
ade
any
GI Or-
ind
Ps.

ads.

is in
erent
e the

yond
ture
ent is

pe-
tions
heu-
esses.

te al-
d
tion
act.

of
ation,
A Tool for Binding Threads to Processors

Magnus Broberg, Lars Lundberg, and Håkan Grahn

Department of Software Engineering and Computer Science
Blekinge Institute of Technology, P.O. Box 520, S-372 25 Ronneby, Sweden
{Magnus.Broberg, Lars.Lundberg, Hakan.Grahn}@bth.se

Abstract. Many multiprocessor systems are based on distributed shared mem-
ory. It is often important to statically bind threads to processors in order to avoid
remote memory access, due to performance. Finding a good allocation takes long
time and it is hard to know when to stop searching for a better one. It is sometimes
impossible to run the application on the target machine. The developer needs a
tool that finds the good allocations without the target multiprocessor. We present
a tool that uses a greedy algorithm and produces allocations that are more than
40% faster (in average) than when using a binpacking algorithm. The number of
allocations to be evaluated can be reduced by 38% with a 2% performance loss.
Finally, an algorithm is proposed that is promising in avoiding local maxima.

1 Introduction

Parallel processing is a way of increasing application performance. Applications m
for parallel processing are also likely to have high performance requirements. M
multiprocessor systems are based on a distributed shared memory system, e.g., S
igin 2000, Sun’s WildFire [4]. To minimize remote memory accesses, one can b
threads statically to processors. This can also improve the cache hit ratio [8] in SM
Moreover, some multiprocessor systems do not permit run-time reallocation of thre
Finding an optimal static allocation of threads to processors is NP-complete [7].

Parallel programs are no longer tailored for a specific number of processors, th
order to reduce the maintenance etc. This means that different customers, with diff
multiprocessors, will share the same application code. The developer have to mak
application run efficiently on different numbers of processors, even to scale-up be
the number of processors available in a multiprocessor today in order to meet fu
needs. There is thus no single target environment and the development environm
often the (single processor) workstation on the developer’s desk.

Heuristics are usually able to find better bindings if one lets them run for a long
riod of time. There is a trade-off between the time spent searching for good alloca
and the performance of the program on a multiprocessor. Another property of the
ristics is that the improvement per time unit usually decreases as the search progr
It is thus not trivial to decide when to stop searching for a better best allocation.

In operating systems like Sun Solaris there is little support to make an adequa
location. A tool calledtha [10] only gives the total execution time for each threa
enough for an algorithm like binpacking [7] which does not take thread synchroniza
into consideration. The result is quite useless, since the synchronizations do imp

In this paper we present a tool for automatically determining an allocation
threads to processors. The tool runs on the developer’s single-processor workst



con-

t. 3.

of
lator.
Re-
e
corder

in-
out-

ith
tion
oca-
tor

ris
led
stat-

ect. 3.
[2].

swap
as
of all

ight
ively.
er of
d ex-

ty
ical
ivided

ber
of

-
ing
r 2
and does not require any multiprocessor in order to produce an allocation. The tool
siders thread synchronizations, thus producing reliable and relevant allocations.

In Sect. 2 an overview of the tool is found. Empirical studies are found in Sec
In Sect. 4 related and future work is found. The conclusions are found in Sect. 5.

2 Overview of the Tool

The tool used for evaluation of different allocations is called VPPB (Visualization
Parallel Program Behaviour) [1] and [2] and consists of the Recorder and the Simu
The deterministicapplication is executed on a single-processor workstation, the
corder is automatically placedbetweenthe program and the thread library. Every tim
the program uses the routines in the thread library, the call passes through the Re
which records information about the call. The input for the simulator is the recorded
formation and an allocation of threads generated by the Allocation Algorithm. The
put from the Simulator is the execution time for the application on a multiprocessor w
the given size and allocation. The predicted execution time is fed into the Alloca
Algorithm and a new allocation is generated. Simulations are repeated until the All
tion Algorithm decides to stop. The evaluation of a single allocation by the Simula
is called atest. The VPPB system works for C/C++ programs with POSIX [3] or Sola
2.X [11] threads. In [1] and [2] the Simulator was validated with dynamically schedu
threads. We validated the tool on a Sun Enterprise 4000 with eight processors with
ically bound threads and used nine applications with 28 threads, generated as in S
The maximum error is 8.3%, which is similar to the previous errors found in [1] and

3 Empirical Studies with the Greedy Algorithm

3.1 The Greedy Algorithm
The Greedy Algorithm is based on a binpacking algorithm and makes changes (
and move) to the initial allocation and test it. If the new allocation is better it is used
the base for next change and so it continues, see Fig. 1. The algorithm keeps track
previous allocations in order to not test the same allocation several times.

