
Reducing Memory in Software-Based Thread-Level
Speculation for JavaScript Virtual Machine

Execution of Web Applications

Jan Kasper Martinsen and Håkan Grahn
Department of Computer Science and Engineering

Blekinge Institute of Technology
SE-371 79 Karlskrona, Sweden

Email: {Jan.Kasper.Martinsen,Hakan.Grahn}@bth.se

Anders Isberg and Henrik Sundström
Sony Mobile Communications AB

SE-221 88 Lund, Sweden
{Anders.Isberg,Henrik.Sundstrom}@sonymobile.com

Abstract—Thread-Level Speculation has been used to take ad-
vantage of multicore processors in virtual execution environments
for the sequential JavaScript scripting language. While the results
are promising the memory overhead is high. Here we propose to
reduce the memory usage by limiting the checkpoint depth based
on an in-depth study of the memory and execution time effects.
We also propose an adaptive heuristic to dynamically adjust the
checkpoints. We evaluate this using 15 web applications on an
8-core computer. The results show that the memory overhead is
reduced for Thread-Level Speculation by over 90% as compared
to storing all checkpoints. Further, the performance is often better
than when storing all the checkpoints and at worst 4% slower.

I. INTRODUCTION

JavaScript is a sequential scripting language with run-time
evaluation and cannot take advantage of multicore processors
to reduce the execution time. Fortuna et al. [1] show that
there exists a significant potential for parallelism in many web
applications with an estimated speedup of up to 45× compared
to a sequential execution.

To hide the details of the underlying parallel hardware, we
can dynamically extract parallelism from a sequential program
using Thread-Level Speculation (TLS). Mehrara et al. show
the performance potential of TLS on a series of well-known
benchmarks [2] and Martinsen et al. [3] show this on a
number of popular web applications. Unfortunately, we found
in [3] that the memory requirements are significant for web
applications. Further, we show in [4] that there is a potential
to reduce the memory usage and improve the execution time
by limiting the speculation depth. In many cases a speculation
depth of 2 to 4 is sufficient to improve the performance.

In this paper we show that we can reduce the memory usage
by nearly 90% by limiting at what speculation depth we store
the checkpoints, and in most cases also improve the execution
time. Based on these findings, we develop and evaluate an
adaptive heuristic, which reduces the memory usage by over
90% and has an execution speed close to the results in [3].

II. REDUCING THE MEMORY USAGE FOR TLS

A. Fixed checkpoint depth limit

When a speculatively executed function makes a specula-
tive function call, the depth of the speculated function is the

caller’s depth+1. The checkpoint of a speculative function is
saved at a checkpoint depth equal to the depth of the function
speculated.

Our idea is to limit at what depths we store the check-
points, but still allow an unlimited speculation depth. Before
a speculation, a predefined checkpoint depth limit is compared
to the function’s checkpoint depth. If the checkpoint depth
is equal or below the checkpoint depth limit, we store the
checkpoint. If the value of the checkpoint depth is higher than
the checkpoint depth limit, we do not store the checkpoint,
instead, on rollbacks we go to the previous stored checkpoint.
This reduces the memory as we store a lower number of
checkpoints, but this also means that rollbacks require a larger
number of bytecode instructions to be re-executed. An example
is shown in Fig. 1.

Fig. 1. Before we speculatively execute a function at (i), we save the state
so we can rollback to this point. At (ii), i.e., the speculative function made
as a speculative function call at (i), we speculatively execute another function
call (iii). In normal TLS, we also save the state in (ii) in case of a rollback. In
our proposal, we do not store the state at checkpoint in (ii) if the checkpoint
depth is set to 1. If a rollback occurs in (iii), we would normally rollback to
(ii). However, in our proposal we would rollback to (i). As a result, we do not
need to store the checkpointed state in (ii), with the cost of doing a rollback
back to (i) instead of to (ii).

B. An adaptive heuristic

A fixed checkpoint depth limit does not adapt to functions
speculatively executing at different depths and rollbacks. We
would like to store fewer checkpoints to reduce the memory
usage, however this makes rollbacks more time consuming.
We therefore propose an adaptive heuristic that dynamically
adjusts the checkpoint depth limit based on the speculation
depth and rollback behavior of a web application.



The heuristic in Listing 1 improves the execution time
up to 8× and reduces the memory usage by over 90%, by
being selective at which checkpoint depth limit we store the
checkpoints. We have shown that as the speculation depth
increases we have more rollbacks. If a rollback occurs, we
want to reduce the number of bytecode instructions that needs
to be re-executed. Rollbacks are rare, but they often occur
between speculative functions with the same depth and occur
closely after each other. Therefore, when a rollback occurs, we
increase the limit to ensure that the number of re-executing
bytecode instructions is reduced for preceding rollbacks.

