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Abstract
The approach of program-driven simulation of multi-

processors has generally been believed to be too slow in
order to perform experiments and performance evaluations
with realistic workloads.

We show that the program-driven approach for building
multiprocessor simulators is indeed a viable method. It
compares well in performance to an execution-driven simu-
lator which has been reported in the literature, and has
superior flexibility.

The reported simulator is the core in the CacheMire test
bench which is an entire environment for conducting per-
formance evaluations on shared memory multiprocessors.
The test bench is used in a number of projects, including
cache coherence protocol evaluation, super-pipelined proc-
essor design and analysis of parallel program behaviour.

1 Introduction

During the development of a new computer system, per-
formance evaluations have to be made continuously. In the
early stage of development,analytical models are often
used to get a coarse estimation of performance. However,
because of the difficulty in capturing the dynamic behav-
iour of the system, the applicability of this technique is so
far limited to either very simple systems or for rough esti-
mates.

To build prototypes, on which measurements are done,
gives the most data on real performance. However, the
design considerations must already have been made when
the building starts, so this approach is mostly used at the
final phase of the development.

Therefore, when investigating various different architec-
tural features,simulation modelling is often used for per-
formance evaluation. A simulation model can be made
accurate, but still flexible enough to investigate a large
design space.

Multiprocessor architectures, which have a potential of
providing cost-effective performance, are a lot more diffi-
cult to model than single processor systems due to the very
complex interaction between the architecture and the paral-

lel program behaviour. Even though the approach of simu-
lation has been widely used for multiprocessor
performance evaluations, the simulation tools used for sin-
gle processor systems have in most cases not provided
enough information to perform accurate evaluations, or
been effective enough to use realistically sized workloads.

In this paper we present the CacheMire test bench for
performance evaluations and measurements of multiproces-
sor architectures. The core of the test bench is a flexible
program-driven simulator, efficient enough to execute
entire parallel programs as workload. The test bench has
shown itself to be a very useful tool for quantitative meas-
urements of shared memory multiprocessor architectures.

1.1  Background

We will in the following consider shared memory multi-
processors as target architectures. The concepts of simula-
tion discussed in the paper are, however, independent of the
memory model.

With modern processor architectures, the most crucial
part of a shared memory multiprocessor is the memory sys-
tem. For a high processor utilization, the memory system
must be able to serve the processors with several tens of
millions memory references per second and processor.

A simulation model for performance evaluation of mem-
ory systems for multiprocessors generally consists of: (i) a
memory reference generator for each processor and (ii) a
simulator of the memory system. Four techniques exist for
generating the memory references [11]:

• Distribution-driven simulation. The workload is
modelled by a stochastic model of the distribution of
memory references.

• Trace-driven simulation. A trace of memory refer-
ences is generatedonce by means of executing the
workload on a machine similar to the target system or
by using a functional simulator.

• Execution-driven simulation. The workload is exe-
cuted on a host computer. At events of interest, e.g.
shared memory references, control is transferred to
the simulation software, which simulates the memory
system.
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• Program-driven simulation. Both processors and the
memory system of the target system are simulated.
The workload is executed on the simulated proces-
sors.

The method of distribution-driven simulation suffers
mainly from the lack of good stochastic models of real par-
allel programs. In addition, this method, as well as the
trace-driven method, does not have any feedback between
the memory system architecture and the program behav-
iour. This may lead to considerable discrepancies in per-
formance estimation compared to execution- and program-
driven simulation since in these cases the workloads are
allowed to behave differently as a consequence of changes
in the timing of memory references [7].

Due to the simulation of entire instruction set proces-
sors, program-driven simulation is very computation inten-
sive. Work on simulation techniques has therefore lately
been focused onexecution-driven simulation [9, 15, 22].
The processes of the workload application program are in
this case executed (pseudo)-concurrently as separate
threads of control on a host computer system. This execu-
tion is without slow-down (except for the lack of parallel-
ism). At predefined events of interest, such as a shared
memory reference, control is transferred to the simulation
software which synchronises all processes of the workload
and simulates the memory system.

