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Abstract lel program behaviour. Even though the approach of simu-
The approach of program-driven simulation of multi- lation has been widely used for multiprocessor
processors has generally been believed to be too slow performance evaluations, the simulation tools used for sin-
order to perform experiments and performance evaluationgle processor systems have in most cases not provided
with realistic workloads. enough information to perform accurate evaluations, or
We show that the program-driven approach for buildingbeen effective enough to use realistically sized workloads.
multiprocessor simulators is indeed a viable method. It In this paper we present the CacheMire test bench for
compares well in performance to an execution-driven simuperformance evaluations and measurements of multiproces-
lator which has been reported in the literature, and hassor architectures. The core of the test bench is a flexible
superior flexibility. program-driven simulator, efficient enough to execute
The reported simulator is the core in the CacheMire tesentire parallel programs as workload. The test bench has
bench which is an entire environment for conducting pershown itself to be a very useful tool for quantitative meas-
formance evaluations on shared memory multiprocessorsirements of shared memory multiprocessor architectures.
The test bench is used in a num_ber of proje_cts,_ including.l Background
cache coherence protocol evaluation, super-pipelined proc-
essor design and analysis of parallel program behaviour. ~ We will in the following consider shared memory multi-
processors as target architectures. The concepts of simula-

. tion discussed in the paper are, however, independent of the
1 Introduction memory model.

During the development of a new computer system, per- With modern processor architectures, the most crucial
formance evaluations have to be made continuously. In tHeart of a shared memory multiprocessor is the memory sys-
early stage of developmerdgnalytical modelsare often tem. For a high processor utilization, the memory system
used to get a coarse estimation of performance_ Howevéﬂust be able to serve the processors with several tens of
because of the difficulty in capturing the dynamic behavmillions memory references per second and processor.
iour of the system, the applicability of this technique is so A simulation model for performance evaluation of mem-
far limited to either very simple systems or for rough esti-Ory systems for multiprocessors generally consists of: (i) a
mates. memory reference generator for each processor and (ii) a

To build prototypes on which measurements are done,simulator of the memory system. Four techniques exist for
gives the most data on real performance. However, th@enerating the memory references [11]:
design considerations must already have been made when* Distribution-driven simulation The workload is
the building starts, so this approach is mostly used at the =~ modelled by a stochastic model of the distribution of

final phase of the development. memory_references. _
Therefore, when investigating various different architec- * Trace-o_lnven simulationA trace of memory refer-
tural featuressimulation modellings often used for per- ences is generatezhce by means of executing the

formance evaluation. A simulation model can be made  workload on a machine similar to the target system or
accurate, but still flexible enough to investigate a large by using a functional simulator.

design space. » Execution-driven simulationThe workload is exe-
Multiprocessor architectures, which have a potential of cuted on a host computer. At events of interest, e.qg.
providing cost-effective performance, are a lot more diffi- shared memory references, control is transferred to

cult to model than single processor systems due to the very  the simulation software, which simulates the memory
complex interaction between the architecture and the paral-  system.
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* Program-driven simulationBoth processors and the 1.2 Motivation

memory system of the target system are simulated. The main motivation behind the CacheMire test bench is
The workload is executed on the simulated proces;

sors based on the type of experiments that was anticipated to be

o . . . carried out.

The method of distribution-driven simulation suffers At the department of Computer Engineering at Lund
mainly from the lack of gpod stqchastic models of real par'University one of the main research topics is focused on
?rgilez?géimn?étlhrl) dadgétéc;nhg?'ﬁan;e:]nOd%ezzb\ggll(l k;a(:t tz hared memory multiprocessors. Within this topic, research
the merlr\1/or S stem’ architecture \gand t)r/1e roaram bev;']a%:'conducted in diverse areas; from coherent cache systems,

y sy Prog xompiler design, and consistency models to parallel pro-

iour. This may Iegd to considerable dlsqrepanmes N Pelyram behaviour. Experimental methods are used for per-
formance estimation compared to execution- and progran?—

driven simulation since in these cases the workloads arormance evaluations and measurements. Because of this
allowed to behave differently as a consequence of chan Siverse nature of research areas, a flexible but still powerful
. . y q 9%l was needed to satisfy various kinds of experiments.

in the timing of memory references [7].

