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Abstract
The cost, complexity, and inflexibility of hardware-based directory
protocols motivate us to study the performance implications of
protocols that emulate directory management using software han-
dlers executed on the compute processors. An important perfor-
mance limitation of such software-only protocols is that software
latency associated with directory management ends up on the crit-
ical memory access path for read miss transactions. We propose
five strategies that support efficient data transfers in hardware
whereas directory management is handled at a slower pace in the
background by software handlers. Simulations show that this
approach can remove the directory-management latency from the
memory access path. Whereas the directory is managed in soft-
ware, the hardware mechanisms must access the memory state in
order to enable data transfers at a high speed. Overall, our strate-
gies reach between 60% and 86% of the hardware-based protocol
performance.

1 Introduction

Private caches in conjunction with a directory-based cache coher-
ence protocol have been used in shared-memory multiprocessor
designs such as the Stanford DASH [14] to achieve high perfor-
mance. The mechanisms needed to support a directory-based pro-
tocol include a protocol engine in each cache and in each memory
module. Associated with the protocol engine in the memory mod-
ule is a directory that keeps track of each copy of a shared memory
block. As demonstrated by the DASH design, the hardware cost
and complexity of this memory-protocol engine and the associated
directory contribute significantly to the total logic overhead in a
processing node. Furthermore, since the protocol is hard-wired,
flexibility in its design and optimization is not provided. Recent
efforts have addressed these concerns by migrating the entire pro-
tocol-engine functionality, or parts of it, to software handlers exe-
cuted on a microprocessor.

In the Stanford FLASH [10] and the Wisconsin Typhoon [15]
design efforts, the approach is to emulate the memory-protocol
engine by software handlers on a dedicated protocol processor. In
FLASH, for example, a special-purpose protocol processor called
MAGIC is designed to support a range of protocols including mes-
sage-passing primitives. Clearly, flexibility is met whereas the
introduction of an extra processor apparently is costly. A more rad-
ical approach has been taken in the MIT Alewife machine [1] and

in Cooperative Shared Memory [12] where the memory-protocol
engine uses a limited directory organization with a fixed number of
hardware pointers per memory block. When a pointer overflow
occurs, the compute processor extends the functionality of the pro-
tocol to a full-map protocol by handling coherence actions by soft-
ware handlers [5]; hence, this protocol class is calledsoftware-
extended protocols[6].

Chaiken and Agarwal [6] evaluate a spectrum of software-
extended protocols with respect to performance and cost ranging
from software-only protocols that emulate directory management
entirely in software on the compute processor to protocols with up
to five pointers in hardware which means that the software handler
is only executed when more than five copies exist. By comparing
the performances of these protocols with a hardware-only imple-
mentation of a full-map protocol they find that the single hard-
ware-pointer scheme does comparably well with the hardware-
only protocol; it reaches between 42% and 100% of the perfor-
mance of the hardware-only protocol. On the other hand, while the
software-only protocol is the cheapest solution, they show that its
performance is significantly lower than the single pointer-scheme.

In this paper, we study the reasons for performance limitations
of software-only protocols and identify in the process several strat-
egies that can enhance their performances significantly in the con-
text of cache-coherent NUMA architectures with write-invalidate
protocols. We have found that when a processor triggers a miss or
an ownership acquisition, the latency these transactions involve
are dominated by the software latency associated with directory
management. In other words, the software emulation of the direc-
tory appears on the critical memory access path. To remove this
devastating latency component, we propose to overlap it with the
inter-node transaction latencies. Our approach is to use efficient
hardware-based data transfer mechanisms and then let the compute
processor handle the directory at a slower pace in the background.

In order to justify our approach from a performance perspective,
we compare the performance of our software-only protocol strate-
gies with that of a hardware-only protocol using architectural sim-
ulations and four parallel applications. We find that for two of the
applications, the overall effect of our strategies is that the soft-
ware-only protocol performance is more than 85% of the hard-
ware-only protocol performance. Whereas the performance for one
of the applications (MP3D from SPLASH [16]) is only 60% of that
of the hardware-only protocol, this application suffers from a dev-
astating miss rate for the hardware-only protocol as well. We show
that our approach of overlapping directory management with miss
handling effectively removes the software handler execution time
from the critical memory access path for read-miss transactions.
Moreover, we also find that relaxing the memory consistency
model is as effective for software-only protocols as for hardware-



only protocols to hide the latency associated with ownership
acquisition.

As for the rest of the paper, we present in the next section our
architectural framework and the baseline hardware-only and soft-
ware-only protocols we simulate. This also serves as a motivation
for the improvement strategies of the software-only directory pro-
tocols we propose in Section 3. In Sections 4 and 5, we present our
experimental methodology and results from our simulations.
Finally, we conclude the study in Section 6.

2 HW-Only and SW-Only Directory Protocols

Our architectural framework consists of a cache-coherent non-uni-
form memory access (CC-NUMA) architecture with a write-inval-
idate directory cache coherence protocol. We start in Section 2.1
by describing the architectural framework and the write-invalidate
protocol we use in our simulations. This framework is identical for
all our simulated hardware-only and software-only protocols. We
continue in Sections 2.2 and 2.3 with the specific functionality of
the hardware-only and of the software-only directory protocols,
respectively, which are used as baselines in the rest of the paper.
We only discuss the protocol engines associated with the memory
modules; the cache-protocol engines are identical for the two types
of protocols.