3.2 The Test Applications Used in This Study
In this study we used 4,000 automatically generated applications divided into e
groups of 500 applications with 8, 12, 16, 20, 24, 28, 32, and 36 threads, respect
Each application contains critical sections protected by semaphores. The numb
critical sections is between two and three times the number of threads. Each threa
ecutes first for 2x time units,x is 0 to 15 throughout this section. Then, with a probabili
of 50%, the thread enters (if possible) a critical section or exits (if possible) a crit
section. Deadlocks are avoided by a standard locking hierarchy. The threads are d
into groups. Threads within one group only synchronizes with each other. The num
of groups is between one up to half of the number of threads. With a probability
93.75% the thread continues to execute for 2x time units then enter or exit a critical sec
tion and so on. With a probability of 6.25% the thread will start terminating by releas
it’s critical sections. Exiting each critical section is proceeded with an execution fox

time units. Finally, the thread executes for 2x time units.



r to
the

ation
tests

ch.

that
The
sec-
that
ance
mber
3.3 Characterizing the Greedy Algorithm
The Greedy Algorithm presented in Sect. 3.1 will actually never stop, thus in orde
investigate its performance we had to manually set a limit. We chose to continue
algorithm until 500 tests had been performed. We also stored the so far best alloc
when having done 20, 60, ... , 460, 500 tests, shown in Fig. 2. When the number of
is high yet another 40 tests will not decrease the application’s execution time mu

3.4 A Threshold for the Greedy Algorithm
The graphs in Fig. 2 clearly shows that it should be possible to define a threshold
stops the Greedy Algorithm to do more tests when the gain will not be significant.
stop criterion for the Greedy Algorithm is defined as to stop when a number of con
utive tests have not gained anything in execution time. We have empirically found
100 consecutive tests is a good stop criterion if we accept a 2% loss in perform
compared to performing 500 tests. By reducing the gain by 2% we reduce the nu

Allocation bestAlloc = allocateAccordingToBinpack();
Time bestExecutionTime = simulate(bestAlloc);
addToAllocationHistory(bestAlloc);
algorithm(bestAlloc);

procedure algorithm(Allocation alloc) {
Time executionTime;
if(random() > 0.5 and allThreadsAreNotOnTheSameProcessor())

swapARandomThreadWithARandomThreadOnAnotherProcessor(alloc);
else

moveARandomThreadToAnotherRandomProcessor(alloc);
if(allocationIsAlreadyInAllocationHistory(alloc))

{ alogrithm(bestAlloc); return; }
addToAllocationHistory(alloc);
executionTime = simulate(alloc);
if(executionTime == bestExecutionTime)

{ alogrithm(alloc); return; }
if(executionTime < bestExecutionTime)

{ bestAlloc = alloc; bestExecutionTime = executionTime; }
alogrithm(bestAlloc);

}
Fig. 1.The greedy algorithm in pseudo code

Fig. 2.The average gain by using the Greedy Algorithm as compared to binpacking

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1 2 3 4 5 6

12 threads

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1 2 3 4 5 6 7 8 9 101112131415 1718

36 threads

16

(b
in

pa
ck

 e
xe

cu
tio

n 
tim

e)
/(

ex
ec

ut
io

n 
tim

e)

(b
in

pa
ck

 e
xe

cu
tio

n 
tim

e)
/(

ex
ec

ut
io

n 
tim

e)

No of processors No of processors



med
took

lgo-
ax-
ving
bin-

own
rting
ting
tests
f tests
imes
al

esult
e with
Al-

er.
re-

alled
i-

initial
gain.
con-
oose
ry

it
it is
gin-
of tests by 38%. This is of important practical value since the number of tests perfor
is proportional to the time it takes to calculate the allocation. Performing 500 tests
at most two minutes for any application in the population used in this study.

3.5 Local Maxima and Proposing a New Algorithm
There is always the danger of getting stuck in a local maximum and the Greedy A
rithm is not an exception. In order to investigate if the algorithm runs into a local m
imum we used the previous application population with 16 and 24 threads. By gi
the Greedy Algorithm a random initial allocation, instead of an allocation based on
packing, we reduced the risk of getting stuck in the same local maximum.

The result of using 10 x 500 vs. 1 x 5000 tests and 10 x 50 vs. 1 x 500 tests is sh
in Fig. 3. As can be seen, sometimes it is better to run ten times from different sta
allocations than running the Greedy Algorithm ten times longer from a single star
allocations and sometimes it is not. The reason is found in Fig. 2. As the number of
increases the gain will be less and less for each test. Thus, when the number o
reaches a certain level the Greedy Algorithm is close to a local maximum and ten t
more tests will gain very little. By using ten new initial allocations that particular loc
maximum can be avoided, and if the new initial allocations are fortunate a better r
is found when reaching the same number of tests. This is what happened in the cas
10 x 500 and 1 x 5000. On the other hand if the number of tests is low the Greedy
gorithm still can gain much with running the same initial allocation for ten times long
This opposed to running ten Greedy Algorithm with random initial allocation to the p
viously low tests. This is the case for 10 x 50 and 1 x 500.

