses the successive overrelaxation
algorithm to iteratively update a grid of 128 × 128 ele-
ments. The basic computation does an update of a grid
element by computing a weighted sum of the nearest
neighbor elements. Each processor updates all ele-
ments in its subgrid in each iteration. Thus, producer-
consumer sharing could result, in which one processor
updates a grid element that another processor is using
to update a different grid element. Table 1 shows that

Figure 3. Execution time in relative percentages for each application for a sequentially
consistent machine (SC) and a machine with release consistency (RC).

Synch

Write

Read

Busy

100

80

60

40

20

0

100

SC

61

RC
MP3D

100

SC

88

RC
Water

100

SC

73

RC
LU

100

SC

73

RC
Ocean

Pe
rc

en
t

.

replacement misses and coherence effects are respon-
sible for the overall miss rate, while cold misses are
negligible. The high replacement miss rate is common
for numerical applications because each processor typ-
ically sweeps through a large matrix. Coherence
misses are caused by producer-consumer sharing and
by false sharing—sharing blocks that happen to cross
boundaries between subgrids.8

SEQUENTIAL PREFETCHING
Sequential prefetching is beneficial to applications

(like the four we chose) that have high miss rates and
for which spatial locality is high, such as numerical
algorithms with a short distance between the vector
elements that must be accessed.

As Table 1 shows, each application had replacement
and cold misses, many of which were caused by using
blocks that are too small. The solution, however, is
not just to use larger blocks, because they can gener-
ate more coherence misses. These misses are due to
false sharing, the effects of which can actually increase
the total number of misses. Sequential prefetching
exploits the merit of larger cache blocks without
affecting false sharing.

The optimization works like this: A mechanism
associated with the second-level cache prefetches K
nonresident, consecutive memory blocks on each miss.
If a processor sequentially accesses consecutive mem-
ory blocks, they will be prefetched into the second-
level cache on the first miss.

To see how the sequential prefetcher is as effective
in exploiting spatial locality as a block K times big-
ger, but without increasing false sharing misses, con-
sider processors A and B. The two processors
alternately read and modify blocks at block addresses
n and n + 1, respectively. Coherence is maintained at
the block level, so block n ends up in processor A’s
cache, while block n + 1 ends up in processor B’s. Had
block n and n + 1 been in the same block, the block
would have ping-ponged between A’s and B’s second-
level caches.

Unfortunately, a fixed value of K can create prob-
lems. If K is too small, too few blocks are prefetched
and the miss rate decreases only marginally.
Conversely, if K is too large, blocks that will not be
referenced in the future are prefetched, wasting mem-
ory bandwidth and increasing contention.

Our sequential prefetcher2 is adaptive, dynamically
adjusting K to reflect the spatial locality in the appli-
cation. It uses a simple heuristic of prefetch efficiency
that counts the fraction of all prefetched blocks that
are later referenced. If this fraction exceeds a certain
threshold, K is incremented; conversely, if the mea-
sured prefetch efficiency is low, K is decremented. The
implementation associates only three counters (of four
bits each) with each second-level cache. Moreover, this

scheme (as are other prefetching schemes9,10) is trans-
parent to the software and works equally well for
sequentially consistent machines and those with
release consistency.

MIGRATORY SHARING DETECTION
Migratory sharing shows up when processes that

execute on different processors read and modify a data
structure in turn. The migratory sharing pattern can
be specified as

R i...Wi...Rj...Wj...Rk...Wk...

where Ri and Wi denote a read and a write access from
processor i, respectively. Under a write-invalidate pro-
tocol, the block ends up in the exclusive state after
processor i issues its write (Wi). When processor j
reads from the block (Rj), it experiences a coherence
miss, followed by an invalidation of processor i’s copy
at the subsequent write (Wj). Because processor i’s
cache services both the coherence-miss and the inval-
idation requests, an obvious optimization is to request
an exclusive copy when cache j experiences a coher-
ence miss and to remove the subsequent invalidation.
This optimization benefits applications running on
sequentially consistent machines, and to some degree
applications running on machines with release con-
sistency or other form of relaxed consistency.
However, the main benefit in the latter case is reduced
memory traffic; if the memory bandwidth is sufficient,
the optimization doesn’t add much.

The write-invalidate protocol can detect migratory
sharing. In our generic machine in Figure 1, this task
is greatly simplified because home sees all coherence
miss requests as well as all invalidation requests.
Migratory sharing detection is invoked when home
has seen a sequence like Wi...R j...Wj in the pattern
given earlier. When home sees a write from processor
j, it checks if a processor other than j wrote to the
block most recently and if there are two copies. Even
though this condition is sufficient but not necessary
for migratory sharing, this heuristic is simple to
implement; we needed a pointer of only log2P bits per
memory block to implement it in our generic
machine.3 A similar scheme can be adapted to bus-
based multiprocessors.11

July 1997 67

Table 1. Miss rates in the release consistency machine.