2.1  The Baseline Architecture and Cache Protocol

The processor nodes, whose organization appears in Figure 1, are
interconnected by a network. A processor node consists of a pro-
cessor with a two-level cache hierarchy and associated write buff-
ers with a similar organization as many contemporary micro-
processors such as the MIPS R10000 and the PowerPC 620. The
cache hierarchy is interfaced to the local portion of the shared
memory and the network by a node controller according to Figure
1. The first-level cache (FLC) is a write-through on-chip cache
whereas the second-level cache (SLC) is a copy-back cache. In
order to support relaxed memory consistency and prefetching,

whose effects we study to some extent, we assume that theSLC is
lockup-free. Both caches are direct-mapped and have the same line
sizes. Thus full inclusion is supported; if a block is present in the
FLC it is also present in theSLC. TheSLC controller is on-chip as
in, e.g., the MIPS R10000. TheSLC controller implements the
cache-protocol engine of the write-invalidate coherence protocol
and can invalidate a block in theFLC in order to maintain consis-
tency. The processor node supports any memory consistency
model. By default, we assume sequential consistency and blocks
the processor on each shared data access until it has completed. We
will also show results under release consistency [8] and will then
assume the full functionality of the lockup-free capability of the
SLC.

The task of the node controller in Figure 1 is to route messages
to and from the network and inside the node. Regardless of
whether the directory is managed by hardware or software mecha-
nisms, the node controller is also responsible for collecting invali-
dation acknowledgments and notifying the memory-protocol
engine when the last acknowledgment has arrived. We do this
because it was identified as a key mechanism for software-
extended protocols in [6] which would otherwise result in as many
interrupts as the number of acknowledgments.

When describing the write-invalidate protocol, we will refer to
the node where the page containing the block is allocated ashome;
local as the node from which the request originated; and finally,
remote as any other node involved in a coherence action. In our
write-invalidate protocol, the stable states of a memory block are
clean anddirty. The memory block can also be in a transient state
as a result of pending protocol transactions. Read-miss and owner-
ship requests to transient memory blocks are forced to be retried as
in the DASH [14]. Moreover, a directory keeps track of the copies
of the memory block. The protocol actions, which are similar to
those of the Censier and Feautrier protocol [4], are as follows.

Processor reads that miss in theSLC are sent to home. If the
memory block is clean, the miss is immediately serviced by home
which records local in the directory. By contrast, if the block is
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dirty, home forwards the request to remote; remote writes the
block back to home; and finally, home returns the block to local
resulting in as many as four cache-memory transactions to service
the read miss if local, home, and remote are different nodes. Dur-
ing the time home has forwarded the request to remote until the
block is written back to home, the block is in a transient state and
marked as busy. Then, the block becomes clean.

A processor write to anSLC copy that is not exclusive forces an
ownership request to be sent to home. Home sends explicit invali-
dations to each cache with a block copy according to the contents
of the directory. When a cache gets an invalidation, it invalidates
its local copy of the block and sends an acknowledgment back to
home. When home has received all acknowledgments, it grants
ownership to local. The block is in a transient state and marked as
busy when invalidations are pending until all acknowledgments
have arrived at home after which the block becomes dirty.

2.2  Mechanisms for a Hardware-Only Protocol

We now review the mechanisms a hardware-only implementation
must provide in the memory-protocol engine to support the write-
invalidate directory protocol presented in the previous section. The
memory-protocol engine is located at the memory in Figure 1 and
interfaces to the network and to the local cache via the node con-
troller.

The memory-protocol engine conceptually consists of three
parts: the directory, the state memory, and the memory controller.
Although other directory organizations are possible in a hardware-
only directory protocol, we simulate a full-map protocol imple-
mented by presence-flag vectors according to Censier and
Feautrier [4] that containN bits for each memory block, assuming
N nodes. The state memory encodes the state of each memory
block and in our simulated hardware-only protocol three bits are
associated with each block.

Finally, the memory controller implements the coherence proto-
col actions of the memory-protocol engine. This controller typi-
cally processes an incoming request by carrying out the following
tasks: it decodes the message; it performs a directory and state-
lookup; it composes new messages; and it sends messages to other
nodes. In reality, a fair engineering effort is required to correctly
implement the controller and ascertain that all corner cases are
covered. In addition, the hardware resources to implement the
memory-protocol engine can be quite substantive; in the DASH
prototype, for example, the logic overhead of the memory-protocol
engine is about 20% for a similar hardware-only directory
protocol [14]. This motivates us to migrate the directory manage-
ment to software handlers which we study next.

2.3  Mechanisms for a Software-Only Protocol

Software-only protocols as introduced by Chaiken and
Agarwal [6] refer to a class of protocols where all coherence
requests incoming to home are carried out by software handlers
executing on the compute processor. More specifically, using the
notation in [6] we focus onDirnH0SWNB,LACK whereDirn means
that the system can keep track ofn (the number of nodes) copies of
a memory block;H0 means that there are no directory pointers
maintained in hardware; finally,SWNB,LACK means a software-
extended protocol with no broadcast on directory overflow and
where invalidation acknowledgments are collected by a hardware
counter and the last acknowledgment interrupts the processor. This
extreme variation of a software-extended protocol is particularly

attractive from a hardware viewpoint because the whole memory-
protocol engine discussed in the previous section is now emulated
by software handlers.

We now review how the software-only protocol fits in the archi-
tectural framework by considering the basic processor node orga-
nization in Figure 1. Since all coherence requests are taken care of
by software handlers on the compute processor, the directory and
state bits for each memory block discussed for the hardware-only
protocol in the previous section can now be allocated in the mem-
ory. More importantly, the hard-wired memory controller for the
hardware-only protocol is replaced by software handlers.