. ; - . Both execution- and program-driven simulation tech-
Due to the simulation of entire instruction set proces- prog

. ) o o nigues were considered to fulfil the needs of accuracy.
sors, program-driven simulation is very computation NMN{yhile it has been demonstrated clearly that execution-
sive. Work on simulation techniques has therefore latel

¥riven simulation can be done with enough efficiency to
been focused oexecution-driven simulatiof9, 15, 22]. g y

The processes of the workload application proaram are .execute entire applications of reasonable sizes, the same
P W bplication prog 'ad to be verified for program-driven simulation which

:Elrseagssoef cg)rittarcotljtgg a(E(S)i;Jig)r;]COur;glrjrsre;ﬂeym a‘?hisseer;:t: ?\nerally has been considered to be too time consuming.
P y ' ecent techniques for efficient instruction set architecture

itls?:)ls Avrlthr%l:jte?ilr?e\;\gdg\\;\;t(sex(;‘e?rftg?gé?eslsgﬁ (:sp:rilrg; simulation have shown that it is feasible to simulate the
: P ’ ocessors as well as the memory system [4].

memory reference, control is transferred to the simulatio The flexibility issue that is most important is the ability

software which synchronises all processes of the workloa% simulate just as much as needed for a particular study.

and simulates the memory system. Secondly, it is important to be able to experiment with vari-

This approach has the big advantage of being very ef.ﬂdus processor architectures. It should also be possible to

cient if the application program can execute for long perl'c:onfigure the test bench for new experiments without too

ods between global events of interest. This advantage Ruch difficulty. In order to utilize the available computing

h|ghly dependent on t.he sharing b_ehawour of the app.l'car'esource, consisting of a network of workstations from var-
tion program. The main dravybapk is the lack of erX|b|I|ty.i us manufacturers, the test bench has to be portable.
The processor archltectu_re is fixed to the one of th_e_ hO.S(E All this together, it was considered most appropriate to
computer and the operating system has t(.) b? modified I(Tevelop a program-driven simulator as the core of the test
order to transfer control from the user application progran)

o the memor tem simulator. If the number of instr bench. Such a simulator is easily implemented as a single
t%nsebet\?vegnyez{iZIOSal euvzr?[ is smzll ltJhe :ffi:ienci/ E:rg_rogram which does not require additions in the operating
efits of execution-driven simulation will diminish ystem. In contrast, the operating system has to support

X . . . transfer of control between the workload programs and the
In program-driven simulatiorfsometimes referred to as

instruction-driven simulation), each instruction of th(::SimUI""tor when using execution-driven simulation. Pro-
' gram-driven simulation also opens up for realistic experi-

appllcatlon program is mterpreted by an instruction set Slml;ﬂentS with different instruction set architectures in

;Jls\}c:{rr?f thii pt);]ocess?r.zwgle |tth|hs apprtr)]acr:h"has be;]en L:]Sl?i')h"’hItiprocessor environments, something which is impossi-
N es € pas [ , 19], as generally been Consiq i it execution-driven simulation.
ered too time consuming for execution of entire workloads

due to the interpretation of every instruction. However, wit The result, the CacheMire test bench, is an environment
P y j ' or conducting experiments with shared memory multi-

the emergence of high performance and cost-effective com- . - . .
uters S?JCh as thegcg)mmon workstation. combined Wi?érocessor architectures. The minimal simulator implements
tphe sirr'1 ler instruction sets of modern micrc') rocessors thla shared memory multiprocessor with a number of proces-
P b ' . Sors issuing memory references to a shared memory. The

approach has started to gain interest. It i§ the most erXibﬁrocessors are instruction set simulators of the SPARC
and accurate approach of the four techniques. Changes Pocessor. The user can either accurately model memory

the processor architecture can easily be made and the tim- : . .
the p oo yE ccesses for all memory references, including instruction
ing model can be made arbitrarily precise.