This approach has the big advantage of being very effi-
cient if the application program can execute for long peri-
ods between global events of interest. This advantage is
highly dependent on the sharing behaviour of the applica-
tion program. The main drawback is the lack of flexibility.
The processor architecture is fixed to the one of the host
computer and the operating system has to be modified in
order to transfer control from the user application program
to the memory system simulator. If the number of instruc-
tions between each global event is small, the efficiency ben-
efits of execution-driven simulation will diminish.

In program-driven simulation (sometimes referred to as
instruction-driven simulation), each instruction of the
application program is interpreted by an instruction set sim-
ulator of the processor. While this approach has been used a
few times in the past [2, 19], it has generally been consid-
ered too time consuming for execution of entire workloads
due to the interpretation of every instruction. However, with
the emergence of high performance and cost-effective com-
puters, such as the common workstation, combined with
the simpler instruction sets of modern microprocessors, this
approach has started to gain interest. It is the most flexible
and accurate approach of the four techniques. Changes in
the processor architecture can easily be made and the tim-
ing model can be made arbitrarily precise.

1.2  Motivation

The main motivation behind the CacheMire test bench is
based on the type of experiments that was anticipated to be
carried out.

At the department of Computer Engineering at Lund
University, one of the main research topics is focused on
shared memory multiprocessors. Within this topic, research
is conducted in diverse areas; from coherent cache systems,
compiler design, and consistency models to parallel pro-
gram behaviour. Experimental methods are used for per-
formance evaluations and measurements. Because of this
diverse nature of research areas, a flexible but still powerful
tool was needed to satisfy various kinds of experiments.

Both execution- and program-driven simulation tech-
niques were considered to fulfil the needs of accuracy.
While it has been demonstrated clearly that execution-
driven simulation can be done with enough efficiency to
execute entire applications of reasonable sizes, the same
had to be verified for program-driven simulation which
generally has been considered to be too time consuming.
Recent techniques for efficient instruction set architecture
simulation have shown that it is feasible to simulate the
processors as well as the memory system [4].

The flexibility issue that is most important is the ability
to simulate just as much as needed for a particular study.
Secondly, it is important to be able to experiment with vari-
ous processor architectures. It should also be possible to
configure the test bench for new experiments without too
much difficulty. In order to utilize the available computing
resource, consisting of a network of workstations from var-
ious manufacturers, the test bench has to be portable.

All this together, it was considered most appropriate to
develop a program-driven simulator as the core of the test
bench. Such a simulator is easily implemented as a single
program which does not require additions in the operating
system. In contrast, the operating system has to support
transfer of control between the workload programs and the
simulator when using execution-driven simulation. Pro-
gram-driven simulation also opens up for realistic experi-
ments with different instruction set architectures in
multiprocessor environments, something which is impossi-
ble with execution-driven simulation.

The result, the CacheMire test bench, is an environment
for conducting experiments with shared memory multi-
processor architectures. The minimal simulator implements
a shared memory multiprocessor with a number of proces-
sors issuing memory references to a shared memory. The
processors are instruction set simulators of the SPARC1

processor. The user can either accurately model memory
accesses for all memory references, including instruction

1.   SPARC is a registered trademark of SPARC International, Inc.
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fetches, or only model data references. By tagging areas of
memory with user defined attributes, accesses to any spe-
cific memory area can be traced.

The rest of the paper is organised as follows: The next
section describes the structure of the program-driven simu-
lator and the application programming environment. Sec-
tion 3 describes how this basic simulator model easily can
be extended to accommodate accurate simulation of com-
plex memory systems. Section 4 presents some perform-
ance measurements of the simulator. Some ongoing
research projects using the CacheMire test bench are briefly
reviewed in Section 5 and the paper is concluded after a
summary.

2 Structure of the CacheMire test bench

The CacheMire test bench consists of a minimal pro-
gram-driven simulator and a programming environment.
The minimal simulator is divided into a processor kernel, a
simulated memory and a multiprocessor framework.

We will in this section describe the various parts of the
test bench including a short description on how the test
bench is used for practical experiments.

2.1  Processor kernel

The processor kernel is a highly optimized instruction
set simulator of the SPARC processor architecture [20].
The interface of a processor consists of theprocessor id of
the current processor, thevirtual address, 32-bits data
word, memory operation (Read, Write, or atomic Read-
Modify-Write (RMW)), and abyte mask (specifying which
bytes, within a word, will be written in a byte or half-word
store operation).