To enable the emulation of the protocol actions, however,
requires some functionality and organizational modifications as
compared to a hardware-only protocol. First, the processor must
support a low-level interrupt mechanism that can rapidly switch
between program execution and protocol execution. Second, an
Interrupt Buffer (IB) (shaded in Figure 1) is needed to buffer
incoming coherence request. When a coherence request is present,
the compute processor is interrupted and executes the correspond-
ing software handler. Active messages [18] can be used to rapidly
select which coherence routine the processor will execute. IB is
interfaced to the second-level cache bus as proposed in [11], i.e., it
has the same access time as the second-level cache and the first
request in IB is accessible through memory-mapped addresses. In
addition, a Send Buffer (SB) that is interfaced to the second-level
cache bus in the same way as IB allows the processor to efficiently
send messages in response to coherence requests.

Another issue is that the need for high-availability interrupts in a
software-only protocol opens up the window of vulnerability [13].
At the time a block is loaded into the cache as a result of a cache
miss, the processor may be busy executing protocol actions. As a
result, there is a time window in which the cache block might be
invalidated before the processor starts accessing it which may trig-
ger a livelock situation that prevents forward progress. Several
methods to close this window are proposed in [13]. We have not
addressed this issue but note that it must be done in a real imple-
mentation.

In summary, we note that the memory-protocol engine can now
be managed in software, and thus there is a potential to avoid a
complex, hard-wired memory-protocol engine. However, proces-
sors must support a fast mechanism to switch between normal exe-
cution and software handler execution. In addition, to justify the
software-only approach, the performance must not be significantly
lower than the performance of a hardware-only protocol. Although
a software-only protocol as presented in this section incurs the
overhead of the protocol execution, we will in the next section
develop intuition how we can remove parts of it by devoting hard-
ware resources to performance-critical operations.

3 Improving Software-Only Protocols

We start in Section 3.1 with a simple performance model of how
coherence actions are handled in the baseline software-only proto-
col. This serves as a motivation for a range of optimization strate-
gies that we propose in Sections 3.2 through 3.6. The strategies we
consider assume various degrees of hardware support and our pur-
pose is to identify what support that makes most sense perfor-
mance-wise.



3.1  A Simple Performance Model

To build intuition as to what limits the performance of a software-
only protocol, we will develop a simple performance model of the
execution time of a parallel program in the context of the baseline
software-only protocol. Besides the time each processor spends
executing the application code, thebusy time, the processor is
sometimes stalled because of read misses, ownership acquisitions,
and synchronization operations, referred to asread stall time, write
stall time, andsynchronization stall time, respectively. These stall
time components also show up in a hardware-only protocol but are
longer in a software-only protocol. Moreover, the execution time
will also be longer in a software-only protocol due to the software-
handler execution of requests coming from other processor nodes.
However, let us first concentrate on the stall time components.

In Figure 2 we show the latencies involved in a read-miss trans-
action to a dirty memory block in a scenario where local, home,
and remote are different nodes. A read miss to a dirty block incurs
the latency of four network hops (Net) plus the latency of two han-
dler executions at the home node (Prot1 andProt2) plus the time
to retrieve the block from the remote cache (C2). By contrast, the
times corresponding toProt1 andProt2 in the memory-protocol
engine of the hardware-only protocol are negligible. Clearly, if the
number of handler invocations can be reduced or if they can be
carried out in parallel with the message transmission over the net-
work, Prot1 andProt2 can be removed from the critical memory-
access path. The strategies presented in Sections 3.2-3.6 aim at
doing so.

Like the read stall time, the write stall time incurs similar com-
ponents as in Figure 2. However, since the processor in the home
node has to do a directory lookup in order to send invalidations, it
is more difficult to removeProt1 andProt2 from the critical path.
Therefore, other techniques to cut the write stall time have to be
used and we will specifically study the effects of relaxed memory
consistency models.

Even if it is possible to removeProt1 andProt2 from the mem-
ory access path of all memory accesses, they can show up as over-
head on the compute processors. However, protocol execution can
potentially be hidden if the compute processor is only interrupted
when it is stalled due to a read miss, an ownership, or a synchroni-
zation request. We will study in detail to what extent this happens
in detail in Section 5.

3.2  State-Memory Lookup

Independent of the coherence action at home, the software handler
always does a state lookup in memory. Moreover, when a memory
block is busy, which can be derived directly from the state bits, the
sole task of the software handler is to return a retry message. By
supporting these common case operations in the node controller,
Prot1 andProt2 in Figure 2 can be reduced by the time of state

Figure 2: Timing of a read miss to a dirty memory block.
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memory access and, in case of busy memory blocks, by the time to
send a retry message. Moreover, as we will see in the following
sections, this strategy enables other strategies.

The extra functionality needed for the state lookup strategy is as
follows. The node controller must have access to the state of a
memory block. An approach to simplify the memory mapping of
the memory-block states is to use a separate state memory besides
the main memory. To check whether a block is in a transient state,
the node controller only needs to look at one bit in the state of a
block, thebusy-bit, given that the states are coded in an appropri-
ate way. Since the node controller already routes and sends mes-
sages, it can send retries with virtually no extra functionality. We
refer to this strategy asSW-1.

3.3  Reducing Software Latency of Dirty Misses

Once we have incorporated an explicit state memory and the func-
tionality to decode the state bits as in the previous section, further
enhancements of the node controller can have dramatic effects on
the processor stall time components. One strategy is to let the node
controller forward read and write requests to dirty memory blocks
directly to remote without interrupting the processor which poten-
tially removesProt1 in Figure 2 from the stall time incurred by
dirty misses.