Total Cold Replacement Coherence
Application miss rate miss rate miss rate miss rate

MP3D 18.0% 2.4% 2.7% 13.0%
Water 1.9% 0.065% 0.59% 1.2%
LU 2.9% 1.7% 1.1% 0.063%
Ocean 3.1% 0.039% 0.74% 2.3%

.

68 Computer

HYBRID UPDATE-INVALIDATE
Although the sequential prefetcher effectively

attacks misses that exhibit a high spatial locality, it
does not handle coherence misses very efficiently. A
brutal way to remove coherence misses is to adopt an
update-based instead of an invalidation-based coher-
ence policy (which we have assumed so far). However,
we do not advise taking this approach in its current
form. Even if interconnection networks for CC-
NUMA machines have a substantial bandwidth, our
experience is that memory traffic is an order of mag-
nitude higher for write-update than for write-invali-
date protocols. This extra traffic causes severe queuing
delays, which make the latency of the remaining cold
and replacement misses prohibitively long.

However, if we were to enhance basic write-update
protocols to cut down update traffic, adopting an
update-based coherence policy might be feasible.

A problem in updating remote copies is that you
do not know ahead of time if another processor will
read an updated value before the next update to the
same address. The result is that some updates are
never needed and should be removed because they
unnecessarily increase traffic.8 One solution is to
adopt a mechanism that invalidates the local copy
when it has received a predefined number of updates
with no intervening access by the local processor.
Competitive updating is an example of such a proto-
col. We have taken this approach by associating a
counter of log2n bits with each second-level cache line4

(an approach similar to competitive snooping12). We
found in studying this protocol that for modest sizes
of n (say 4), traffic goes down drastically. However,
even then it is still twice as high as it would be with a
write-invalidate protocol.

To further cut traffic, we have tried write caching,5

an especially efficient approach. As the name implies,
a write cache is a copy-back cache for write accesses
only; read accesses do not cause a block to be allo-
cated in a write cache. In a machine with release con-

sistency, write accesses need not propagate to other
caches until the next synchronizing access, so there is
room to exploit the locality inherent in write accesses
between two consecutive synchronizing accesses. This
can cut down the traffic caused by updates even more
than protocols like the hybrid update/invalidate pro-
tocol just described. Our experience shows that a write
cache with only four entries is sufficient to exploit vir-
tually all locality in write accesses.

Moreover, it is fairly straightforward to incorporate
a write cache because it acts as a small cache that the
processor can access in parallel with the second-level
cache. As with all the other techniques, it also requires
some modifications to the coherence protocol, which
we do not address here. However, this optimization
works only for a machine that uses release consistency
or some other form of relaxed consistency. Con-
sequently, the software must be modified to identify
synchronization accesses, as described earlier.

OPTIMIZATION COMPARISONS
Figures 4 and 5 show how effective each optimiza-

tion was in isolation as well as in combination with
others. Figure 4 shows the performance of the basic
(no optimizations) sequentially consistent model (BS),
relative to the same machine with different optimiza-
tions. Figure 5 shows the performance of the basic (no
optimizations) release consistency model (BR), rela-
tive to the same machine with different optimizations.

Sequential consistency
As Figure 4 shows, the proposed optimizations

lessen the effects of both read and write stalls. With
adaptive sequential prefetching (P), read stall times
decrease for all applications. In Water, in particular, P
exploits the high spatial locality resulting in a decrease
in read stall time of more than half. Conversely, P
offers limited opportunities when spatial locality is
poor and the coherence miss rate high. In MP3D and
Ocean, where coherence misses dominate (see Table 1),

Synch

Write

Read

Busy

100

80

60

40

20

0

100

BS

88

P

66

M

57

P+M
MP3D

100

BS

90

P

91

M

81

P+M
Water

100

BS

86

P

97

M

84

P+M
LU

100

BS

91

P

91

M

87

P+M
Ocean

Pe
rc

en
t

Execution
times

Figure 4. Execution
time in relative per-
centages of four
sequentially consis-
tent machines: an
unoptimized machine
(BS) a machine with
adaptive sequential
prefetching (P), a
machine with migra-
tory sharing detection
(M), and a machine
with a combination of
these (P+M). The hor-
izontal lines reflect
the execution times
for a basic machine
that supports release
consistency.

.

P is less effective, indicating that data is exchanged
between processors at a fine granularity in applica-
tions with poor locality.