1. SPARC is a registered trademark of SPARC International, Inc.
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fetches, or only model data references. By tagging areas ofg the SparcCycle routine. If instruction fetches are
memory with user defined attributes, accesses to any spamulated, each invocation &parcCycle advances the
cific memory area can be traced. simulator to the next memory reference, instruction fetches

The rest of the paper is organised as follows: The nexhcluded. A processor cycle may then require more than
section describes the structure of the program-driven simwne invocation ofSparcCycle . Between each invoca-
lator and the application programming environment. Section, the processor state stores information on whether the
tion 3 describes how this basic simulator model easily caprocessor waits for an instruction or for data.
be extended to accommodate accurate simulation of com- If instruction fetches are invisible, the processor is
plex memory systems. Section 4 presents some performragdvanced a number of processor cycles until the next data
ance measurements of the simulator. Some ongoingference. A return parameter gives information on the
research projects using the CacheMire test bench are briefiymber of advanced processor cycles.
reviewed in Section 5 and the paper is concluded after a Three memory operations are required by the processor:
summary. Read Write andatomic Read-Modify-WrittRMW) opera-

: tions. The latter operation writes a value to a memory loca-
2 Structure of the CacheMire test bench tion and expects the old contents of the memory location in

The CacheMire test bench consists of a minimal proreturn to the processor in a single indivisible operation. It is
gram-driven simulator and a programming environmentimplemented by using the opcode of one of the optional
The minimal simulator is divided into a processor kernel, anstructions.
simulated memory and a multiprocessor framework.

We will in this section describe the various parts of thez'2 Memory model
test bench including a short description on how the test The simulated memory implements a shared linear
bench is used for practical experiments. address space whose size is determined during initiation of
the simulator. The three memaory operations required by the
processor are supported by the memory model. The RMW

The processor kernel is a highly optimized instructionoperation is implemented as a combined read and write
set simulator of the SPARC processor architecture [20pperation in the memory. The shared address space is, by
The interface of a processor consists ofpttucessor idof ~ default, logically divided into 4 kilo-byte page frames and
the current processor, thdrtual address 32-bits data ranges from address O to the maximum specified address.
word, memory operation(Read, Write, or atomic Read- The page size can be changed when recompiling the simu-
Modify-Write (RMW)), and ebyte masKspecifying which  lator.
bytes, within a word, will be written in a byte or half-word . Address space
store operation). Memory attributes MAX Memory areas

The instruction set simulator is written in C and imple-
ments all instructions generated by the Z8RARC-ver- PRIVATE_DATA Stacks
sion of the GCC compiler. A few optional instructions such
as the integer multiply/divide and square root instruction

2.1 Processor kernel

are not implemented. Some of these are used for imple- NN/ Heap
. o I SHARED_DATA
menting synchronisation primitives. -
The processor kernel is operated by means of two GRIVATE_DATA, REPLICATED Static data area
functions:InitSparc ~ andSparcCycle . InitSparc
initiates the processor by creating the state information area INSTRUCTIONS { Instructions
which contains register contents and other state informa- 0 Reserved

tion. The program counter is initiated with the start address
of the first instruction to execute and the designated stac
pointer is initiated to a user defined start value. A parameter Figure 1 shows the map of the memory model. The first
toInitSparc  determines whether instruction fetches areyyo pages of memory are reserved for passing information
visible or if only data references will be seen by the memfrom the simulator to the run-time environment of the
ory system. application program. The instructions and the static data

A processor cycleonsists of an instruction fetch, exe- area are put in the bottom of the address space. The top por-
cution of the instruction and an optional data referencejon is reserved for the processor stacks. Each processor
Execution of the application program is advanced by callyets a stack area the size of which is defined upon invoca-
tion of the simulator. The area inbetween is allocated to the
dynamic memory area, the heap.