To support this strategy, the node controller must be capable of
reading and writing the first word in a block frame in memory and
change the state bits. When forwarding a request, the node control-
ler inspects the clean/dirty state bit. Moreover, since the memory
block frame is unused when a block is dirty, the identity of remote
can be stored in the first word of the memory block. After having
read the identity of remote, the node controller issues a write back
request to remote; stores the identity of local in the first word of
the block frame in memory; and finally, sets the busy-bit for the
block. In the rest of the paper we refer to this strategy asSW-2.

3.4  Hiding Software Latency of Clean Misses

Misses to clean blocks that reside in another node than local incur
two network traversals plus handler execution time (Net + Prot1 +
Net in Figure 2). Once we let the node controller perform state
lookup, it is possible to removeProt1 from the critical memory
access path by letting the node controller directly send the block to
local if the state of the block is clean; the processor interrupt to
update the directory can occur in parallel with the second network
traversal. This is a natural enhancement of SW-2 since we now
have removedProt1 for both misses to clean and to dirty blocks.
Of course, unlike the SW-2 strategy for removingProt1 for dirty
blocks,Prot1 will still be charged to the home processor and can
show up as protocol execution overhead for misses to clean blocks.

The functionality enhancements apart from those of SW-2, is
the ability for the node controller to read the block from memory.
A new node controller action is also needed that involves first
sending the block to local and then putting a message in the pro-
cessor interrupt buffer. When a read miss from local to a clean
memory block arrives at home, the node controller first does a state
lookup; inspects the clean/dirty state bit; reads the block from
memory; sends the block to local; and finally, puts a message into
the interrupt buffer. When the processor is interrupted, it only has
to update the directory with the identity of local. This strategy is
referred to asSW-3.



3.5  Hiding Software Latency of Dirty Misses

Whereas SW-2 and SW-3 can removeProt1 in Figure 2 from the
critical memory access path for misses to dirty and clean blocks,
the next strategy aims at removingProt2 from the read stall time
and write stall time to dirty blocks. This strategy is built on top of
SW-2 and lets the node controller send the block directly to local
when remote writes it back to home while interrupting the proces-
sor for directory update in parallel with the return of the block to
local. In addition to the functionality needed for the SW-2 strategy,
this strategy needs a node controller action aiming at first sending
the block to local before the processor is interrupted. Throughout
the paper we refer to this strategy asSW-4.

3.6  Combining All Optimization Strategies

The most aggressive strategy is to combine SW-1 through SW-4
which potentially removes or hidesProt1 andProt2 for misses to
clean as well as dirty blocks. The node controller functionality
needed is not beyond what is needed by the other strategies. This
combined strategy is referred to as SW-5.

In summary, we propose to apply a range of optimization strate-
gies to the baseline software-only protocol. All strategies address
how common case operations can be done in hardware while still
letting the directory be managed at a slower pace in software. The
most aggressive strategy assumes that the node controller can
inspect the individual state bits of the memory block and can for-
ward messages based on the state bits before interrupting the com-
pute processor so as to overlap software latency with network
latency. Table 1 summarizes the node controller functionality and
expected performance effects for each strategy.

4 Simulation Methodology

This section presents the simulation framework used to study the
relative performance of the protocols. In Section 4.1 we present
the simulation environment and the detailed architectural assump-
tions, and in Section 4.2 we describe the benchmark programs.

Table 1: Optimization strategies for software-only
directory protocols.

Strategy
Functionality in the

node controller
Expected performance

enhancement

SW-1
Memory state lookup by node con-
troller as well as processor

Can slightly reduce
Prot1 andProt2

SW-2

Forwarding of requests to dirty
blocks which requires state-mem-
ory modifications and access to first
word in a block

Can removeProt1 for
dirty misses

SW-3

SW-2 plus return of block to local
on clean misses before the proces-
sor is interrupted which requires
access to the memory block

Same as SW-2 but can
also hideProt1 for clean
misses

SW-4
SW-2 plus return of block or own-
ership to local on dirty misses
before the processor is interrupted

Same as SW-2 but can
also hideProt2 for dirty
misses

SW-5 Combination of SW-1 to SW-4
Can remove or hide
Prot1 andProt2 for all
misses

4.1  Architectural Parameters

The simulation models are built on top of the CacheMire Test
Bench [3]; a program-driven simulation platform and program-
ming environment. The simulator consists of two parts: a func-
tional simulator of multiple SPARC processors and an
architectural simulator. The functional simulator issues memory
references, and the architectural simulator delays the processors
according to its timing model. Thus, the same interleaving of
memory references is obtained as in the target systems we model.

We simulate a system of 16 nodes according to Figure 1. The
two-level cache hierarchy consists of a 2 Kbyte first-level cache
(FLC) and an infinite second-level cache (SLC) by default, but we
will also consider finiteSLCs. Both caches use 64 bytes blocks.
The write buffers contain 16 entries each but under sequential con-
sistency, which is our default consistency model, the processor
blocks on each shared reference until it is completed. Acquire and
release requests are supported by a queue-based lock mechanism
similar to the one implemented in the DASH multiprocessor [14].
The page size is 4 Kbytes and the pages are allocated to memory
modules in a round-robin fashion; pages with consecutive page
numbers are allocated to nodes with consecutive node identities.
Instruction references and references to private data are assumed
to always hit in theFLC, i.e., they do not incur any memory sys-
tem latencies.