The instruction set simulator is written in C and imple-
ments all instructions generated by the Sun2/SPARC-ver-
sion of the GCC compiler. A few optional instructions such
as the integer multiply/divide and square root instruction
are not implemented. Some of these are used for imple-
menting synchronisation primitives.

The processor kernel is operated by means of two C-
functions:InitSparc  andSparcCycle . InitSparc
initiates the processor by creating the state information area
which contains register contents and other state informa-
tion. The program counter is initiated with the start address
of the first instruction to execute and the designated stack
pointer is initiated to a user defined start value. A parameter
to InitSparc  determines whether instruction fetches are
visible or if only data references will be seen by the mem-
ory system.

A processor cycle consists of an instruction fetch, exe-
cution of the instruction and an optional data reference.
Execution of the application program is advanced by call-

2.  Sun is a registered trademark of Sun Microsystems, Inc.

ing the SparcCycle  routine. If instruction fetches are
simulated, each invocation ofSparcCycle  advances the
simulator to the next memory reference, instruction fetches
included. A processor cycle may then require more than
one invocation ofSparcCycle . Between each invoca-
tion, the processor state stores information on whether the
processor waits for an instruction or for data.

If instruction fetches are invisible, the processor is
advanced a number of processor cycles until the next data
reference. A return parameter gives information on the
number of advanced processor cycles.

Three memory operations are required by the processor:
Read, Write andatomic Read-Modify-Write (RMW) opera-
tions. The latter operation writes a value to a memory loca-
tion and expects the old contents of the memory location in
return to the processor in a single indivisible operation. It is
implemented by using the opcode of one of the optional
instructions.

2.2  Memory model

The simulated memory implements a shared linear
address space whose size is determined during initiation of
the simulator. The three memory operations required by the
processor are supported by the memory model. The RMW
operation is implemented as a combined read and write
operation in the memory. The shared address space is, by
default, logically divided into 4 kilo-byte page frames and
ranges from address 0 to the maximum specified address.
The page size can be changed when recompiling the simu-
lator.

Figure 1 shows the map of the memory model. The first
two pages of memory are reserved for passing information
from the simulator to the run-time environment of the
application program. The instructions and the static data
area are put in the bottom of the address space. The top por-
tion is reserved for the processor stacks. Each processor
gets a stack area the size of which is defined upon invoca-
tion of the simulator. The area inbetween is allocated to the
dynamic memory area, the heap.

Figure 1. Memory map of the simulated memory.
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The user (both the simulator user and the application
programmer or compiler) is provided with primitives for
tagging pages with attributes. These attributes are primarily
used to distinguish pages in one of three sections of the
address space:instructions, private data andshared data. A
particular page may not belong to more than one of these
sections.

A fourth attribute,replicated, specifies that a processor
accessing a page with this attribute will get its own physical
copy of the page. When a processor first touches a page
with the attribute ‘replicated’, a page frame is allocated and
the contents of the page is copied to the new physical page.
Subsequent accesses to this page will be redirected to the
unique physical copy of this page. No coherence is main-
tained on replicated pages so write operations to them will
only be seen by the same processor that made the write.

The only exception from the linear address space is the
static data area which the programming model requires to
be replicated to all processing elements (further explana-
tion in Section 2.4). Accesses by different processors to the
same virtual address in the static data area will result in
accesses to physically separate memory locations. This is
achieved by tagging the static data area with the attribute
‘replicated’.

2.3  Multiprocessor framework

The simulation of the execution of a parallel application
program starts with an initiation phase in which the binary
image of the application program is read and loaded into
the simulated memory. The processors are initiated with the
start address as stated in the binary file. Only processor 0 is
executing from start and the application program is respon-
sible of invoking the other processors as needed.

The framework for simulating a shared memory multi-
processor is an endless loop in which one iteration repre-
sents one processor cycle, which is the basic measure of
time in the simulator (see Figure 2).

The first operation in an iteration, is to advance all proc-
essors having work to do. A time-stamp for each processor
determines the earliest time it can proceed. A processor can
during one iteration issue one instruction fetch and an
optional data reference, or only the next data reference
depending on the level of detail simulated. The time-stamp
for the processor is updated to the earliest time it may pro-
ceed. Together with this, some operations which can be sat-
isfied within a processor cycle may be done. For example,
if the latency times of a memory reference can be statically
determined, it may be satisfied at this point.