Figure 1. Memory map of the simulated memory.

2. Sunis a registered trademark of Sun Microsystems, Inc.
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The user (both the simulator user and the applicatio
programmer or compiler) is provided with primitives for
tagging pages with attributes. These attributes are primaril
used to distinguish pages in one of three sections of tr ]
address spacastructions private dataandshared dataA 1
particular page may not belong to more than one of thes
sections. Advance CPU one processor cycle

A fourth attribute replicated specifies that a processor orto next data reference
accessing a page with this attribute will get its own physica
copy of the page. When a processor first touches a pa
with the attribute ‘replicated’, a page frame is allocated ant — |
the contents of the page is copied to the new physical pag @ —

Initiation

Perform any CPU-specific
operations (eg. mem. refs.)

Subsequent accesses to this page will be redirected to t |
unique physical copy of this page. No coherence is mair |Perf0rm system unique 0perati0n3|
tained on replicated pages so write operations to them wi o \|/
only be seen by the same processor that made the write. | Advance time |
The only exception from the linear address space is th
static data area which the programming model requires t ¢

be replicated to all processing elements (further explanz | Checkif program has reached end _|

tion in Section 2.4). Accesses by different processors to th ¢

same virtual address in the static data area will result i | Print execution data |
accc_esses to phys_lcally separ_ate memory Io_catlons. Thls Figure 2. Multiprocessor framework of the
achieved by tagging the static data area with the attribut minimal simulator
‘replicated’.

The global time is maintained and updated for each iter-
ation of the loop.One time step represents the minimum
The simulation of the execution of a parallel applicationtime for one processor cycle.
program starts with an initiation phase in which the binary The minimal simulator implements a shared memory
image of the application program is read and loaded intBultiprocessor with instantaneous access to memory. The
the simulated memory. The processors are initiated with th@emory references are performed at number 1 in Figure 2.
start a(_jdress as stated in the binary file. Only processor 04s4 Programming environment
executing from start and the application program is respon-
sible of invoking the other processors as needed. The programming environment consists of a run-time
The framework for simulating a shared memory multi-library, a generic trap function, a C-compiler and a macro
processor is an endless loop in which one iteration repréackage used for expressing parallelism.
sents one processor cycle, which is the basic measure of A run-time library has been developed to support the
time in the simulator (see Figure 2). execution of the application programs. Many of the stand-
The first operation in an iteration, is to advance all procard run-time library functions such as I/O and the mathe-
essors having work to do. A time-stamp for each processépatical functions are implemented using traps as described
determines the earliest time it can proceed. A processor caRove. Other functions, such as the memory allocation rou-
during one iteration issue one instruction fetch and afinesmalloc andcalloc are implemented directly in C.
optional data reference, or only the next data reference The generic trap function is used for passing information
depending on the level of detail simulated. The time-stamffom the application program to the simulator and vice
for the processor is updated to the earliest time it may pro/ersa. An example is the tagging of attributes to regions of
ceed. Together with this, some operations which can be sdfiemory mentioned earlier. The routines for tagging pages
isfied within a processor Cyc|e may be done. For examp|é\,/|th attributes are implemented in the simulation SOﬁware,
if the latency times of a memory reference can be staticallput can be invoked from the application program by means
determined, it may be satisfied at this point. of traps. The tag operation is provided with a trap code and
After all the processors have had the opportunity to prome parameters to the tag function are pUt on the call frame
ceed, other functional units are scheduled if they have works for any normal function call. When the trap instruction is
to do during this time step. Examples of such functionagxecuted, the call frame of this processor is examined by
units are memory buffers and memory modules serving th&e simulator program and a call is made to the function
processors with memory references. Another example is dfiplementing the association of attributes to memory.
interconnection network.