Listing 1. Since we are using nested speculation, each thread has a depth.
First we go through all the threads executing and place their depth in a list
l. In the next stage, we sort the list l ascending. Initially we set a variable
m to 0.5. The value m is increased to m = m + 1.0 / pow(2, no rollback +
1) if there is a rollback. Therefore, after the first rollback m would be 0.75,
after the second rollback m would be 0.825, etc. We pick the element a from
l[m×length of l], if the depth of the function we are about to speculate on
is lower than a, we save the state. If not, we make sure that, in case of a
rollback, we rollback to the last checkpoint were the state was saved. If the
length of l is lower than 3 we set a to 2.

boo l s p e c u l a t e ( i n t d e p t h ){
l = f e t c h d e p t h o f t h r e a d s ( ) ;
s o r t ( l ) ;

m = m + 1 . 0 / pow ( 2 , n o r o l l b a c k + 1 ) ;
i f ( l e n ( l ) < 3)

r e t u r n 2 > d e p t h ;
i n t a = l [m ∗ l e n ( l ) ] ;
r e t u r n a > d e p t h ;
}

If a speculative function makes a function call, we create
another thread. This thread’s parent will be in the list of
executing functions. One of the functions in this list could
have a suitable checkpoint to rollback to and the motivations
for doing this, is that the threads executing when you speculate
on a function call, is one of the depths you will rollback
to in case of a mis-speculation. We choose one such thread
by the median of the currently executing threads’ depths.
Therefore the median could be a suitable automatic choice for
a limitation of the checkpoint depth. However a fixed median
value (like 0.75 or 0.25× the length of the list with depths),
even though it made the memory usage lower, increased the
execution time. This can be understood from the characteristics
of JavaScript execution [5]; JavaScript functions are small in
terms of number of executed bytecode instructions and quickly
returns. Therefore the depth of the speculated functions is
going to vary.

III. EXPERIMENTAL METHODOLOGY

Our Thread-Level Speculation is implemented in the Squir-
relfish [6] JavaScript engine, and the basic TLS implementa-
tion is described in [3]. We have modified the TLS implemen-
tation to control whether to store a checkpoint or not. The
execution behavior of a web application is dependent not only
on the JavaScript isolated, e.g., interaction and manipulation
of the Document Object Model (DOM) tree, but in this paper
we focus on the JavaScript execution time.

We have selected 15 web applications from the Alexa list
of most visited web applications. The experiments are done on
a computer with 2 quadcore processors, i.e., in total 8 cores,
and 16 GB main memory.

IV. RESULTS OF FIXED CHECKPOINT DEPTHS

A. Improved execution time

Increasing the checkpoint depth to a certain limit generally
reduces the execution time. The highest speedup for 11 of
the 15 use cases is when we limit the checkpoint depth to
either 2, 4 or 8 (Fig. 2). However, an unlimited checkpoint
depth is fastest only for 3 out of 15 cases. The overhead of
TLS is increasing with an increased checkpoint depth, and
the potential for finding speculative functions decreases as
the checkpoint depth is over 4. This follows the JavaScript
execution model in web applications, where we are limited by
a certain amount of time for each JavaScript call.

Fig. 2. The speedup when we limit the checkpoint depth to 1, 2, 4, 8 and
put no restriction on the checkpoint depth and the speedup of the adaptive
heuristic. The memory usage when we limit the checkpoint depth to 1, 2, 4, 8
and for the adaptive heuristics relative to when we set not checkpoint depth.

When we set the checkpoint depth limit to 2, it is on
average 2% slower than when we do not limit the checkpoint
depth limit, but uses only 65% of the memory. When we set
the checkpoint depth limit to 4 or 8, it is 7% and 6% faster
and uses 83% and 97% of the memory.

Wikipedia and Gmail are faster for a checkpoint depth limit
= 1 (Fig. 2). Wikipedia has no rollbacks, few speculations
(only 12), and compared to the other web applications, limited
JavaScript interaction. Therefore, we do not see an increased
execution time with rollbacks, as there are none, independent
of what checkpoint depth limit we set.

Gmail has 40 threads executing at checkpoint depth 1 and
32 threads executing at checkpoint depth 2. If we count the
number of rollbacks, we see that there are 11 and 17 rollbacks
when we set the checkpoint depth limit to 1 and 2, respectively.
The execution time is 2% faster setting the checkpoint depth



limit = 2 which is counterintuitive, since there is a larger
number of threads and a lower number of rollbacks, so it
should be able to exploit running more JavaScript functions in
parallel. However, the cost of doing rollbacks is much higher
for checkpoint depth limit=1, than it is for checkpoint depth
limit=2. The effect of having a larger number of threads does
not outweigh the increased cost of doing rollbacks, therefore it
is slower than checkpoint depth limit = 2. However, it exploits
a large number of threads and is therefore faster than sequential
execution.

