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Abstract

The breakthrough of pipelined microprocessors has brought
about a need to teach instruction pipeliningin electrical and
computer engineering curricula at the undergraduate level
to a considerable depth. Although the idea of pipeliningis
conceptually simple, students often find pipelining difficult
tovisualize. Only the most talented students assimilate the
ideas of how hazard issues are eliminated.

Based on the pedagogical approach used in the landmark
book “Computer Architecture—A Quantitative Approach”
by John Hennessy and David Patterson, we have developed
a graphical tool that uses animation and other graphica
techniquesto visualize how apipelined datapath and control
unit work. In this paper, we describe the graphical tool and
outlinealaboratory that makes use of it.

1 Introduction

The last decade has seen a tremendous performance im-
provement of microprocessors. Two factorsare responsible
for thisimprovement. First, semiconductor speed improve-
mentshaveincreased the performance. However, as pointed
out by Hennessy and Jouppi in [3], instruction pipeliningis
an equally important contributor to increased performance.

Higtorically, instruction pipelining has been used ever
since the IBM 360/91 [1] was announced back in the 60's.
Almost thirty years after, we see a new generation of ma-
chines that make heavy use of instruction pipelining such
as the recently announced DEC Alpha series [2]. Al-
though pipédining is not responsible for al performance
improvements—e.g. a suitable instruction set model must
be identified and an efficient memory hierarchy has to be
designed—it isdefinitely such an important contributor that
engineers haveto get anin-depth understandingin (i) why it
works(ii) what issuesit raises,and (iii) how apipelinecan be
constructed. We believethat it is not possibleto understand
the performance limitations of contemporary microproces-
sors, without carefully addressing the above issues.

About two years ago, Hennessy and Patterson issued the
landmark book in computer architecture [4]. It has pro-
vided studentsin computer architecture with a comprehen-
siveview of thequantitativeobservationsthat haveled tothe
breakthrough of pipelined microprocessors. It also presents
how ingtruction pipelines work by introducing the hazard
issues that al pipeline designers are faced with. This is
done in a systematic fashion by starting up with a simple
pipelinemodel based onthe DLX instruction set model, and
then introducingthefunctionality that isneeded to eliminate
various hazard problems step-by-step.

We have adopted the book here in Lund as amost any-
body else. Although the book is superb, students till find
it difficult to understand how pipelining works and the var-
ious techniques to eliminate hazards. In our experience, it
ismainly due to the lack of visudization of the parallelism
inherent in pipeining. We have found that having a graph-
ical tool that can show that parts of several instructionsare
executed in paralld is a key aspect of teaching al issues
related to instruction pipelining.

We have developed a graphical tool that, based on the hy-
pothetical instruction set model DLX [4], makes it possible
to study the paralld actionsinvolvedin apipelined datapath
and control unit. We have also successfully developed a
laboratory based on the tool that uses the same pedagogical
approach asin [4]. In thispaper, we report on the graphical
tool and how it is used to convey the most important aspects
of instruction pipdining.

In Section 2, we present the approach taken to teach in-
struction pipelining. In Section 3, we outline the capability
of the graphical ssmulator and the laboratory assignments.
In Section 4, we discuss theimplementation of thetool, and
in Section 5, we conclude the paper.

2 How Pipelining is Taught

Based on prerequisite courses in digital design and assem-
bly language programming for the Motorola68000 [5], the



goal of the computer architecture course in the undergrad-
uate curriculum in Lund is to teach the basic aspects that
are key to the performance improvements of contemporary
pipelined microcomputer systems. These are (i) instruc-
tion set models of pipelined microprocessors (ii) instruction
pipelining and hazard elimination techniques, and (iii) mem-
ory hierarchy design. We will only address (i) and (ii) in
this paper.

The above goal isachieved in a streamlined fashion. Stu-
dents are taught how one can achieve a high performance
by using instruction pipelining and its effects on the mem-
ory system design. Due to time constraints, students do not
learn about aternative microarchitecture design paradigms
such as microprogrammed control. This may result in a
biased view. However, in afollow-up course on advanced
computer architecture, based on Hennessy and Patterson’s
book [4], students learn about alternative microarchitecture
paradigms.

