
Using Graphics and Animation to Visualize
Instruction Pipelining and its Hazards

Per Stenström, Håkan Nilsson, and Jonas Skeppstedt

Department of Computer Engineering, Lund University
P.O. Box 118, S-221 00 LUND, Sweden

Abstract

The breakthrough of pipelined microprocessors has brought
about a need to teach instruction pipelining in electrical and
computer engineering curricula at the undergraduate level
to a considerable depth. Although the idea of pipelining is
conceptually simple, students often find pipelining difficult
to visualize. Only the most talented students assimilate the
ideas of how hazard issues are eliminated.

Based on the pedagogical approach used in the landmark
book “Computer Architecture—A Quantitative Approach”
by John Hennessy and David Patterson, we have developed
a graphical tool that uses animation and other graphical
techniques to visualize how a pipelined datapath and control
unit work. In this paper, we describe the graphical tool and
outline a laboratory that makes use of it.

1 Introduction

The last decade has seen a tremendous performance im-
provement of microprocessors. Two factors are responsible
for this improvement. First, semiconductor speed improve-
ments have increased the performance. However, as pointed
out by Hennessy and Jouppi in [3], instruction pipelining is
an equally important contributor to increased performance.

Historically, instruction pipelining has been used ever
since the IBM 360/91 [1] was announced back in the 60’s.
Almost thirty years after, we see a new generation of ma-
chines that make heavy use of instruction pipelining such
as the recently announced DEC Alpha series [2]. Al-
though pipelining is not responsible for all performance
improvements—e.g. a suitable instruction set model must
be identified and an efficient memory hierarchy has to be
designed—it is definitely such an important contributor that
engineers have to get an in-depth understanding in (i) why it
works (ii) what issues it raises,and (iii) how a pipeline can be
constructed. We believe that it is not possible to understand
the performance limitations of contemporary microproces-
sors, without carefully addressing the above issues.

About two years ago, Hennessy and Patterson issued the
landmark book in computer architecture [4]. It has pro-
vided students in computer architecture with a comprehen-
sive view of the quantitativeobservations that have led to the
breakthrough of pipelined microprocessors. It also presents
how instruction pipelines work by introducing the hazard
issues that all pipeline designers are faced with. This is
done in a systematic fashion by starting up with a simple
pipeline model based on the DLX instruction set model, and
then introducing the functionality that is needed to eliminate
various hazard problems step-by-step.

We have adopted the book here in Lund as almost any-
body else. Although the book is superb, students still find
it difficult to understand how pipelining works and the var-
ious techniques to eliminate hazards. In our experience, it
is mainly due to the lack of visualization of the parallelism
inherent in pipelining. We have found that having a graph-
ical tool that can show that parts of several instructions are
executed in parallel is a key aspect of teaching all issues
related to instruction pipelining.

We have developed a graphical tool that, based on the hy-
pothetical instruction set model DLX [4], makes it possible
to study the parallel actions involved in a pipelined datapath
and control unit. We have also successfully developed a
laboratory based on the tool that uses the same pedagogical
approach as in [4]. In this paper, we report on the graphical
tool and how it is used to convey the most important aspects
of instruction pipelining.

In Section 2, we present the approach taken to teach in-
struction pipelining. In Section 3, we outline the capability
of the graphical simulator and the laboratory assignments.
In Section 4, we discuss the implementation of the tool, and
in Section 5, we conclude the paper.

2 How Pipelining is Taught

Based on prerequisite courses in digital design and assem-
bly language programming for the Motorola 68000 [5], the



goal of the computer architecture course in the undergrad-
uate curriculum in Lund is to teach the basic aspects that
are key to the performance improvements of contemporary
pipelined microcomputer systems. These are (i) instruc-
tion set models of pipelined microprocessors (ii) instruction
pipelining and hazard elimination techniques,and (iii) mem-
ory hierarchy design. We will only address (i) and (ii) in
this paper.

The above goal is achieved in a streamlined fashion. Stu-
dents are taught how one can achieve a high performance
by using instruction pipelining and its effects on the mem-
ory system design. Due to time constraints, students do not
learn about alternative microarchitecture design paradigms
such as microprogrammed control. This may result in a
biased view. However, in a follow-up course on advanced
computer architecture, based on Hennessy and Patterson’s
book [4], students learn about alternative microarchitecture
paradigms.