2.3 Multiprocessor framework
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The CacheMire test bench supports at the moment paral- There are a number of run-time options to the simulator
lel programs written in C using ti&ingle-Program-Multi-  program upon invocation. There are switches for specifying
ple-Data(SPMD) model of computation [8]. In this model, the size of the memory, the size of the stack each processor
all processors execute the same program but operate on diets, the number of processors and whether instruction
ferent data which is scheduled during run-time. The ANLfetches are simulated or not. A simulation run is started by
macros from Argonne National Laboratories are used foinvoking the simulator with appropriate parameters. Tha
expressing the parallelism [5]. The machine dependent paest parameter should be the full name and parameters of
of the ANL macro package has been changed to fit our ruthe application program.
time environment. The next section describes how a detailed memory sys-

The definition of the ANL macros specifies that thetem and network simulator easily can be incorporated with-
static data area be replicated so that each processor getsoitss sacrificing too much performance.
own physical copy. Some programs written using the ANI_g ) :
macros have been found relying on the replication of th Example of a CC-NUMA simulator
static data area when the parallel threads of computation In order to demonstrate the flexibility and effectiveness
have been created. The creation of a parallel thread invoke$ the CacheMire test bench, we will now describe one
a new processor which will inherit the values of the statiexample of how the test bench has been used.
data area as set up by the master processor, see Section 2.2As part of a masters thesis project, a detailed memory
This behaviour is ensured by tagging the static data aresystem and network simulator was designed and incorpo-
with the ‘replicated’ attribute. rated with the minimal simulator described in the previous

; : section [13]. This simulator implements a shared-memory
2.5 Using the CacheMire test bench cache coherent non-uniform memory access (CC-NUMA)

Inserting memory system simulators: Detailed simulamultiprocessor with a double two-dimensional mesh as
tors of memory systems can be inserted in the framework &iterconnection network. The cache coherence protocol in
positions corresponding to numbers 1 and 2 in Figure 2. the CC-NUMA simulator is a full-map write-invalidate

The memory references are inserted into the memorgrotocol based on the Stanford DASH multiprocessor [14].
system at number 1. If the modelling of a memory referFigure 3 shows the structure of the simulated system.
ence cannot be done statically, the memory reference is The additions made to the minimal simulator were two
inserted in a reference buffer and the processor has to heodules implementing the coherent cache memories and
stalled until the memory reference is completed. This ishe mesh networks. For data references in the shared region
achieved by keeping the stall-status in the processor stag¢ the address space, a call to the cache memory was
which prevents the processor from advancing until the stalinserted at number 1 in Figure 2. The processor is free to
status is cleared. advance to the next memory reference if there is a hit in the

At number 2 in Figure 2, the modelling of other func-cache memory. Otherwise, the processor is stalled until the
tional units is done. The reference buffers of each processeache block containing the data is fetched to the cache
are examined and the actions of the simulated memory sysremory according to the cache-coherence protocol. The
tem and network, due during this time step, are performedimulator implements the weak ordering memory consist-
For correct timing a timestamp is associated to each menancy model [10] which means that the processor does not
ory reference for determining the earliest time it may arrivhave to wait for acknowledgement of write operations. In
to a functional unit in the simulated architecture. this consistency model the processor is allowed to issue

Invoking the simulator: The simulator software and write operations as long as a synchronisation point is not
the application programs (the workload) are separate enténcountered.
ties, in contrast to some other simulation techniques in  When all processors have been scheduled once (some
which the simulator software is linked together with themay issue a memory reference and some may be stalled due
application program. Once a simulator program has beeto read misses), the local memories and the network are
compiled, any application program which has been comscheduled. Correct latency times are modelled by tagging
piled with the CacheMire run-time library may be used agach buffer entry with a time-stamp and not scheduling
workload. messages in the network until they are due according to

Most of the workload programs we use come from theheir time stamp.