After all the processors have had the opportunity to pro-
ceed, other functional units are scheduled if they have work
to do during this time step. Examples of such functional
units are memory buffers and memory modules serving the
processors with memory references. Another example is an
interconnection network.

The global time is maintained and updated for each iter-
ation of the loop.One time step represents the minimum
time for one processor cycle.

The minimal simulator implements a shared memory
multiprocessor with instantaneous access to memory. The
memory references are performed at number 1 in Figure 2.

2.4  Programming environment

The programming environment consists of a run-time
library, a generic trap function, a C-compiler and a macro
package used for expressing parallelism.

A run-time library has been developed to support the
execution of the application programs. Many of the stand-
ard run-time library functions such as I/O and the mathe-
matical functions are implemented using traps as described
above. Other functions, such as the memory allocation rou-
tinesmalloc  andcalloc  are implemented directly in C.

The generic trap function is used for passing information
from the application program to the simulator and vice
versa. An example is the tagging of attributes to regions of
memory mentioned earlier. The routines for tagging pages
with attributes are implemented in the simulation software,
but can be invoked from the application program by means
of traps. The tag operation is provided with a trap code and
the parameters to the tag function are put on the call frame
as for any normal function call. When the trap instruction is
executed, the call frame of this processor is examined by
the simulator program and a call is made to the function
implementing the association of attributes to memory.

Initiation

Check if program has reached end

Advance time

Print execution data

Perform system unique operations

1

2

Figure 2. Multiprocessor framework of the
minimal simulator

Advance CPU one processor cycle
or to next data reference

Perform any CPU-specific
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The CacheMire test bench supports at the moment paral-
lel programs written in C using theSingle-Program-Multi-
ple-Data (SPMD) model of computation [8]. In this model,
all processors execute the same program but operate on dif-
ferent data which is scheduled during run-time. The ANL
macros from Argonne National Laboratories are used for
expressing the parallelism [5]. The machine dependent part
of the ANL macro package has been changed to fit our run-
time environment.

The definition of the ANL macros specifies that the
static data area be replicated so that each processor gets its
own physical copy. Some programs written using the ANL
macros have been found relying on the replication of the
static data area when the parallel threads of computation
have been created. The creation of a parallel thread invokes
a new processor which will inherit the values of the static
data area as set up by the master processor, see Section 2.2.
This behaviour is ensured by tagging the static data area
with the ‘replicated’ attribute.

2.5  Using the CacheMire test bench

Inserting memory system simulators: Detailed simula-
tors of memory systems can be inserted in the framework at
positions corresponding to numbers 1 and 2 in Figure 2.

The memory references are inserted into the memory
system at number 1. If the modelling of a memory refer-
ence cannot be done statically, the memory reference is
inserted in a reference buffer and the processor has to be
stalled until the memory reference is completed. This is
achieved by keeping the stall-status in the processor state
which prevents the processor from advancing until the stall-
status is cleared.

At number 2 in Figure 2, the modelling of other func-
tional units is done. The reference buffers of each processor
are examined and the actions of the simulated memory sys-
tem and network, due during this time step, are performed.
For correct timing a timestamp is associated to each mem-
ory reference for determining the earliest time it may arrive
to a functional unit in the simulated architecture.

Invoking the simulator:  The simulator software and
the application programs (the workload) are separate enti-
ties, in contrast to some other simulation techniques in
which the simulator software is linked together with the
application program. Once a simulator program has been
compiled, any application program which has been com-
piled with the CacheMire run-time library may be used as
workload.

Most of the workload programs we use come from the
Stanford SPLASH-suite of parallel programs [18]. The
SPLASH-suite is a set of both scientific and engineering
applications which have been developed primarily for solv-
ing a scientific or engineering problems, not for performing
computer performance evaluation.

There are a number of run-time options to the simulator
program upon invocation. There are switches for specifying
the size of the memory, the size of the stack each processor
gets, the number of processors and whether instruction
fetches are simulated or not. A simulation run is started by
invoking the simulator with appropriate parameters. Tha
last parameter should be the full name and parameters of
the application program.