In the computer architecture course, instructionpipelining
is motivated and introduced by the following important five
steps:

1. The instruction set model of a RISC processor (DLX)

2. The pipelining principle

3. Instruction pipelining

4. A pipelined datapath model

5. Design principles of pipelined datapaths

The first step is to introduce the instruction set model of
a pipelined microprocessor. This is done using the DLX.
Since students have experience with the M68000, it is im-
portant to show that the functionality of the instruction set
model of DLX is sufficient to implement the M68000 in-
struction set model. We especially point out the difference
between DLX and the M68000 with respect to the register
model, the addressing modes, and the instructions. The bot-
tom line is to show the students that any M68000 instruction
can be emulated by a sequence of DLX instructions. The
question is raised whether or not the register-register in-
struction paradigm will be shown to have a tremendous per-
formance advantage over the memory-register instruction
paradigm (see Section 3.3 in [4]).

The second step is to teach the general principle of pipelin-
ing. This is done by the classical car assembly-line case-
study. First, students get aware of the potential speedup that
pipelining can provide. Second, the key aspects that make
pipelining work are identified. Especially, students learn
that in order to take advantage of pipelining, there must
be provision to decompose an operation into a sequence of
suboperations in such a way that the suboperations imple-
ment the operation if they are performed in a strict sequence.

Also, the key to consider pipelining at all is that there is a
sequence of operations with a sufficient length.

Having the general concepts of pipelining in mind, the
third step is to convince the students how all DLX integer
instructions can be decomposed into five generic suboper-
ations (corresponding to the five pipeline stages). This is
done by analyzing one instruction from each of the four
basic instruction groups: Load, Store, ALU, and Branch
instructions.

The fourth step aims at presenting the basic structure of
the DLX datapath which is shown in Figure 1. This is the
point in time when they are exposed to the way we illustrate
a datapath here in Lund based on Werner-diagrams [6]—a
register-transfer notation where all latches are lined up along
a number of vertical lines and the computation is ordered
from left to right. Between two pipeline stages, there is a
vertical dashed line. A box on a dashed line is clocked by
the system clock (e.g. D-flipflops), as opposed to boxes be-
tween the vertical lines which perform computations based
on the state stored in the boxes on the vertical dashed lines.
For example, the ALU performs computation based on the
operands that appear at its inputs. Note that functional units
between the clock lines need not necessarily be combina-
tional. For example, the registerfile contains state although
it is not necessarily clocked by the system clock. With this
basic datapath model, we show that the functional units are
sufficient to support the suboperations identified for DLX
instruction execution.

Finally, and the focus of the rest of the paper, the fifth step
is to study design principles of a pipelined DLX implemen-
tation. This is achieved by using a simulation tool that step-
by-step introduces more functionality to the basic datapath
model using the same pedagogical approach as in Sections
6.1 through 6.4 in Hennessy and Patterson’s book [4]. In
the next section, we look at the graphical simulation tool to
accomplish this task.

3 Graphical Tool and Laboratory

Based on a graphical simulation tool, we have developed two
four-hour laboratories that teach the most important aspects
of instruction pipelining, namely (i) why it provides a sig-
nificant performance improvement (ii) various techniques
to eliminate hazards, and (iii) implementation of pipeline
control. These aspects are taught using a series of models
adding more functionality to the datapath.

3.1 The Datapath Functionality

In Figure 2, we show the simplest model of the DLX datap-
ath that our tool supports. It consists of five pipeline stages
denoted IF (Instruction Fetch), ID (Instruction Decode), EX



IF ID EX MEM WB

Register
file

PC +4

IR

ALU

Control

Datapath

Figure 1: The functional units of the DLX datapath.

Figure 2: A simple datapath model for DLX.

(Execute), MEM (Memory access), and WB (Write Back
to registerfile). All functional units of the simple datapath
model of Figure 2 are shown as boxes between two vertical
lines. The following functional units are the most important
ones: the registerfile, the ALU, and a number of multiplex-
ers denoted MX1, MX4, MX5, and MX6. All thick arrows
denote 32-bit buses and their directions. For instance, since
there are two read ports in the registerfile, there are two
32-bit buses. The line in each multiplexer visualizes how it
is controlled. For example, MX4 connects the registerfile
with the ALU, whereas MX5 connects the immediate in the
instruction with the ALU.

The first experiment of the laboratory aims at understand-
ing that the functionality of the datapath is sufficient to
execute all DLX instructions by picking one instruction
from each of the instruction groups: Load, Store, ALU,
and Branch. This is used by allowing only a single instruc-

tion in the pipeline at a time, and carefully examining the
dataflow in the datapath caused by the instruction. The tool
has the capability to disable pipelining to allow this.