Stanford SPLASH-suite of parallel programs [18]. The The CC-NUMA simulator has been used for a number
SPLASH-suite is a set of both scientific and engineeringf research studies, including a comparison between write-
applications which have been developed primarily for solvinvalidate and write-update cache coherence protocols [13,
ing a scientific or engineering problems, not for performing1].

computer performance evaluation.
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= Request Mesh o MATMUL the initiation phase is less than 10% but for

F Reply Mesh g MP3D it can be up to 50% of the total execution time. This
broc. R— Proc. R— initiation pha}sg grows for MP3D with thg number of parti.—
with Controlle with Controlle cles but diminishes with the number of time steps.The dis-
Cache cache tribution of memory references between instructions,

private and shared data will of course vary depending on

) ) the configuration of the simulated system.

Table 1. Application characteristics

ﬂ r
MP3D MATMUL
B\Si?ﬁ' girectOJy l?/\:i(:ﬁ' (E:JireCtOITy code size (lines) 1735 113
ontrolle ontrolle n
Cache Cache data set 10000 particles 1,6, 158 elements

10 time steps

execution time

. 26s 15s
(nprocesson

@ number of 276-16(78%) | 27.5- 19(76 %)
instructions
SELECT FORWARD number of private
X+——\_ROUTE /I—» x+ data ron dsp 26-16 (75%) | 17240 (0.05 %)
X- —» — X- b orvat
Y+— - v+ nNUMDEr oT private 11 16.16 (3.3 %) | 125 (0.0 %)
data writes
A " ber of shared
number ol shared 1, 47.18(7.1%) |6.3-19(17.5 %)
data reads

number of shared

. 0, . 0,
data writes 15-16(43%) | 2.1-10(58%)

number of

> atomic RMW
Bus

We have evaluated the performance of the minimal sim-
ulator, which will give us the overhead of the processor
simulator together with the multiprocessor framework. We
have also, as a comparison, evaluated the performance of
the CC-NUMA simulator described in Section 3. In order

16554 (0.05%) 684 (0.0%)

(b) .
to conduct the performance evaluation we have made two
Figure 3. (a) Block diagram of a sets of experiments. One set in which we vary the number
2 x 2 CC-NUMA system. of simulated processing elements from 1 to 64, and one set
(b) Structure of a simulated processing node. where we use the profiling utility of the GCC compiler in
. order to find which parts of the simulator contributes the
4 Performance of the simulator most to simulation time.

This section presents some measurements regarding theAll measurements were conducted on a Sun SPARCsta-

performance of the program-driven simulator in thetion ELC peaking at approximately 25 MIPS. Both the sim-
CacheMire test bench. ulator and the application programs were compiled using

the GCC compiler and the -O2 optimization flag.
} ] 4.2 Results
For measuring the performance of the simulator, we
have used two programs: MP3D from the Stanford Figure 4 shows the slowdown of the simulated multi-
SPLASH suite [18], and MATMUL which is a simple pro- Processors, compared to execution of the application pro-
gram multiplying two matrices of floating point numbers.9ram on a Sun SPARCstation ELC single processor system.
MP3D is a program simulating a body in a flow of veryThe slowdown for the minimal simulator ranges from 100
low-density particles. to 300 depending on the number of simulated processors
Table 1 shows some characteristics of the two applics2nd application program. This overhead is very small and it
tions. The numbers on the amount of instructions and dafPes not vary appreciably with the number of simulated
references are measured using the minimal simulator witAfocessing elements. The average slowdown is around 200
16 processing elements. It corresponds to the execution Which means that on average not more than 200 host
the entire applications including a sequential initiation. Fofnstructions are needed to simulate an instruction fetch

4.1 Performance measurements
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5000 can be attributed to the changes in dynamically executed
instructions between the two experiments.