Inthecomputer architecturecourse, instructionpipeining
ismotivated and introduced by the following important five

steps:
1. Theinstruction set model of a RISC processor (DLX)
2. The pipdiningprinciple
3. Instruction pipelining
4. A pipelined datapath model
5. Design principles of pipelined datapaths

The first step is to introduce the instruction set model of
a pipelined microprocessor. This is done using the DLX.
Since students have experience with the M68000, it isim-
portant to show that the functionality of the instruction set
model of DLX is sufficient to implement the M68000 in-
struction set model. We especially point out the difference
between DLX and the M68000 with respect to the register
model, the addressing modes, and theinstructions. The bot-
tomlineisto show the studentsthat any M 68000 instruction
can be emulated by a sequence of DLX instructions. The
question is raised whether or not the register-register in-
struction paradigm will be shown to have atremendous per-
formance advantage over the memory-register instruction
paradigm (see Section 3.3in [4]).

Thesecond stepistoteach thegenera principleof pipein-
ing. Thisis done by the classical car assembly-line case-
study. First, studentsget aware of the potential speedup that
pipelining can provide. Second, the key aspects that make
pipelining work are identified. Especialy, students learn
that in order to take advantage of pipelining, there must
be provision to decompose an operation into a sequence of
suboperationsin such away that the suboperations imple-
ment the operationif they are performed inastrict sequence.

Also, the key to consider pipelining at all isthat thereisa
sequence of operationswith a sufficient length.

Having the general concepts of pipelining in mind, the
third step is to convince the students how al DLX integer
instructions can be decomposed into five generic suboper-
ations (corresponding to the five pipeline stages). Thisis
done by analyzing one instruction from each of the four
basic instruction groups. Load, Store, ALU, and Branch
instructions.

The fourth step aims at presenting the basic structure of
the DLX datapath which is shown in Figure 1. Thisisthe
point in time when they are exposed to theway weillustrate
a datapath here in Lund based on Werner-diagrams [6]—a
register-transfer notationwhereal latchesarelined upaong
a number of vertical lines and the computation is ordered
from left to right. Between two pipeline stages, thereis a
vertical dashed line. A box on a dashed lineis clocked by
the system clock (e.g. D-flipflops), as opposed to boxes be-
tween the vertical lineswhich perform computations based
on the state stored in the boxes on the vertical dashed lines.
For example, the ALU performs computation based on the
operandsthat appear at itsinputs. Note that functional units
between the clock lines need not necessarily be combina
tional. For example, the registerfile contains state although
it isnot necessarily clocked by the system clock. With this
basic datapath model, we show that the functional unitsare
sufficient to support the suboperations identified for DLX
instruction execution.

Finally, and thefocus of therest of the paper, thefifth step
isto study design principles of apipelined DLX implemen-
tation. Thisisachieved by using asimulation tool that step-
by-step introduces more functionality to the basic datapath
model using the same pedagogica approach asin Sections
6.1 through 6.4 in Hennessy and Patterson’s book [4]. In
the next section, we look at the graphical simulation tool to
accomplish thistask.

3 Graphical Tool and Laboratory

Based onagraphical simulationtool, wehavedevel opedtwo
four-hour laboratories that teach the most important aspects
of instruction pipelining, namely (i) why it provides a sig-
nificant performance improvement (ii) various techniques
to eliminate hazards, and (iii) implementation of pipeine
control. These aspects are taught using a series of models
adding more functionality to the datapath.

3.1 The Datapath Functionality

In Figure 2, we show the simplest model of the DLX datap-
ath that our tool supports. It consists of five pipeline stages
denoted IF (Instruction Fetch), ID (Instruction Decode), EX
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Figure 2: A simple datapath model for DLX.

(Execute), MEM (Memory access), and WB (Write Back
to registerfile). All functional units of the simple datapath
model of Figure 2 are shown as boxes between two vertical
lines. The followingfunctional unitsare the most important
ones. theregisterfile, the ALU, and a number of multiplex-
ers denoted MX1, MX4, MX5, and MX6. All thick arrows
denote 32-bit buses and their directions. For instance, since
there are two read ports in the registerfile, there are two
32-bit buses. Thelinein each multiplexer visualizes how it
is controlled. For example, MX4 connects the registerfile
withthe ALU, whereas M X5 connectsthe immediatein the
instruction with the ALU.