The timing model assumes that the SPARC processors and their
FLCs are clocked at 100 MHz (1 pclock = 10 ns) by default. The
SLC is assumed to be implemented by static RAM with an access
time of 30 ns. The processor is assumed to have a 16 bytes wide
interface to theSLC. The SLC is interleaved and assumed to
deliver the first 16 bytes of a block after 30 ns and the rest of the
block after another 30 ns (16 bytes each pclock). The memory is
also interleaved and has a 16 bytes wide interface and assumed to
be implemented by dynamic RAM with an access time of 90 ns;
the first 16 bytes are supplied after 90 ns and the remainder of the
block is transferred 16 bytes each cycle resulting in a total access
time of 120 ns for a block. TheSLC with its write buffer, the mem-
ory, and the network are connected by the node controller which is
clocked at 100 MHz, which is the same as the target speed of the
MAGIC controller in the Stanford FLASH [10]. The only differ-
ence between the node controllers for the hardware-only and the
software-only protocols are the functionalities summarized in
Table 1. In a real system special precaution must be taken to han-
dle deadlocks. However, such mechanisms are similar in both the
hardware-only and the software-only protocols and we do not
address them in this study; simulations assume infinite buffers.

The processor nodes are interconnected by a 4-by-4 wormhole
routed synchronous mesh with a flit size of 64 bits. The mesh is
clocked at 50 MHz resulting in a fall-through time of 40 ns for
each node. The bandwidth into and out of each processor node is
400 Mbytes/s. The latency and bandwidth in the mesh are compa-
rable to the Stanford FLASH [9, 10]. We correctly model conten-
tion of all parts in the system. Table 2 shows the time it takes to
satisfy a read request from different levels in the memory hierar-
chy in the hardware-only implementation assuming no contention.

A critical timing assumption is how many cycles we charge for
the software handlers. First, to achieve a fast start-up of the soft-
ware handlers, the processor must have a fast interrupt mechanism.
It can be implemented either as conventional interrupt hardware in
the processor or as a multithreaded processor, e.g., Sparcle [2]
which is used in the MIT Alewife [1]. In this study we take the



latency numbers from the optimized Sparcle processor described
in [2] and use them as a base for how fast a software handler can
be dispatched. Conservatively, the state and directory information
of a block are not cached in the simulations. To partly compensate
for the slow access to the directory and state memory, we simulate
a direct path between the memory and the processor; directory
accesses do not go through the node controller. For SW-1 to SW-5
we also assume that a dedicated state memory is supported.

While we also vary the handler execution times in Section 5, we
assume 50 pclocks as the default protocol execution time which
does not include the time to access the directory and state informa-
tion. Rather, we include in these 50 pclocks the following actions:
interrupt handling (4 pclocks); reading the message (6 pclocks);
dispatch of the corresponding software handler (4 pclocks);
administration of the software directory (32 pclocks); and restart
of the application program (4 pclocks). On top of this we charge 90
ns to read or write the global state of a memory block; 120 ns to
read or write a memory block; and finally, 6 pclocks to send a mes-
sage depending on the type of coherence action. For example, for a
read miss to a clean block, 9 pclocks (read the state) plus 12
pclocks (read the block) plus 6 pclocks (send the reply) plus 9
pclocks (update the directory) are added to the basic 50 pclocks,
resulting in 86 pclocks to service a read miss to a clean block.

4.2  Benchmark Programs

In order to understand the relative performance of hardware-only
and the variations of the software-only protocols, we use four sci-
entific applications written in C using the ANL macros and com-
piled bygcc  (version 2.1) with optimization level -O2. Three of
them (Water, Ocean, and MP3D) are taken from the SPLASH
suite [16] and the fourth (LU) has been provided to us from Stan-
ford University. The applications chosen all have different charac-
teristics. Water has a decent processor utilization whereas MP3D
has poor speedup due to a high communication overhead. In LU
cold misses dominate, while coherence misses dominate in the
other applications. Finally, Ocean has producer-consumer sharing,
a high synchronization overhead, and a significant amount of false
sharing. Water was run with 288 molecules for 4 time steps. LU
used a 200x200 matrix and Ocean used a 128x128 grid with the
tolerance factor set to 10-7. Finally, MP3D was run with 10,000
particles during 10 time steps.

5 Experimental Results

In this section we present our experimental results starting with the
effects of the different strategies for software-only directory proto-
cols under sequential consistency in Section 5.1. In Section 5.2, we
analyze in detail what limits further improvements. The remainder

Table 2: Average latency numbers for the hardware-only
implementation assuming a conflict-free system.

Latency Numbers for Read Requests
1 pclock=10 ns

(100 MHz)

Fill from FLC 1 pclock

Fill from SLC 6 pclocks

Fill from Local Memory 33 pclocks

Fill from Home (2-hop) 79 pclocks

Fill from Remote (4-hop) 169 pclocks

of this section studies architectural variations such as the effects of
relaxed memory consistency models (Section 5.3), finite caches
(Section 5.4), and finally, software handler execution time varia-
tions and the effects of increased processor speed in Section 5.5.

5.1  Efficiency of Software-Only Protocol Strategies

In this section, we evaluate the relative effectiveness of the differ-
ent strategies for software-only directory protocols proposed in
Section 3 by comparing their performances with the baseline hard-
ware-only and software-only protocols in Section 2. In Figure 3,
we show the relative execution times of the different optimization
strategies. All execution times are normalized to the execution
time of the hardware-only protocol. For each application seven
bars are shown. The first two bars to the left correspond to the
baseline hardware-only (HW) and software-only (BASIC-SW)
protocols in Sections 2.2 and 2.3, respectively. They are followed
by the strategies listed in Table 1 in Section 3.6. For each bar, we
decompose the execution time from bottom to top into the compo-
nents introduced in Section 3: the busy time, the read, the write,
and the synchronization stall times; and finally, for software-only
protocols, the overhead in servicing coherence actions by soft-
ware-handler execution from other processors (P_TIME).