Based on the findings above and the threshold we propose a new algorithm, c
Dynamic Start Greedy Algorithm. The algorithm is the Greedy Algorithm with an in
tial allocation based on binpacking. When the threshold has been reached a new
allocation is created and the algorithm continues until the threshold is reached a
The new algorithm uses the threshold in order to determine whether it is useful to
tinue running or not. At the same time the algorithm is able to stop running and ch
a new initial allocation before it runs too long time with an initial allocation The histo
of already tested allocations should be kept from one initial allocation to the next.

The Dynamic Start Greedy Algorithm continues with an initial allocation until
reaches a local maximum, then it jumps to a new initial allocation to investigate if
better. This is the inverse of simulated annealing [6] that jumps frequently in the be
ning and more seldom after a while.

Fig. 3.The difference between 1 x 500 vs. 10 x 50 tests, and 1 x 5000 vs. 10 x 500 tests

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1 2 3 4 5 6 7 8

(b
in

pa
ck

 e
xe

cu
tio

n 
tim

e)
/(

ex
ec

ut
io

n 
tim

e)

Number of processors

16 threads, 1 x 500 tests
16 threads, 1 x 5000 tests
16 threads, 10 x 50 tests

16 threads, 10 x 500 tests
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1 2 3 4 5 6 7 8 9 10 11 12

(b
in

pa
ck

 e
xe

cu
tio

n 
tim

e)
/(

ex
ec

ut
io

n 
tim

e)

Number of processors

24 threads, 1 x 500 tests
24 threads, 1 x 5000 tests
24 threads, 10 x 50 tests

24 threads, 10 x 500 tests



tes
ing
heir
must

com-
may

nside

per,
sid-

cation
tion

rithm
age)
efine
time.
with

etter

lti-

ion

igh

n-

l

rs.

ad-
4 Related and Future Work

The GAST tool [5] is somewhat similar to the tool described here. GAST origina
from the real-time area. With GAST it is possible to automate scheduling, by defin
different scheduling algorithms. The GAST tool needs a specification of all tasks, t
worst case execution time, period, deadline and dependencies. This specification
be done by hand, which could be a very tedious task to do. Also, high performance
puting does not necessarily have either periods or deadlines and a task in GAST
only be a fraction of a thread, since a task can not synchronize with another task i
the task. Each thread must then (by hand) be split into several tasks.

The Greedy Algorithm could be compared, using the tool described in this pa
by replacing the algorithm with simulated annealing [6], etc. This, however, is con
ered to be future work.

5 Conclusion

We have presented and validated a tool that makes it possible to execute an appli
on a single processor workstation and let the tool find an allocation for the applica
on a multiprocessor with any number of processors. The tool uses a Greedy Algo
that may improve the performance of an application with more than 40% (in aver
compared to the binpacking algorithm. We have also shown that it is possible do d
a stop criterion that stops the algorithm when there have been no gain for a certain
By trading off a speed-up loss of 2% we reduced the number of tests performed
38%. Finally, a new algorithm is proposed that seems promising in giving even b
allocations and reducing the risk of getting stuck in a local maxima.

References

1. Broberg, M., Lundberg, L., Grahn, H.: Visualization and Performance Prediction of Mu
threaded Solaris Programs by Tracing Kernel Threads. Proc. IPPS (1999) 407-413

2. Broberg, M., Lundberg, L., Grahn, H.: VPPB - A Visualization and Performance Predict
Tool for Multithreaded Solaris Programs. Proc. IPPS (1998) 770-776

3. Butenhof, D.: Programming with POSIX Threads. Addison-Wesley (1997)

4. Hagersten, E., Koster, M.: WildFire: A Scalable Path for SMPs. Proc. 5th Int Symp. on H
Performance Computer Architecture (1999) 172-181

5. Jonsson, J.: GAST: A Flexible and Extensible Tool for Evaluating Multiprocessor Assig
ment and Scheduling Techniques. Proc. ICPP, (1998) 441-450

6. Kirkpatrick, S.: Optimization by Simulated Annealing: Quantitative Studies. J. Statistica
Physics34 (1984) 975-986

7. Krishna, C., Shin, K.: Real-Time Systems. The McGraw-Hill Companies, Inc. (1997)

8. Lundberg, L.: Evaluating the Performance Implications of Binding Threads to Processo
Proc. 4th Int Conf. on High Performance Computing (1997) 393-400

9. Powell, M., Kleiman, S., Barton, S., Shah, D., Stein, D., Weeks, M.: SunOS 5.0 Multithre
ed Architecture. Sun Soft, Sun Microsystems, Inc. (1991)

10. Sun Man Pages: tha, Sun Microsystems Inc. (1996)

11. Sun Soft: Solaris Multithreaded Programming Guide. Prentice Hall (1995)


	A Tool for Binding Threads to Processors
	1 Introduction
	2 Overview of the Tool
	3 Empirical Studies with the Greedy Algorithm
	3.1 The Greedy Algorithm
	3.2 The Test Applications Used in This Study
	3.3 Characterizing the Greedy Algorithm
	3.4 A Threshold for the Greedy Algorithm
	3.5 Local Maxima and Proposing a New Algorithm

	4 Related and Future Work
	5 Conclusion