The gain in improved execution time is marginal when
limiting the checkpoint depth to 8 instead of 2 or 4 (Fig. 2).
This is in line with the results in [4], where we show that
most of the JavaScript function calls have a depth of 2 and
4. Further, there is a limit to the amount of time JavaScript
is allowed to execute for each event in the web application.
Therefore, as the depth of a function increases, the number
of executed bytecode instructions per function decreases. As
a result, there is only a small increase of the cost of doing
rollbacks from a checkpoint depth larger than 4.

The highest speedup is at checkpoint depth limit = 4, then
the speedup is gradually reduced. This shows that the overhead
of TLS increases when we increase the checkpoint depth limit,
and the gain in terms of more functions to speculative execute
decreases with an increased depth.

For Facebook the execution time improves for checkpoint
depth limit = 2, then for checkpoint limit = 4 it is slower than
the sequential execution time. The number of rollbacks relative
to the number of executed bytecode instructions gradually
decreases from checkpoint depth limit = 2 to limit = 8. Based
on the observation of the execution time for an unlimited
number of checkpoints stored, we observe that the number of
executed bytecode instructions decreases and that we at some
point reach a lower execution time than the sequential one.

At checkpoint depth limit = 2 the cost of the rollbacks is
increasing so that it is 2% slower than when no limit is set.
When we set a checkpoint depth limit = 1, it is slower than
the sequential execution time.

In Fig. 3 the number of executed bytecode instructions is,
as long as there are rollbacks, always higher with TLS. The
number of executed bytecode instructions increases when the
checkpoint depth limit decreases which shows that the costs
of doing rollbacks and doing re-executions increase.

As the checkpoint depth limit increases the number of
rollbacks increases (Fig. 3). The cost of doing a rollback
decreases as the checkpoint depth increases since the number
of bytecode instructions re-executed will be lower, even though
there are more rollbacks. Therefore we reduce the memory
usage, and have a higher speedup, if we are more restrictive on
the checkpoint depth since the number of re-executed bytecode
instructions will be smaller.

B. Reduction in memory usage

In Fig. 2 we show the maximum memory usage for the
selected use cases when we limit the checkpoint depth to 1, 2,
4, 8 and when we have no limit on the checkpoint depth. We
have normalized the memory usage to the memory usage of

Fig. 3. The number of executed bytecode instructions in Thread-Level Spec-
ulation relative to the number of sequentially executed bytecode instructions
(upper) and the number of rollbacks relative to the number of rollbacks when
we do not limit the checkpoint depth (lower). A special case in the Figure is
the wikipedia case, were there are no rollbacks, so the number of executed
bytecode instructions are the same for TLS and for the sequential execution.

unlimited checkpoint depth, i.e., each memory usage is divided
with the memory usage with not limit on the checkpoint depth.

In general, we find that increasing the checkpoint depth
increases the memory usage. The reason for this is that we are
saving more checkpoints. When we are limiting the checkpoint
depth to 2, we reduce the memory usage of TLS with 65%.
When we limit the checkpoint depths to 4 and 8, we reduce
the memory usage with 14% and 3% respectively.

For Linkedin, Blogspot, Google, Ebay, YouTube and Mys-
pace, the memory usage is higher with a checkpoint depth
limit = 8, than with unlimited checkpoint depth. There are two
operations which reduce the memory usage; when we rollback
due to a mis-speculation or when we commit a function back
to its parent thread when a function completes execution.

In Linkedin we have almost the same number of threads
and speculations; however when we do not limit the check-
point depth, the number of rollbacks becomes much higher.
Therefore, we can reduce the memory usage more than when
we limit the checkpoint depth to 8.

Blogspot and Ebay have almost the same number of
speculations, but without a limit on the checkpoint depth we
get a larger number of threads and rollbacks. Then we reduce
the memory both from rollbacks and when we commit values
to parents’ threads.

For Myspace and Google, we have a larger number of
speculations when we limit the checkpoint depth to 8 than
when we do not limit the checkpoint depth, while the number
of threads and rollbacks are the same. This shows that we
have more rollbacks and threads relative to the number of



speculations, which reduces the memory.

For YouTube we have the same number of threads, fewer
speculations, but a huge increase in the number of rollbacks.
We free more memory on rollbacks, and therefore have a lower
maximum memory usage.

For these 6 cases, the memory usage is larger for a
checkpoint depth of 8 than when no checkpoint depth is set.
If we rollback to a different checkpoint depth, we may find
other speculation possibilities, which may use more memory
as we speculate differently.

We are able to improve the execution time by 7% by
limiting the checkpoint depth over when we do not limit the
checkpoint depth. We are also able to reduce the memory
usage by 65%. This shows that the effect of not limiting the
checkpoint depth in terms of execution time is limited, but that
we can save large amounts of memory.