The second experiment aims at showing the potential per-
formance improvement of instruction pipelining. An in-
struction sequence that does not introduce any hazards forms
the base for this experiment.

In order to visualize the parallelism associated with
pipelining, there is a box beneath each pipeline stage which
keeps the mnemonic of the instruction that is currently exe-
cuted in this stage. For example, as shown in Figure 2, the
instructionadd r1,r2,r3 is in the ID-stage whereas the
instructionaddi r3,r0,#3 is in the EX-stage. By click-
ing the Clock with the mouse, instructions are forwarded one
step in the pipeline. As a result, the student can study the
partial computation taking place in each pipeline stage at the
same time thanks to the graphical and animated approach



we have chosen. The clocking scheme is also nicely shown.
For example, as shown in Figure 2, by showing the contents
of the D-flipflops at the vertical lines, the students see that
the ALU-output (3) is not the same as the operand stored
in the D-flipflops at the line that separates the EX and the
MEM-stage (2).

To study the performance improvement gained by pipelin-
ing, the number of elapsed cycles and the accumulated CPI
numbers are updated on each clock cycle. Using these
features, the student will see that instruction pipelining pro-
vides a potential speedup of five times as compared to the
non-pipelined datapath.

3.2 Data Hazards

The simple datapath model of Figure 2 is not capable of
eliminating data hazards. In the third experiment, the stu-
dent faces the problem of data hazards, by studying the
execution of the following code sequence:

addi r1,r0,#1
add r2,r1,r1
add r3,r1,r1
add r4,r1,r1

Apparently, the student will notice that r2 and r3 will
contain incorrect results and is asked to explain why. He is
now motivated to see how this hazard can be eliminated by
means of bypassing logic, which is illustrated by the second
model according to Figure 3.

In the second model, we have augmented the simple model
by functionality to bypass (or forward) register operands
from the EX-stage and MEM-stage to the ID-stage. This
model has been augmented by two multiplexers in the ID-
stage (MX2 and MX3) that can bypass data from the ALU-
output and from the MEM-stage (see Figure 3). Note that a
register being written to can immediately be read.

The second model eliminates the hazard in the above
instruction sequence, but it does not detect a data hazard
caused by a load instruction whose destination operand is
used by the subsequent instruction such as in the following
sequence:

lw r1,24(r0)
add r2,r1,r1

In the fourth experiment, the student discovers that by-
passing alone does not solve the problem in this case by
discovering that r2 will contain an incorrect result. At this
point, the notion of delayed load is introduced. It is pos-
sible to add the functionality needed to detect hazards due
to Load instructions by simply clicking the mouse on the
field denoted “Delayed Load” (see Figure 3). Doing this,

the pipeline stalls in the ID-stage when such a hazard is
detected.

3.3 Control Hazards

The second datapath model calculates the branch-target us-
ing the ALU. As a result, there are three branch-delay slots.
In the fifth experiment, the student is asked to run the fol-
lowing code sequence to study control hazards:

loop: addi r2,r2,#1
subi r1,r1,#1
bnez r1,loop
add r3,r3,r2
add r4,r4,r2
add r5,r5,r2

According to the student’s experience with the M68000, he
discovers that the last three instructions “erroneously” will
be executed. To solve the problem, it is possible to stall the
pipeline until the branch target is known by simply disabling
the “Delayed Branch” option. Of course, the student will
be disappointed to note that the problem is solved to the
expense of terrible performance losses (as seen by the CPI).

The student is now more than motivated to discover that to
the expense of an extra adder in the ID-stage, branch-target
calculation can be moved earlier. In the third datapath model
according to Figure 4, this adder is introduced. The student
is now happy to see that performance losses due to control
hazards have been reduced considerably. This is because
the branch-target calculation is performed in the ID-stage
(and not by the ALU) by augmenting the previous model
by an adder (denoted ADD in Figure 4). In this model, we
also have augmented the datapath so that procedure calls
and returns can be handled.

Finally, the student is asked to summarize what factors
that are responsible for a non-ideal CPI of one. This is the
introduction to simple instruction scheduling techniques.

3.4 Simple Instruction Scheduling

In the last part of this laboratory, simple instruction schedul-
ing techniques are taught. To illustrate how one can get rid
of performance losses due to delayed load, the following
instruction sequence is used:

loop: lw r3,28(r2)
add r1,r3,r1
subi r2,r2,#4
bnez r2,loop
nop

The student discovers that it is possible to swap the add
r1,r3,r1 and subi r2,r2,#4 instructions to elimi-



Figure 3: Extending the datapath model to support bypassing.