Let us first compare the baseline protocols. As expected,
BASIC-SW does significantly worse than HW; the execution times
are between 26% (Water) and 151% (MP3D) longer than under
HW. From the execution time breakdown, we can see that all stall
time components are longer under BASIC-SW which confirms the
intuition from Section 3; the software latency is on the critical
memory access path which makes the read and write stall times
longer. The applications we use have very different miss rates as
can be seen from Table 3 that shows the cold, coherence, and total
read-miss rates assuming infiniteSLCs.Since the applications dif-
fer in the number of misses, we also see a big difference in the rel-
ative performance; while Water has few misses (0.50%) and
requires few software handler invocations, protocol handling dom-
inates in MP3D which has a high miss rate (7.83%) and a low pro-
cessor utilization under BASIC-SW as well as under HW. Next we
study how the stall time components are affected when applying
the strategies proposed in Section 3.

Starting with SW-1 (as defined in Table 1), in which state
lookup is performed by the node controller, we would expect all
stall time components and P_TIME to be reduced. Although the
improvement is in the modest range of 5% to 10%, we can see that
the execution time under SW-1 is slightly shorter than under
BASIC-SW.

Table 3: Application read-miss rates under SW for
infinite and 16 Kbyte SLCs.

Application

Water LU Ocean MP3D

Cold miss rate 0.02% 0.48% 0.01% 0.73%

Coherence miss rate 0.48% 0.07% 0.83% 7.10%

Replacement miss rate
(16 KbytesSLCs)

0.87% 1.64% 3.26% 2.45%

Total miss rate
(infinite SLCs)

0.50% 0.55% 0.84% 7.83%

Total miss rate
(16 KbytesSLCs)

1.37% 2.19% 4.10% 10.3%



When we allow the node controller to forward read and write
requests to dirty blocks directly to remote without interrupting the
compute processor, as in SW-2, we would expect to see a dramatic
reduction of the read stall time and the P_TIME evolving from the
handling of dirty blocks. As expected, these components go down
under SW-2 and result in an overall reduction of the execution
time by between 4% (Water) and 20% (MP3D) as compared to
BASIC-SW. We have seen that the fractions of all read misses that
go to dirty blocks are as high as 87%, 85%, and 92% in Water,
Ocean, and MP3D, respectively, and these applications demon-
strate the highest gains of this strategy. Although cold misses dom-
inate in LU (see Table 3) and only 15% of the misses go to dirty
blocks, the execution time is 11% shorter than in BASIC-SW. This
is because there are on average about 50% fewer interrupts pend-
ing in the processor interrupt buffer when a new message arrives.

In SW-3, the node controller returns data to local on read miss
requests to clean blocks before interrupting the processor and is
effective for applications with misses to clean blocks such as cold
misses. As expected, since LU is the only application where the
majority of misses are clean, this strategy is most effective for LU.
The execution time for LU under SW-3 is 15% lower than under
BASIC-SW. This is mainly an effect of a reduced read stall time,
which is 45% lower under SW-3 than under BASIC-SW.

By letting the node controller return a dirty block to local before
interrupting the processor as in SW-4, we further optimize the han-
dling of dirty misses and ownership requests to dirty blocks and
we can see that the read stall times are further reduced as com-
pared to SW-2 for all applications. As expected, the effect is low-
est for LU since, again, LU has a very low coherence miss rate.
For the other three applications, the read stall time is reduced by
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Figure 3:Execution times for the software-only protocols relative to the hardware-only protocol.
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25%, 22%, and 31% for Water, Ocean, and MP3D, respectively,
when we go from SW-2 to SW-4. The execution times are between
4% (Water) and 15% (MP3D) lower under SW-4 than under SW-2.

When we combine all strategies covered so far, which is done in
SW-5, we can see additional gains for the software-only directory
protocol. SW-5 has only 16% longer execution time than HW for
the Water application meaning that it has 86% of HW’s perform-
ance. Even for MP3D, which already for HW has a very poor pro-
cessor utilization [14], we find that the software-only directory
protocol has only 68% longer execution time. This result is
encouraging, since we consider MP3D as a ‘worst-case’ applica-
tion. We also observe that the read stall times under SW-5 is only
between 2% (Ocean), 4% (Water), and 16% (LU) longer than
under HW. LU has a relatively higher read stall time which we
have traced to a high number of read miss retries.

In summary, we have seen that one can afford to let the compute
processor update the directory given that the block data is trans-
ferred as soon as possible. In SW-3 and SW-4, the processor
updates the directory in parallel with the reply sent to local, thus
minimizing the miss penalty seen by local. Finally, SW-3 opti-
mizes the handling of clean misses, while SW-4 optimizes the han-
dling of dirty misses. Both strategies are essential to achieve good
performance for both types of misses. They are combined in SW-5.
Henceforth, we only consider SW-5 and refer to it as SW.

5.2  Limitations of Software-Only Protocols

While SW results in virtually the same read stall times as HW, the
performance differences stem from the write and synchronization
stall times and the time each processor handles coherence actions
from other nodes through software handler executions. While we



focus on the write stall time in Section 5.3, we will in this section
focus on the software latency and synchronization stall time.