With migratory sharing detection, we see dramatic
effects on the write stall times for MP3D and Water,
the applications in which migratory sharing domi-
nates. In fact, almost the entire write stall time is gone,
meaning that these applications run almost as effi-
ciently as on a system with a release consistency
model, but without the software complications that
such models introduce.

A combination of sequential prefetching and migra-
tory sharing detection (P+M) is particularly effective.
P attacks the read stall time, while M effectively cuts
write stall time. In Water, P+M virtually removes all
read and write stall times. Conceptually, this scheme
prefetches an exclusive copy of a block if home has
deemed it migratory. Thus, the processor gets rid of
the initial miss as well as the subsequent invalidation
transaction and has many more cycles for useful work.
The horizontal line in Figure 4 shows that P+M on a
sequentially consistent machine performs as well as a
machine with release consistency. This is significant
because it demonstrates that a sequentially consistent
system can reach a performance level comparable to
a system with release consistency with little or no soft-
ware changes, which the latter would require.

Release consistency
For machines with release consistency, designers can

remove the write stall time by overlapping write accesses
with useful computation, so migratory sharing detec-
tion is not needed. Instead, we focus on techniques that
attack read miss penalties alone. Also, because write
accesses can overlap, we also look at update-based pro-
tocols—in particular, techniques that buffer writes so
that no memory bandwidth is wasted. We consider BR

with sequential prefetching (P) and the hybrid-invali-
date with a threshold of one with write caching (HW).

As Figure 5 shows, P removes a significant part of

the read stall time for Water and LU. With HW,
MP3D and Ocean read stall times also decrease
because these applications suffer mainly from coher-
ence misses. P+HW cuts read stall times significantly
for all applications, which means the programmer can
worry less about how the memory system should
access data structures.

A lthough application designers tend to favor
sequentially consistent machines, this model
suffers from the latencies of cache misses and

invalidations. The optimizations we consider aim at
boosting application performance with only a mod-
est increase in machine complexity and minimal con-
straint on the application software.

Although one combination of the proposed opti-
mizations (prefetching and migratory sharing detec-
tion) can boost a sequentially consistent machine to
perform as well as a machine with release consistency,
release consistency models offer significant perfor-
mance improvements across a broad application
domain at little extra complexity in the machine
design. Moreover, a combination of sequential
prefetching and hybrid update/invalidate with a write
cache cuts the execution time of a sequentially con-
sistent machine by half with fairly modest changes to
the second-level cache and the cache protocol. Because
of results like these, we believe designers will begin to
turn more to the release consistency model.

We also believe that, although we studied these
techniques in the context of CC-NUMA architectures,
they are applicable to other machine models, such as
cache-only memory architectures.13 These architec-
tures overcome the CC-NUMA machine restriction
that data structures be allocated to memories in page
chunks. Because COMAs convert memories to huge
caches, they can allow data to migrate and replicate
in cache-line chunks. This reduces cache-miss penal-
ties, but at the expense of more aggressive memory
implementations. ❖

July 1997 69

Synch

Write

Read

Busy

100

80

60

40

20

0

100

BR

79

P

75

HW

70

P+HW BR P HWBR P HW P+HW BR P HW P+HW BR PBR P P+HW
MP3D

100
88

96
87

Water

100

82

98

81

LU

100
89 89

78

Ocean

Pe
rc

en
t

Figure 5. Execution
time in relative
percentages of four
machines with
release consistency:
a basic machine (BR),
a basic machine with
adaptive sequential
prefetching (P), a
basic machine with
hybrid update/invali-
date and a write
cache (HW), and a
basic machine with a
combination of
these.

.

70 Computer

Acknowledgments
This research was supported in part by the Swedish

National Board for Industrial and Technical
Development (NUTEK) under Contract 9001797 and
by the US National Science Foundation under Grant
CCR-9115725.

References
1. D. Lenoski et al., “The Stanford Dash Multiprocessor,”

Computer, Mar. 1992, pp. 63-79.
2. F. Dahlgren, M. Dubois, and P. Stenström, “Sequential

Hardware Prefetching in Shared-Memory Multiproces-
sors,” IEEE Trans. Parallel and Distributed Systems,
July 1995, pp. 733-746.

3. P. Stenström, M. Brorsson, and L. Sandberg, “An Adap-
tive Cache Coherence Protocol Optimized for Migra-
tory Sharing,” Proc. Int’l Symp. Computer Architecture,
IEEE CS Press, Los Alamitos, Calif., 1993, pp. 109-118.