Thefirst experiment of the laboratory aims at understand-
ing that the functionality of the datapath is sufficient to
execute all DLX instructions by picking one instruction
from each of the instruction groups. Load, Store, ALU,
and Branch. Thisisused by alowing only asingleinstruc-

tion in the pipeline a a time, and carefully examining the
dataflow in the datapath caused by the instruction. The tool
has the capability to disable pipdiningto allow this.

The second experiment aims at showing the potential per-
formance improvement of instruction pipelining. An in-
struction sequencethat does not introduce any hazardsforms
the base for this experiment.

In order to visualize the paralelism associated with
pipelining, there isabox beneath each pipeline stage which
keeps the mnemonic of theinstruction that is currently exe-
cuted in this stage. For example, as shown in Figure 2, the
instructionadd r 1, r 2, r 3isinthelD-stage whereas the
instructionaddi r 3, r 0, #3 isinthe EX-stage. By click-
ing the Clock withthemouse, instructionsareforwarded one
step in the pipdine. As a result, the student can study the
partial computation taking placein each pipdinestage at the
same time thanks to the graphical and animated approach



we have chosen. The clocking schemeisalso nicely shown.
For example, as shown in Figure 2, by showing the contents
of the D-flipflops at the vertical lines, the students see that
the ALU-output (3) is not the same as the operand stored
in the D-flipflops a the line that separates the EX and the
MEM-stage (2).

To study the performance improvement gained by pipdlin-
ing, the number of elapsed cycles and the accumulated CPI
numbers are updated on each clock cycle. Using these
features, the student will see that instruction pipelining pro-
vides a potentia speedup of five times as compared to the
non-pipelined datapath.

3.2 DataHazards

The simple datapath model of Figure 2 is not capable of
eliminating data hazards. In the third experiment, the stu-
dent faces the problem of data hazards, by studying the
execution of the following code sequence:

addi r1,r0,#1
add r2,r1,r1
add r3,r1,r1l
add r4,r1,r1

Apparently, the student will notice that r2 and r 3 will
contain incorrect results and is asked to explain why. Heis
now motivated to see how this hazard can be eliminated by
means of bypassing logic, whichisillustrated by the second
model according to Figure 3.

Inthesecond model, we have augmented thesimplemodel
by functionality to bypass (or forward) register operands
from the EX-stage and MEM-stage to the ID-stage. This
model has been augmented by two multiplexersin the ID-
stage (MX2 and M X3) that can bypass data from the ALU-
output and from the MEM -stage (see Figure 3). Notethat a
register being written to can immediately be read.

The second model diminates the hazard in the above
instruction sequence, but it does not detect a data hazard
caused by a load instruction whose destination operand is
used by the subsequent instruction such as in the following
sequence:

lw r1,24(rQ)
add r2,r1,r1

In the fourth experiment, the student discovers that by-
passing alone does not solve the problem in this case by
discovering that r 2 will contain an incorrect result. At this
point, the notion of delayed load is introduced. It is pos-
sible to add the functionality needed to detect hazards due
to Load instructions by simply clicking the mouse on the
field denoted “Delayed Load” (see Figure 3). Doing this,

the pipeline gtals in the ID-stage when such a hazard is
detected.

3.3 Control Hazards

The second datapath model calculates the branch-target us-
ingthe ALU. Asaresult, there are three branch-delay dots.
In the fifth experiment, the student is asked to run the fol-
lowing code sequence to study control hazards:

| oop: addi r2,r2,#1
subi ri1,r1,#1
bnez r1,1 oop
add r3,r3,r2
add r4,r4,r2
add r5,r5,r2

According to the student’s experience with the M68000, he
discovers that the last three instructions “erroneoudy” will
be executed. To solvethe problem, it is possibleto stall the
pipelineuntil the branch target isknown by simply disabling
the “Delayed Branch” option. Of course, the student will
be disappointed to note that the problem is solved to the
expense of terrible performance | osses (as seen by the CPI).

The student isnow morethan motivatedto discover that to
the expense of an extraadder in the | D-stage, branch-target
calculation can bemoved earlier. Inthethird datapath model
according to Figure 4, thisadder isintroduced. The student
is now happy to see that performance losses due to control
hazards have been reduced considerably. This is because
the branch-target calculation is performed in the ID-stage
(and not by the ALU) by augmenting the previous model
by an adder (denoted ADD in Figure 4). In thismodd, we
also have augmented the datapath so that procedure cals
and returns can be handled.