Software handler execution overhead (P_TIME in Figure 3)
shows up when a processor is interrupted and it is executing appli-
cation code. By contrast, if the processor is stalled as a result of a
cache miss, an ownership acquisition, or a synchronization opera-
tion, the software handler execution could be completely or partly
overlapped by these stall time components. Thus, it becomes inter-
esting to see to what extent software handling can be overlapped
by the stall time components. In Table 4 we show this data for SW.

Surprisingly, only 18% or less of the software handler execution
time is overlapped by the stall time components. To understand
why this overlap is so small, Table 4 also summarizes the fraction
of interrupts that occur when a processor is busy. Across the appli-
cations, we see that the processor is busy in at least 44% of the
cases when an interrupt occurs. In Water, for example, the proces-
sor is busy in 72% of the cases which compares well with the pro-
cessor utilization in Water which is 67%. By contrast, the
processor utilization for MP3D is only 10%, but the processor is
busy when 44% of the interrupts occur. We have found that this
discrepancy stems from the fact that interrupts are clustered in
MP3D; a new interrupt occurs within 50 pclocks after the previous
one in 23% of the cases, within 100 pclocks in 53% of the cases,
and finally, within 200 pclocks in 98% of the cases. Clearly, since
the software latency is between 60 and 70 pclocks for SW, the pro-
cessor does not have much time to do useful work between the
interrupts. Overall, most of the software latency cannot be over-
lapped by the other stall time components because the processor is
often busy when an interrupt occurs.

Another important limitation to analyze stems from synchroni-
zation overhead. A striking observation extracted from Figure 3 is
that the synchronization time under SW (i.e. SW-5) is much higher
than under HW. This effect is especially pronounced in Ocean and
in MP3D, where the synchronization stall times are more than
twice as high for SW. An explanation for this difference would be
that software handler execution causes load imbalance because the
interrupts are not uniformly distributed across the processor nodes.
To test this intuition, we recorded the highest and lowest numbers
of interrupts coming to any processor for each application. The
ratios of these numbers are shown in Table 4 for SW.

For Water and LU, which have the highest processor utiliza-
tions, the ratios are approximately 2, i.e., the processor that
receives most interrupts, receives twice as many interrupts as the
processor that is interrupted the fewest number of times. By con-
trast, Ocean and MP3D, the two applications that behave worst
under SW, have a much higher ratio of the highest and the lowest
number of interrupts; the ratios are around 5 and 10 in Ocean and
in MP3D, respectively. This explains why these applications have

Table 4: Software handler execution statistics under SW.

Application

Water LU Ocean MP3D

Overlapped fraction of software
handler execution

12% 6% 13% 18%

Fraction of interrupts that arrive
when the processor is busy

72% 57% 47% 44%

Ratio: Highest/Lowest number
of interrupts to any processor

1.84 2.26 4.87 10.19

a considerably higher synchronization overhead under SW than
under HW. Ideally, if the coherence interrupts would be uniformly
distributed among the processor nodes, we would expect the syn-
chronization overhead to be the same as under HW. One reason
that this does not happen is that we have not done any attempt to
distribute data to avoid hot spots; our simulations assume that
pages are allocated in a round-robin fashion.

5.3  Effects of Relaxed Consistency Models

The last component of the application execution time that differs
between SW and HW is the write stall time. While we have seen
that it is possible to achieve a nearly identical read stall time for
SW and HW, the software handler execution time will appear on
the critical memory access path for ownership acquisitions. The
processor in the home node must examine the directory before
sending invalidations, and as a result, the software handler execu-
tion time can not be removed from the write stall time seen by
local. By contrast, under relaxed memory consistency models the
write latency can be overlapped by application execution as long
as synchronizations are not encountered. Therefore, this optimiza-
tion is presumably more important for software-only protocols
than for hardware-only protocols. However, since latency-tolerat-
ing techniques such as relaxed memory consistency models make
the processors execute faster, we would expect that the rate of
interrupts increases. This can potentially make the read and syn-
chronization stall time components longer, which can offset the
gain of the write stall time reduction.

To study the execution time effects under release consistency,
we present in Figure 4 the resulting execution times for Ocean
under release consistency (RC) for both HW and SW, normalized
in each case to the execution times under sequential consistency
(SC). In the release consistent systems, we include the full power
of the lockup-freeSLCs and their buffers. While we only present
results for Ocean, the results for the other applications are similar.
By analyzing the results for SW first, we see that the write latency
is completely hidden and that the other components are virtually
unaffected. However, the read stall time is slightly higher which
stems from contention in the network rather than on secondary
effects due to a higher interrupt rate. By comparing the execution
time reduction of release consistency for HW and SW we see that
it is virtually the same; the execution time is 18% shorter under RC
than under SC for HW as well as SW.

Figure 4: Execution time of HW and SW under
sequential consistency (SC) and release consistency
(RC) in Ocean. The execution time is normalized for
each system to the execution time under sequential

consistency.
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5.4  Effects of Finite Caches

Until now we have assumed infinite second-level caches in our
simulations. However, since finite caches introduce a higher miss
rate as a result of replacements, it is important to study how the
handling of replacements and misses affects the performance of
the software-only protocols. We do so by presenting numbers
derived from simulations using 16 KbyteSLCs. In Table 3, we
show the total read miss rates for 16 Kbyte caches. By comparing
these numbers with the numbers for infiniteSLCs,we can see that
the miss rates have gone up significantly.