The low overhead of simulating the processors compares
well in performance with other simulation systems, such as
the Tango system from Stanford [9]. Tango is an execution-
driven simulator (the application program is executed on
the host computenot by a functional simulator) to which a
number of memory system simulators can be attached.
Depending on the kind of memory simulator being used,
the amount of overhead varies, but the simplest memory
model called'Single-Issue” causes at least 26 overhead
for each global event being traced [9]. Other memory simu-
: lators lead to a higher overhead which is in the order of
0 300-700pus because of expensive context switches. The

0 o 20 3 4 50 60 70  g|ghal events which can be traced by Tango are synchroni-
Figure 4. Slowdown of simulation of varying number of

> MP3D, Minimal simulator

4500
-+ MP3D, CC-NUMA simulator

4000 © MATMUL, Minimal simulator

3500

B MATMUL, CC-NUMA simulator
3000
2500
2000
1500
1000

500

—

processing elements compared to an execution on a sation operations, accesses to shared data and accesses to
SPARCstation ELC single processor. private data. Instruction fetches are thus invisible for
Tango.

(with address translation), the interpretation of the instruc-  agsume that we are only interested in shared data and
tion, possible data reference (also with address translationp st 179 of the instructions lead to a shared data access
reference counting and the framework for muItiprocessing(average for MP3D and MATMUL). Assume further that
The total time for simulating one complete instruction isye gre using a host computer which is able to execute
about 16us (see Table 2). . o instructions at an average rate of 20 MIPS. The average
The slowdown for the CC-NUMA simulator is included minimum time for executing one instruction with Tango is

for comparison. The overhead of simulating caches, thg 1720+0.05 = 3.45:s. With more sophisticated memory
mesh networks and the cache coherence protocol resultsdfnylators in Tango, this time is: 0380+0.05 = 53us.

a lot higher slowdown as we increase the number of Simu- The corresponding time for the CacheMire test bench is
lated processors. This memory system simulator suffergg us, and in this casall memory references are observed.
much from the same effects as in a real system. When Wge can thus conclude that while the CacheMire test bench
add processing elements the network will at some poing not as fast as the fastest memory simulator on Tango, the
become saturated and most of the time will be spent in roussic time needed for simulating processor and memory

ing messages through the network. Therefore, we get @ferences is very well acceptable and less than most of the
more rapid increase in simulation time when the number ofpjished overhead numbers for Tango.

simulated processors exceed 16. Figure 5 breaks down the execution to the most time
Table 2. Time for performing central operations in the consuming operations in the simulators. The figure includes
simulators. 16 simulated processing elements. measurements done on the minimal and the CC-NUMA

simulator executing MP3D with 16 processors.
From Figure 5 we see that even for the minimal simula-
tor, less than 40% of the simulation time is spent interpret-

Minimal |CC-NUMA
simulatorf simulator

Average time for

: ) 7 us 8us ing instructions. For the CC-NUMA simulator it is less than
one instruction
Address translatio @s 2pus 100% 7 O Miscellaneous
Memory reference Bs 3us ] 0O Cache coherence
Main loop overheafd  @s 11us 80%
Sum 16us 24 s ] [J Network

60% | .
Table 2 shows the times for performing central opera ]  Ref. counting
tions and how they vary between the minimal and the CC 40% 7 [l Addr. translation

NUMA simulator. On top of this comes the time for simu-

lating the memory system. The differences between th 20% 7 W Main loop

both simulators are in the main loop and in the processt 0% | B Memory operation
simulator. The difference in the main loop is because of th Minimal CC-NUMA B Processor
additional work which has to be done when more func Figure 5. Sources of execution time in the minimal
tional units are added to the simulator. The difference in th simulator and CC-NUMA simulator with

average time for simulating the execution of one instructiol 16 processing elements.
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20%! The main contribution to simulation time is the mem-project has used the CacheMire test bench to evaluate a
ory system, a conclusion also observed by Davis at al. inew proposal on how to avoid this problem.
[9]. :

In summary we have seen that it is very well feasible t05'4 Trace generation
use the approach of program-driven simulation for evalua- The minimal simulator has been used in a couple of
tion of multiprocessor architectures. The main sources gfrojects for generating traces.
execution time when performing detailed simulation of Cache-coherence protocols on slotted rings project
memory systems are besides the processor simulation, thethe department of Electrical Engineering Systems at Uni-
network and the multiprocessor framework (the main loop)versity of Southern California is performing an evaluation

. . of cache coherence protocols on a slotted ring. The evalua-
5 The use of CacheMire test bench in research tion is based on detailed trace driven simulations of both

This section describes a few projects in which thehe cache coherence protocols and the ring interconnection.
CacheMire test bench is used as a major tool for the inves# variety of cache coherence protocols and ring architec-
gations. tures are investigated. The CacheMire test bench is used to
generate the traces in this study [3].