The next section describes how a detailed memory sys-
tem and network simulator easily can be incorporated with-
out sacrificing too much performance.

3 Example of a CC-NUMA simulator

In order to demonstrate the flexibility and effectiveness
of the CacheMire test bench, we will now describe one
example of how the test bench has been used.

As part of a masters thesis project, a detailed memory
system and network simulator was designed and incorpo-
rated with the minimal simulator described in the previous
section [13]. This simulator implements a shared-memory
cache coherent non-uniform memory access (CC-NUMA)
multiprocessor with a double two-dimensional mesh as
interconnection network. The cache coherence protocol in
the CC-NUMA simulator is a full-map write-invalidate
protocol based on the Stanford DASH multiprocessor [14].
Figure 3 shows the structure of the simulated system.

The additions made to the minimal simulator were two
modules implementing the coherent cache memories and
the mesh networks. For data references in the shared region
of the address space, a call to the cache memory was
inserted at number 1 in Figure 2. The processor is free to
advance to the next memory reference if there is a hit in the
cache memory. Otherwise, the processor is stalled until the
cache block containing the data is fetched to the cache
memory according to the cache-coherence protocol. The
simulator implements the weak ordering memory consist-
ency model [10] which means that the processor does not
have to wait for acknowledgement of write operations. In
this consistency model the processor is allowed to issue
write operations as long as a synchronisation point is not
encountered.

 When all processors have been scheduled once (some
may issue a memory reference and some may be stalled due
to read misses), the local memories and the network are
scheduled. Correct latency times are modelled by tagging
each buffer entry with a time-stamp and not scheduling
messages in the network until they are due according to
their time stamp.

The CC-NUMA simulator has been used for a number
of research studies, including a comparison between write-
invalidate and write-update cache coherence protocols [13,
21].
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4 Performance of the simulator

This section presents some measurements regarding the
performance of the program-driven simulator in the
CacheMire test bench.

4.1  Performance measurements

For measuring the performance of the simulator, we
have used two programs: MP3D from the Stanford
SPLASH suite [18], and MATMUL which is a simple pro-
gram multiplying two matrices of floating point numbers.
MP3D is a program simulating a body in a flow of very
low-density particles.

Table 1 shows some characteristics of the two applica-
tions. The numbers on the amount of instructions and data
references are measured using the minimal simulator with
16 processing elements. It corresponds to the execution of
the entire applications including a sequential initiation. For

MATMUL the initiation phase is less than 10% but for
MP3D it can be up to 50% of the total execution time. This
initiation phase grows for MP3D with the number of parti-
cles but diminishes with the number of time steps.The dis-
tribution of memory references between instructions,
private and shared data will of course vary depending on
the configuration of the simulated system.

We have evaluated the performance of the minimal sim-
ulator, which will give us the overhead of the processor
simulator together with the multiprocessor framework. We
have also, as a comparison, evaluated the performance of
the CC-NUMA simulator described in Section 3. In order
to conduct the performance evaluation we have made two
sets of experiments. One set in which we vary the number
of simulated processing elements from 1 to 64, and one set
where we use the profiling utility of the GCC compiler in
order to find which parts of the simulator contributes the
most to simulation time.

All measurements were conducted on a Sun SPARCsta-
tion ELC peaking at approximately 25 MIPS. Both the sim-
ulator and the application programs were compiled using
the GCC compiler and the -O2 optimization flag.

4.2  Results

Figure 4 shows the slowdown of the simulated multi-
processors, compared to execution of the application pro-
gram on a Sun SPARCstation ELC single processor system.
The slowdown for the minimal simulator ranges from 100
to 300 depending on the number of simulated processors
and application program. This overhead is very small and it
does not vary appreciably with the number of simulated
processing elements. The average slowdown is around 200
which means that on average not more than 200 host
instructions are needed to simulate an instruction fetch
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Table 1. Application characteristics

MP3D MATMUL

code size (lines) 1735 113

data set
10000 particles
10 time steps

128× 128 elements

execution time
(uniprocessor)

2.6 s 1.5 s

number of
instructions

27.6 · 106 (78 %) 27.5 · 106 (76 %)

number of private
data reads

2.6 · 106 (7.5 %) 17240 (0.05 %)

number of private
data writes

1.16 · 106 (3.3 %) 125 (0.0 %)

number of shared
data reads

2.47 · 106 (7.1 %) 6.3 · 106 (17.5 %)

number of shared
data writes

1.5 · 106 (4.3 %) 2.1 · 106 (5.8 %)

number of
atomic RMW

16554 (0.05%) 684 (0.0%)
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(with address translation), the interpretation of the instruc-
tion, possible data reference (also with address translation),
reference counting and the framework for multiprocessing.
The total time for simulating one complete instruction is
about 16µs (see Table 2).