Upon replacement of a clean block, the cache can either notify
the directory of the replacement or it could ignore to do so. In the
latter case, the cache must be able to acknowledge invalidation
messages even if its block copy does not exist. In a hardware-only
implementation, this could result in a somewhat longer write stall
time because of a larger number of invalidations, whereas in a soft-
ware-only protocol one could benefit from fewer software handler
invocations. We have simulated both alternatives and found,
although the differences are small, that it is preferable not to notify
the directory of replacements and take the cost of a higher number
of invalidation messages. In Figure 5, we present the normalized
execution times under HW and SW for the replacement strategy
without directory notification.

As expected, we see in Figure 5 that SW suffers more from the
increased miss rate than does HW. By comparing the fraction of
the execution time that stems from software handler overhead
(P_TIME) in these simulations and the simulations assuming infi-
niteSLCsin Figure 3, we can clearly see that P_TIME has gone up
because of the higher miss rate; Water has 18% longer execution
time under SW than under HW with finite caches, as compared to
16% longer execution time when we have infinite caches (see Fig-
ure 3). For the other three applications the difference is larger.
Interestingly, the read stall time is virtually the same for HW and
SW. This shows that our strategies efficiently handle read misses.

5.5  Handler Execution Time and Processor Speed

Until now, we have assumed that the software handler execution
time is 50 pclocks (excluding directory accesses and message
transmissions). However, it is important to see how the effective-
ness of the strategies are affected by variations in this assumption.
In Figure 6 we show the resulting execution times for Water and
MP3D; the best and the worst performing applications. SW-50,
SW-100, and SW-200 correspond to SW with a handler execution
time of 50, 100, and 200 pclocks, respectively, again excluding
directory access and message transmissions.

Figure 5: Execution time effects of finite
second-level caches (16 Kbyte).
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As expected, we observe in Figure 6 an increased overhead for
SW as the protocol execution time increases. Interestingly, the
read stall times are virtually unaffected. This suggests that our
strategies are successful in maintaining the same read stall time for
SW as for HW. However, in LU we have seen an increased read
stall time because of a high number of read-miss retries owing to
that blocks are now locked a longer time. We also see that the write
stall times and the protocol execution overheads are increased.
This can be explained by the observations in Sections 5.1 and 5.2
that showed limited opportunities for overlap.

The next variation is motivated by the steadily increasing speed
gap between commodity microprocessors and memory technology.
We have simulated HW and SW assuming both a processor run-
ning at 100 MHz and a processor running at 300 MHz. All other
latency times in the memory system are kept constant. In Figure 7,
we show the resulting execution times of Water and MP3D under
HW and SW when 100 MHz and 300 MHz processors are used.

In Figure 7, we show the execution time of SW relative to HW
for each processor speed. First, when comparing SW-100 with
SW-300 we see that the stall time components in MP3D constitute
a larger fraction of the overall execution time in the 300 MHz sys-
tems. As a result, P_TIME becomes a relatively smaller compo-
nent in SW and the overhead of the software-only protocol
becomes less. We also see that the speed gap between HW and SW
is decreased when we consider faster processors; in the 100 MHz
systems the speed gap is 68% whereas it is only 23% in the 300
MHz systems for MP3D. The same trends have been seen for the
other applications.

6 Conclusions

The design complexity of hardware-based directory protocols has
motivated us to study protocols in which the memory-protocol
engine is migrated to software execution on the compute proces-

Figure 6: Effects of various protocol execution times.
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Figure 7: Execution times of SW relative to HW for
100 MHz and 300 MHz processors.
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sor. In this paper we have focused on one such class, called soft-
ware-only protocols, in which the directory is located in main
memory and maintained by software handlers. All directory
actions cause an interrupt on the compute processor which poten-
tially can result in a significant protocol execution overhead. On a
read miss, software handlers are invoked on the compute processor
in the node where the block is allocated. Therefore, the latency of
the read miss includes the time to execute the software handler. We
have proposed several strategies to remove the latency of the soft-
ware handler from the latency of a miss by executing the handler
in parallel with the inter-node protocol transactions so as to over-
lap the software latency by network latency.

Based on architectural simulations using four parallel programs,
we have evaluated six software-only protocol variations by com-
paring their performances with the performance of a hardware-
only protocol. We have found that the software handler latency can
be effectively removed from the critical memory access path for
read misses, which resulted in a performance of the best strategy in
the range 60%-86% of the hardware-only protocol. We have also
identified the hardware functionality needed to support this strat-
egy and it includes direct access to the data and state of each mem-
ory block. Software-only protocols also rely on processors
supporting a fast mechanism to switch from execution of applica-
tion code to software handler execution. Whereas we found that
the software latency could only partially be removed from the crit-
ical path of ownership acquisitions, relaxed memory consistency
models were found to be as effective for software-only protocols
as for hardware-only protocols to eliminate the write stall time.

Two factors prevented further optimizations: overhead in servic-
ing coherence actions for other processors and load imbalance due
to nonuniform distribution of interrupts across nodes. Since we
found that the processor is busy executing application code in a
majority of the cases when an interrupt occurs, software handler
execution will only partially be overlapped by the processor stall
time components. Second, synchronization overhead is usually
higher in a software-only protocol owing to the fact that some
compute processors handle significantly more coherence actions
than others. These factors dominated the performance difference
between the software-only protocol and the hardware-only proto-
cols and limited further gains. Finally, as indicated by our simula-
tions, the performance difference between software-only and
hardware-only protocols diminishes as we consider faster proces-
sors suggesting that software-only protocols will be more impor-
tant in the future.

Overall, our study shows that if block data transfer is supported
efficiently in hardware, one can afford to let the compute processor
update the directory at a slower pace. Although this study gives
some evidence that such an approach is promising, detailed imple-
mentation studies are needed to compare the complexity of alter-
natives.
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