4. H. Grahn, P. Stenström, and M. Dubois, “Implementa-
tion and Evaluation of Update-Based Cache Protocols
Under Relaxed Memory Consistency Models,” Future
Generation Computer Systems, June 1995, pp. 247-271.

5. F. Dahlgren and P. Stenström, “Using Write Caches to
Improve Performance of Cache Coherence Protocols in
Shared-Memory Multiprocessors,” J. Parallel and Dis-
tributed Computing, Apr. 1995, pp. 193-210.

6. M. Brorsson et al., “The CacheMire Test Bench—A
Flexible and Efficient Approach for Simulation of Mul-
tiprocessors,” Proc. Simulation Symp., IEEE CS Press,
Los Alamitos, Calif., 1993, pp. 41-49.

7. M. Dubois and C. Scheurich, “Memory-Access Depen-
dencies in Shared-Memory Multiprocessors,” IEEE
Trans. Software Eng., June 1990, pp. 660-673.

8. M. Dubois, J. Skeppstedt, and P. Stenström, “Essential
Misses and Data Traffic in Coherence Protocols,” J. Par-
allel and Distributed Computing, Sept. 1995, pp. 108-125.

9. T.F. Chen and J.L. Baer, “A Performance Study of Soft-
ware and Hardware Data Prefetching Schemes,”Proc.
Symp. Computer Architecture, IEEE CS Press, Los
Alamitos, Calif., 1994, pp. 223-233.

10. T. Mowry, M. Lam, and A. Gupta, “Design and Evalua-
tion of a Compiler Algorithm for Prefetching,”Proc. Conf.
Architectural Support for Programming Languages and
Operating Systems, ACM, New York, 1992, pp. 62-75.

11. A. Cox and R. Fowler, ”Adaptive Cache Coherency for
Detecting Migratory Shared Data,” Proc. Symp. Com-
puter Architecture, IEEE CS Press, Los Alamitos, Calif.,
1993, pp. 98-108.

12. C. Anderson and A. Karlin, “Two Adaptive Cache
Coherency Protocols,” Proc. Symp. High-Performance
Computer Architecture, IEEE CS Press, Los Alamitos,
1996, pp. 303-313.

13. E. Hagersten, A. Landin, and S. Haridi, “DDM: A
Cache-Only Memory Architecture,” Computer, Sept.
1992, pp. 44-54.

Per Stenström is a professor of computer engineering at
Chalmers University of Technology. His research inter-
ests are in computer architecture with emphasis on mul-
tiprocessor design and performance analysis as well as
compiler optimization techniques. He has published
more than 40 papers and two texts on computer archi-
tecture and organization and is on the editorial board
of Journal of Parallel and Distributed Computing. Sten-
ström received an MSEE and a PhD in computer engi-
neering from Lund University. He is a member of the
IEEE, IEEE Computer Society, ACM, and SIGArch.

Mats Brorsson is an assistant professor in information
technology at Lund University. His research interests
are in multiprocessor systems, particularly workload
modeling and characterization and tools for perfor-
mance debugging. Brorsson received a PhD in com-
puter engineering from Lund University. He is a
member of the IEEE Computer Society and ACM.

Fredrik Dahlgren is a research professor in computer
engineering at Chalmers University of Technology. His
research interests include computer architecture, mem-
ory systems for shared memory multiprocessors, and
performance evaluation techniques. Dahlgren received
an MS in computer science and engineering and a PhD
in computer engineering—both from Lund Univer-
sity. He is a member of the IEEE Computer Society.

Håkan Grahn is an assistant professor of computer
engineering at the University of Karlskrona-Ronneby,
twin cities in Sweden. His main interests are computer
architecture, shared memory multiprocessors, cache
coherence, and performance evaluation.Grahn received
an MSc in computer science and engineering and a PhD
in computer engineering—both from Lund University.
He is a member of the IEEE Computer Society.

Michel Dubois is an associate professor of electrical
engineering at the University of Southern California.
His main interests are computer architecture and par-
allel processing, with a focus on multiprocessor archi-
tecture, performance, and algorithms. He also leads
the Rapid Prototyping Engine for Multiprocessors, a
project to develop a hardware platform for imple-
menting multiprocessor systems with widely different
architectures. Dubois received a PhD from Purdue
University, an MS from the University of Minnesota,
and an engineering degree from the Faculté Polytech-
nique de Mons in Belgium—all in electrical engineer-
ing. He is a member of the ACM and a senior member
of the IEEE Computer Society.

Contact Stenström at Dept. of Computer Engineering,
Chalmers University of Technology, S-412 96 Göte-
borg, Sweden; pers@ce.chalmers.se; http://www.ce.
chalmers.se/~pers.

.