V. RESULTS OF THE ADAPTIVE HEURISTIC

The key idea of the heuristic is to select the checkpoint
depth limit in relation to already executing threads. The
adaptive heuristic significantly reduces the memory usage for
TLS, and gives an execution time that is close to the execution
time when we set no limit on the checkpoint depth. Since we
are using nested speculation, there might be a large number of
threads already executing when we speculate. When a rollback
occurs, we try to select a checkpoint depth in the speculation
tree such that the number of bytecode instructions in case of
rollbacks in the future will be lowered.

A. Improved execution time

When a small number of threads are executing, we do not
really need to store the checkpoint. If a rollback occurs, the
number of bytecode instructions we have to re-execute will be
small. This has two consequences; first, given the limitations
of allowed execution time in JavaScript in web applications,
the functions that are executing are at this point quite large.
The next consequence is, if there will be a rollback in these,
the number of bytecode instructions for the re-execution is
limited. Therefore the heuristic reduces the execution time.

B. Reduction in memory usage

Fig. 2 shows that we reduce the memory usage between
93% – 45% (BBC and Linkedin). One exception is Wikipedia,
but this use case does not have any rollbacks and a low number
of JavaScript function calls, which limits the potential gain
from speculations.

The heuristic is able to reduce the memory usage below
when we set the checkpoint depth limit to 1. In Fig. 2, for 9
out of the 15 use cases, the memory usage is lower with the
heuristic than when we set the checkpoint depth limit to 1.

The heuristic has a higher number of rollbacks and a higher
number of speculations. This explains why the memory usage
is lower, both with more rollbacks with small number of byte-
code instructions that needs to re-executed and more commits.
Since we are using nested speculation, a speculated function
could be created from a function executing speculatively. We
could imagine the functions executing in a tree like structure,

similar to the one in Fig. 1. When we do a rollback, we would
like to rollback to a state, which is part of the speculation
tree, to reduce the number of bytecode instructions that needs
to be re-executed. With a checkpoint of 1, we often re-execute
bytecode instructions which are not part of the speculation tree,
but with a moving median we might not.

When the number of already executing threads is below 3,
the probability of rollbacks is very low; therefore we set the
checkpoint depth to 2. This means that we in many cases do
not save the state when there is a low number of threads,
and therefore we save memory, which leads to a memory
usage similar to checkpoint depth 1. So when we stay in the
speculation tree, we have a higher number of rollbacks (we
saw this from the increase in rollbacks when we increased
the speculation depth) and we are careful where we store the
checkpoint when there are few active threads. This indicates
that the number of threads already executing when we are
about to speculate on a function call, is highly dynamic, since
the amount of execution performed by each JavaScript function
is small. This means that the value of the checkpoint depth
needs to be dynamically set. When there are a small number
of threads already executing, there is not really a need to save
the checkpoint. If there is a large number of threads, there is
likely going to be many threads with different depths, and in
that case, make sure that the checkpoint is near so you rollback
in the speculation tree.

The results of this heuristic, is that we are able to signifi-
cantly improve the execution time, while reducing the memory
usage by over 90% by adaptively selecting at what depth we
are storing checkpoints.

VI. CONCLUSIONS

Our results show that we do not need to save the state each
time we speculatively execute a function. As a result, we can
reduce the amount of memory used for speculation. However,
since nested speculation has been shown to be necessary, we
need to save states on at least checkpoint depth 2 in order to
improve the execution time, or it will be too expensive to do
the necessary rollbacks.

REFERENCES

[1] E. Fortuna, O. Anderson, L. Ceze, and S. Eggers, “A limit study of
javascript parallelism,” in 2010 IEEE Int’l Symp. on Workload Charac-
terization (IISWC), Dec. 2010, pp. 1–10.

[2] M. Mehrara, P.-C. Hsu, M. Samadi, and S. Mahlke, “Dynamic paralleliza-
tion of JavaScript applications using an ultra-lightweight speculation
mechanism,” in Proc. of the 17th Int’l Symp. on High Performance
Computer Architecture, 2011, pp. 87–98.

[3] J. K. Martinsen, H. Grahn, and A. Isberg, “Using Speculation to Enhance
JavaScript Performance in Web Applications,” IEEE Internet Computing,
vol. 17, no. 2, pp. 10–19, 2013.

[4] ——, “A Limit Study of Thread-Level Speculation in JavaScript Engines
– Initial Results,” in Fifth Swedish Workshop on Multi-Core Computing
(MCC-12), November 2012, pp. 75–82.

[5] ——, “A Comparative Evaluation of JavaScript Execution Behavior,” in
Proc. of the 11th Int’l Conf. on Web Engineering (ICWE 2011), June
2011, pp. 399–402.

[6] WebKit, “The WebKit open source project,” 2012,
http://www.webkit.org/.