The slowdown for the CC-NUMA simulator is included
for comparison. The overhead of simulating caches, the
mesh networks and the cache coherence protocol results in
a lot higher slowdown as we increase the number of simu-
lated processors. This memory system simulator suffers
much from the same effects as in a real system. When we
add processing elements the network will at some point
become saturated and most of the time will be spent in rout-
ing messages through the network. Therefore, we get a
more rapid increase in simulation time when the number of
simulated processors exceed 16.

Table 2 shows the times for performing central opera-
tions and how they vary between the minimal and the CC-
NUMA simulator. On top of this comes the time for simu-
lating the memory system. The differences between the
both simulators are in the main loop and in the processor
simulator. The difference in the main loop is because of the
additional work which has to be done when more func-
tional units are added to the simulator. The difference in the
average time for simulating the execution of one instruction

can be attributed to the changes in dynamically executed
instructions between the two experiments.

The low overhead of simulating the processors compares
well in performance with other simulation systems, such as
the Tango system from Stanford [9]. Tango is an execution-
driven simulator (the application program is executed on
the host computer,not by a functional simulator) to which a
number of memory system simulators can be attached.
Depending on the kind of memory simulator being used,
the amount of overhead varies, but the simplest memory
model called“Single-Issue” causes at least 20µs overhead
for each global event being traced [9]. Other memory simu-
lators lead to a higher overhead which is in the order of
300-700 µs because of expensive context switches. The
global events which can be traced by Tango are synchroni-
sation operations, accesses to shared data and accesses to
private data. Instruction fetches are thus invisible for
Tango.

Assume that we are only interested in shared data and
that 17% of the instructions lead to a shared data access
(average for MP3D and MATMUL). Assume further that
we are using a host computer which is able to execute
instructions at an average rate of 20 MIPS. The average
minimum time for executing one instruction with Tango is
0.17⋅20+0.05 = 3.45µs. With more sophisticated memory
simulators in Tango, this time is: 0.17⋅300+0.05 = 51µs.

The corresponding time for the CacheMire test bench is
16 µs, and in this caseall memory references are observed.
We can thus conclude that while the CacheMire test bench
is not as fast as the fastest memory simulator on Tango, the
basic time needed for simulating processor and memory
references is very well acceptable and less than most of the
published overhead numbers for Tango.

Figure 5 breaks down the execution to the most time
consuming operations in the simulators. The figure includes
measurements done on the minimal and the CC-NUMA
simulator executing MP3D with 16 processors.

From Figure 5 we see that even for the minimal simula-
tor, less than 40% of the simulation time is spent interpret-
ing instructions. For the CC-NUMA simulator it is less than

Table 2. Time for performing central operations in the
simulators. 16 simulated processing elements.

Minimal
simulator

CC-NUMA
simulator

Average time for
one instruction

7 µs 8µs

Address translation 2µs 2µs

Memory reference 3µs 3µs

Main loop overhead 4µs 11µs

Sum 16µs 24 µs
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Figure 4. Slowdown of simulation of varying number of
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20%! The main contribution to simulation time is the mem-
ory system, a conclusion also observed by Davis at al. in
[9].

In summary we have seen that it is very well feasible to
use the approach of program-driven simulation for evalua-
tion of multiprocessor architectures. The main sources of
execution time when performing detailed simulation of
memory systems are besides the processor simulation, the
network and the multiprocessor framework (the main loop).

5 The use of CacheMire test bench in research

This section describes a few projects in which the
CacheMire test bench is used as a major tool for the investi-
gations.

5.1  Visualisation of data sharing

Many researchers have identified the sharing behaviour
of shared-memory parallel programs as one of the key
issues for fast execution. Given a shared memory multi-
processor architecture, depending on the sharing behaviour
of the workload, the performance can vary drastically.