Finally, the student is asked to summarize what factors
that are responsible for a non-ideal CPI of one. Thisisthe
introduction to simple instruction scheduling techniques.

3.4 Simplelnstruction Scheduling

Inthelast part of thislaboratory, simpleinstruction schedul -
ing techniques are taught. To illustrate how one can get rid
of performance losses due to delayed load, the following
instruction sequence is used:

| oop: Iwr3,28(r2)
add r1,r3,r1
subi r2,r2,#4
bnez r2,1 oop

nop

The student discovers that it is possible to swap the add
rl,r3,rl1 andsubi r2,r2,#4 insructionsto eimi-
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nate the load-delay slot.

To show how we can get rid of thelossesdueto branchin-
structions, the student is asked to enable the delayed-branch
option. By using the above sequence, the student discovers
that it is possible to move the add-instruction to the delay
dot. Asaresult, the student will be happy to see that the
CPl isnow idedl.

3.5 Implementing Pipeline Control

In order to teach how a control unit for a pipelined micro-
processor can be designed, thetool also supportsaview of a
control unitimplementation for DLX. In Figure4, the DLX
model is extended with parts of its control unit (the bottom
section of thefigure).

This view consists of two combinational logic devices,
in essence two PLAS, in the ID-stage denoted DECODE
and HAZARD. As the names reveal, the DECODE-PLA
decodes the instructions whereas the HAZARD-PLA de-
tects RAW-hazards and controls the bypassing multiplexer
MX2 and aso stalls the pipeline when a Load instruction
is responsible for the data hazard. This view aso shows
some important control signals in each stage in binary for-
mat. The student can use this model to design the PLAs
and debug them by executing instructionsand observing the
effectsintermsof ALU-operationsand multiplexer settings.
We use aregister-transfer languagefor expressing switching
functionsto specify the PLAs.

Inthe second four-hour laboratory, thestudent issupposed
to have understood the operation of the DLX datapath. The
goal of the second laboratory isto specify the combinational
parts (the DECODE and HAZRD PLAS) that implement the
pipeline contral.

As can be seen in Figure 4, the instruction word is shown
intheID-stage. Some of thefiddsarefed intothe DECODE
PLA. The student needsto specify the control in such away
that the control signals will be set correctly as the control
word is propagated along the pipeline. For example, in the
EX-stage, MX4, MX5, and the ALU control signals must
be set correctly.

Another aspect that is addressed in this laboratory is the
implementation of the hazard detection that is needed to
detect RAW hazards in the pipeline. Ascan beseenin Fig-
ure 4, the key part to understand is the necessity to transfer
the destination register identity along the pipdine stages.
For example, the destination register identity is taken from
the rd-field in the instruction word in Figure 4. To detect a
hazard, comparators that are part of the control architecture
check whether the destination register identitiesin the EX
and MEM-stage are the same as the source register identity
of the ID-stage. The control unit model displaysthe content
of the 5-bit destinationidentitiesin each stage. The students

are asked to specify control of the hazard-PLA that controls
multiplexer MX2 and the pipeline stall-function.

4 Implementation of the Tool

The simulation tool consists of two parts-the simulator en-
gineand theuser interface. The engineisaregister-transfer
model of the DLX architecture in which all control signals
are modeled. Thisisimportant in order to study the design
of the combinational devices that implement the contral.
The user interface is implemented using X-window wid-
gets. The time spent to implement this tool was about two
man months.

5 Concluding Remarks

We have designed a graphical tool that makes it possibleto
visualizethe parallelism associated with instruction pipelin-
ing and the hazard issues by means of animation and graph-
ics capabilities. Also, the tool provides an effective envi-
ronment to study theimplementation of control unitsthanks
to its capability to display the dataflow in the pipeline in
terms of multiplexer settingsand ALU functions.

We have outlined the functions of thetool. We have aso
presented how the tool is used in two 4-hour |aboratories
and the pedagogica approach which is based on the text-
book “Computer Architecture—A Quantitative Approach”
by John Hennessy and David Patterson. Thanks to these
authors we have eventualy all pieces in place to success-
fully teach the most important aspects of pipelined processor
design.
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