Figure 4: Extending the datapath model to reduce control hazards (upper section) and the control architecture (bottom
section).



nate the load-delay slot.

To show how we can get rid of the losses due to branch in-
structions, the student is asked to enable the delayed-branch
option. By using the above sequence, the student discovers
that it is possible to move the add-instruction to the delay
slot. As a result, the student will be happy to see that the
CPI is now ideal.

3.5 Implementing Pipeline Control

In order to teach how a control unit for a pipelined micro-
processor can be designed, the tool also supports a view of a
control unit implementation for DLX. In Figure 4, the DLX
model is extended with parts of its control unit (the bottom
section of the figure).

This view consists of two combinational logic devices,
in essence two PLAs, in the ID-stage denoted DECODE
and HAZARD. As the names reveal, the DECODE-PLA
decodes the instructions whereas the HAZARD-PLA de-
tects RAW-hazards and controls the bypassing multiplexer
MX2 and also stalls the pipeline when a Load instruction
is responsible for the data hazard. This view also shows
some important control signals in each stage in binary for-
mat. The student can use this model to design the PLAs
and debug them by executing instructions and observing the
effects in terms of ALU-operations and multiplexer settings.
We use a register-transfer language for expressing switching
functions to specify the PLAs.

In the second four-hour laboratory, the student is supposed
to have understood the operation of the DLX datapath. The
goal of the second laboratory is to specify the combinational
parts (the DECODE and HAZRD PLAs) that implement the
pipeline control.

As can be seen in Figure 4, the instruction word is shown
in the ID-stage. Some of the fields are fed into the DECODE
PLA. The student needs to specify the control in such a way
that the control signals will be set correctly as the control
word is propagated along the pipeline. For example, in the
EX-stage, MX4, MX5, and the ALU control signals must
be set correctly.

Another aspect that is addressed in this laboratory is the
implementation of the hazard detection that is needed to
detect RAW hazards in the pipeline. As can be seen in Fig-
ure 4, the key part to understand is the necessity to transfer
the destination register identity along the pipeline stages.
For example, the destination register identity is taken from
the rd-field in the instruction word in Figure 4. To detect a
hazard, comparators that are part of the control architecture
check whether the destination register identities in the EX
and MEM-stage are the same as the source register identity
of the ID-stage. The control unit model displays the content
of the 5-bit destination identities in each stage. The students

are asked to specify control of the hazard-PLA that controls
multiplexer MX2 and the pipeline stall-function.

4 Implementation of the Tool

The simulation tool consists of two parts–the simulator en-
gine and the user interface. The engine is a register-transfer
model of the DLX architecture in which all control signals
are modeled. This is important in order to study the design
of the combinational devices that implement the control.
The user interface is implemented using X-window wid-
gets. The time spent to implement this tool was about two
man months.

5 Concluding Remarks

We have designed a graphical tool that makes it possible to
visualize the parallelism associated with instruction pipelin-
ing and the hazard issues by means of animation and graph-
ics capabilities. Also, the tool provides an effective envi-
ronment to study the implementation of control units thanks
to its capability to display the dataflow in the pipeline in
terms of multiplexer settings and ALU functions.

We have outlined the functions of the tool. We have also
presented how the tool is used in two 4-hour laboratories
and the pedagogical approach which is based on the text-
book “Computer Architecture—A Quantitative Approach”
by John Hennessy and David Patterson. Thanks to these
authors we have eventually all pieces in place to success-
fully teach the most important aspects of pipelined processor
design.

References

[1] D. W. Anderson, F. J. Sparacio, and F. M. Tomasulo. The
IBM/360 Model 91: Machine Philosophy and Instruction-
Handling. IBM Journal, 11:8–24, 1967.

[2] R. Commerford. How DEC Developed Alpha. IEEE Spec-
trum, 29(7):26–31, July 1992.

[3] John L. Hennessy and Norman P. Jouppi. Computer Technol-
ogy and Architecture: An Evolving Interaction. IEEE Com-
puter, 24(9):18–29, 1991.

[4] John L. Hennessy and David A. Patterson. Computer
Architecture—A Quantitative Approach. Morgan Kaufmann
Publishers, 1991.

[5] Per O. Stenstrom. 68000 Microcomputer Organization and
Programming. Prentice-Hall, 1992.

[6] Bengt Werner et al. Werner Diagrams—Visual Aid for De-
sign of Synchronous Systems. Technical report, Department
of Computer Engineering, Lund University, Sweden, August
1992.