Instruction mix measurements The single-processor

Many researchers have identified the sharing behaviowersion of the CacheMire test bench has been used to meas-
of shared-memory parallel programs as one of the keyre the relative occurrences of instructions in ordinary
issues for fast execution. Given a shared memory multisequential programs such as TeX, Spice and GCC. The
processor architecture, depending on the sharing behaviomformation is used in the design and construction of a
of the workload, the performance can vary drastically. highly-pipelined processor with a target clock frequency of

This study [6] uses the CacheMire test bench in a metf00 MHz or more [1].
odology of capturing and visualising the sharing behawoufz3 Summary and conclusions
of parallel applications. The stream of shared memory ref-
erences generated by the processors are analysed duringProgram-driven simulators are much more flexible than
run-time and key parameters describing the sharing behatheir execution-driven counterparts. They allow experi-
iour of the program are recorded. ments with different processor architectures in multiproces-
sor environments, and let the user control all parameters
such as processor cycle times and the number of outstand-

The CacheMire test bench is especially suitable to aid iing references to the memory system. They can also easily
evaluation of new cache-coherence protocols and architebe built portable to be used in multi-platform computer net-
tures. works.

A number of link-based cache coherence protocols are We have shown that with modern computing resources,
evaluated in [16]. One of them is a new tree-based protocdetailed program-driven simulation of multiprocessor
presented in [17]. The minimal simulator in the CacheMirearchitectures is indeed a viable approach for performance
test bench has been augmented with a generic contentiemaluations, in contrast to what has generally been believed.
free network, which simulates accurate latency times, and We have in this paper described the CacheMire test
with processor caches which are kept coherent using one bénch which is based on a program-driven simulator of a
the evaluated cache-coherence protocols. shared memory multiprocessor. The performance of this

The relative performance differences of different netsimulator compares well with the performance of Tango, an
work bandwidths and latencies are evaluated for both execution-driven simulator developed and used at Stanford
write-invalidate and a write-update cache-coherence protadniversity. When performing detailed simulation of mem-
col in [13]. This study incorporated the augmentation of theory systems, the time needed for interpretation of instruc-
minimal simulator with the cache-coherence protocol of theions, becomes a smaller issue compared to the need for
Stanford DASH multiprocessor (see Section 3). In contrastfficient simulation of the memory system itself.
to the study mentioned above, this memory system simula- The CacheMire test bench is particularly well suited to
tor accurately simulates the effects of contention in the nebe used in a computing environment with a network of
work and memory modules. workstations because of its simplicity and portability. A
S particular study often requires a series of experiments, and

in a networked environment each experiment can be sub-

A master’s thesis project at the department has deafhitted to different workstations thus achieving a high
with the design and evaluation of a non-blocking read algodegree of parallelism in the experiments.
rithm for a SPARC processor [12]. Normally, a processor The CacheMire test bench has been used in a number of
always stalls on a read-miss in the cache memory. Thistudies and has proved itself to be a powerful tool for per-

5.1 Visualisation of data sharing

5.2 Evaluation of new cache-coherence protocols

5.3 Experiments with new processor architecture
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order to be practical to perform, e.g. experiments on operat- 118, S-221 00 Lund, Sweden, Jan. 1992. MSc thesis
ing systems. The solution to this is not other simulatiof13] M. Karlsson.Bandwidth and Latency Implications of
technigues such as execution-driven simulation. Rather will  Directory-Based Cache Coherence Policieiech.
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tive computing resources lead to the feasibility of program-  S-221 00 Lund, Sweden, Aug. 1992. MSc thesis
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