This study [6] uses the CacheMire test bench in a meth-
odology of capturing and visualising the sharing behaviour
of parallel applications. The stream of shared memory ref-
erences generated by the processors are analysed during
run-time and key parameters describing the sharing behav-
iour of the program are recorded.

5.2  Evaluation of new cache-coherence protocols

The CacheMire test bench is especially suitable to aid in
evaluation of new cache-coherence protocols and architec-
tures.

A number of link-based cache coherence protocols are
evaluated in [16]. One of them is a new tree-based protocol
presented in [17]. The minimal simulator in the CacheMire
test bench has been augmented with a generic contention
free network, which simulates accurate latency times, and
with processor caches which are kept coherent using one of
the evaluated cache-coherence protocols.

The relative performance differences of different net-
work bandwidths and latencies are evaluated for both a
write-invalidate and a write-update cache-coherence proto-
col in [13]. This study incorporated the augmentation of the
minimal simulator with the cache-coherence protocol of the
Stanford DASH multiprocessor (see Section 3). In contrast
to the study mentioned above, this memory system simula-
tor accurately simulates the effects of contention in the net-
work and memory modules.

5.3  Experiments with new processor architectures

A master’s thesis project at the department has dealt
with the design and evaluation of a non-blocking read algo-
rithm for a SPARC processor [12]. Normally, a processor
always stalls on a read-miss in the cache memory. This

project has used the CacheMire test bench to evaluate a
new proposal on how to avoid this problem.

5.4  Trace generation

The minimal simulator has been used in a couple of
projects for generating traces.

Cache-coherence protocols on slotted rings:A project
at the department of Electrical Engineering Systems at Uni-
versity of Southern California is performing an evaluation
of cache coherence protocols on a slotted ring. The evalua-
tion is based on detailed trace driven simulations of both
the cache coherence protocols and the ring interconnection.
A variety of cache coherence protocols and ring architec-
tures are investigated. The CacheMire test bench is used to
generate the traces in this study [3].

Instruction mix measurements: The single-processor
version of the CacheMire test bench has been used to meas-
ure the relative occurrences of instructions in ordinary
sequential programs such as TeX, Spice and GCC. The
information is used in the design and construction of a
highly-pipelined processor with a target clock frequency of
500 MHz or more [1].

6 Summary and conclusions

Program-driven simulators are much more flexible than
their execution-driven counterparts. They allow experi-
ments with different processor architectures in multiproces-
sor environments, and let the user control all parameters
such as processor cycle times and the number of outstand-
ing references to the memory system. They can also easily
be built portable to be used in multi-platform computer net-
works.

We have shown that with modern computing resources,
detailed program-driven simulation of multiprocessor
architectures is indeed a viable approach for performance
evaluations, in contrast to what has generally been believed.

We have in this paper described the CacheMire test
bench which is based on a program-driven simulator of a
shared memory multiprocessor. The performance of this
simulator compares well with the performance of Tango, an
execution-driven simulator developed and used at Stanford
University. When performing detailed simulation of mem-
ory systems, the time needed for interpretation of instruc-
tions, becomes a smaller issue compared to the need for
efficient simulation of the memory system itself.

The CacheMire test bench is particularly well suited to
be used in a computing environment with a network of
workstations because of its simplicity and portability. A
particular study often requires a series of experiments, and
in a networked environment each experiment can be sub-
mitted to different workstations thus achieving a high
degree of parallelism in the experiments.

The CacheMire test bench has been used in a number of
studies and has proved itself to be a powerful tool for per-
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formance evaluations. The test bench supplies the user with
a minimal simulator with no simulation of a memory sys-
tem. This has to be added by the user and can in its simplest
form consist of analytical computation of latency times.
Experiences from several research projects have shown that
it is easy to add a memory system to the minimal simulator.

In spite of the effectiveness of the CacheMire test bench
its main drawback is just the need for computational power.
Many interesting experiments are too time-consuming in
order to be practical to perform, e.g. experiments on operat-
ing systems. The solution to this is not other simulation
techniques such as execution-driven simulation. Rather will
the development of new high-performance and cost-effec-
tive computing resources lead to the feasibility of program-
driven simulation also in this area.
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