
A Comparative Evaluation of JavaScript

Execution Behavior

Jan Kasper Martinsen1, H̊akan Grahn1, and Anders Isberg2

1 Blekinge Institute of Technology, Karlskrona, Sweden,
{jan.kasper.martinsen,hakan.grahn}@bth.se

2 Sony Ericsson Mobile Communications AB, Lund, Sweden,
Anders.Isberg@sonyericsson.com

Abstract. JavaScript is a dynamically typed, object-based scripting
language with runtime evaluation. It has emerged as an important lan-
guage for client-side computation of web applications. Previous stud-
ies indicate some differences in execution behavior between established
benchmarks and real-world web applications.
Our study extends previous studies by showing some consequences of
these differences. We compare the execution behavior of four application
classes, i.e., four JavaScript benchmark suites, the first pages of the Alexa
top-100 web sites, 22 use cases for three social networks, and demo ap-
plications for the emerging HTML5 standard. Our results indicate that
just-in-time compilation often increases the execution time for web ap-
plications, and that there are large differences in the execution behavior
between benchmarks and web applications at the bytecode level.

1 Introduction

The World Wide Web is an important platform for many applications and ap-
plication domains, e.g., social networking and electronic commerce. These type
of applications are often referred to as web applications. Social networking web
applications, such as Facebook, Twitter, and Blogger, have turned out to be
popular, being in the top-25 web sites on the Alexa list [1]. All these three appli-
cations use JavaScript extensively. Further, we have found that 98 of the top-100
web sites use JavaScript to some extent.

JavaScript is a dynamically typed, object-based scripting language with run-
time evaluation. The execution of a JavaScript program is done in a JavaScript
engine [6], and several benchmarks have been proposed to evaluate its perfor-
mance. However, previous studies show that the execution behavior differs be-
tween benchmarks and real-world web applications in several aspects [4, 5].

We compare the execution behavior of four different application classes, i.e.,
(i) four established JavaScript benchmark suites, (ii) the start pages for 100 most
visited web applications, (iii) 22 different use cases for popular social networks,
and (iv) 109 demo applications for the emerging HTML5 standard. We extend
previous studies with three main contributions : An extension of the execution
behavior analysis with reproducible use cases of social network applications and

II

HTML5 applications, we show that just-in-time compilation often increases the
execution time for web applications, and we provide a detailed instruction mix
measurement and analysis. A more comprehensive set of results is found in [3].

2 Experimental methodology

The experimental methodology is thoroughly described in [2]. We have selected
a set of 4 application classes consisting of the first page of the 100 most popular
web sites, 109 HTML5 demos from the JS1K competition, 22 use cases from
three popular social networks (Facebook, Twitter, and Blogger), and a set of 4
benchmarks for measurements. We have measured and evaluated two aspects:
the execution time with and without just-in-time compilation, and the bytecode
instruction mix for different application classes. The measurements are made on
modified versions of the GTK branch of WebKit (r69918) and Mozilla Firefox
with the FireBug profiler.

Web applications are highly dynamic and the JavaScript code might change
from time to time. We improve the reproducibility by modifying the test environ-
ment to download and re-execute the associated JavaScript locally (if possible).
For each test an initial phase is performed 10 times to reduce the chances of
execution of external JavaScript code.

Another challenge is the comparison between the social networking web ap-
plications and the benchmarks, since the web applications have no clear start
and end state. To address this, we defined a set of use cases based on the behav-
ior of friends and colleagues, and from this we created instrumented executions
with the Autoit tool.

We modified our test environment in order to enable or disable just-in-time
compilation. During the measurements, we executed each test case and appli-
cation with just-in-time compilation disabled and enabled 10 times each, and
selected the best one for comparison. We used the following relative execution
time metric to compare the difference between just-in-time-compilation (JIT)
and no-just-in-time-compilation (NOJIT):

Texe(JIT)/Texe(NOJIT) ≥ 1

3 Experimental results

3.1 Comparison of the effect of just-in-time compilation

In Figure 1 we present the relative execution time for the Alexa top-100 web sites,
the first 109 JS1K demos, 24 SunSpider benchmarks, 6 Dromaeo benchmarks,
and 10 JSBenchmarks. The results show that for 58 out of the top-100 web sites
and for 50 out of 109 JS1K demos, JIT increases the execution time. When
JIT fails, it increases the execution time by a factor of up to 75. In contrast,
just-in-time compilation decreases the execution time for almost all benchmarks.
In general, the penalty of a unsuccessful JIT compilation is larger in real-world
web applications. However, the gain is also much larger for the largest decrease
in execution time with a JIT compilation.

III

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 20 40 60 80 100 120

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

JI
T

/N
O

JI
T

Website/Demo

JIT successfull 42/100 (Top 100 Alexa websites)
JIT successfull 59/109 (JS1K demos)

SunSpider benchmarks 24/24
Dromaeo benchmarks 3/6

JSBenchmarks benchmarks 7/10

Fig. 1. Relative execution time Texe(JIT) / Texe(NOJIT) for the top-100 Alexa web
sites, the first 109 JS1K demos, 24 Sunspider benchmarks, 6 Dromaeo benchmarks,
and 10 JSBenchmarks. A value larger than 1 means that JIT compilation increases
the execution time.

3.2 Comparison of bytecode instruction usage

We have measured the bytecode instruction mix for the selected benchmarks
and for the Alexa top-100 sites. Figure 2 shows the results for the top-100 sites
and the SunSpider benchmarks since they differ the most.

Our results show that the arithmetic/logical instructions and bit operations
are used significantly more in the SunSpider benchmarks than in the web appli-
cations. We also find that general branch/jump instructions are more common in
web applications, while loop instructions are more common in the benchmarks.
The large number of jmp instructions indicates the importance of function calls
in web applications.

4 Conclusions

Our most important results are that just-in-time compilation often increases
the execution time of web applications and that the execution behavior of the
benchmarks differs significantly from the web applications. The instruction mix
gives an indication why loop-based optimization techniques often fails for web
applications. These results call for alternative optimization techniques for web
applications as well as benchmarks that better represents their workload.

IV

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

negate

add
m

ul
div m

od
sub

lshift
rshift

urshift

bitand

bitxor

bitor
bitnot

not
jm

p
loop_if_true

loop_if_false

jtrue
jfalse

jeq_null

jneq_null

jneq_ptr

loop_if_less

loop_if_lesseq

jnless

jless
jnlesseq

jlesseq

switch_im
m

switch_char

switch_string

R
el

at
iv

e
nu

m
be

r
of

 e
xe

cu
tio

n
ca

lls

Alexa top 100
Sunspider

Fig. 2. Branch, jump, and arithmetic/logical related bytecode instructions for the
Alexa top-100 web sites and the SunSpider benchmarks.

Acknowledgments

This work was partly funded by the Industrial Excellence Center EASE - Em-
bedded Applications Software Engineering, (http://ease.cs.lth.se).

References

1. Alexa. Top 500 sites on the web, 2010. http://www.alexa.com/topsites.
2. J.K. Martinsen and H. Grahn. A methodology for evaluating JavaScript execution

behavior in interactive web applications. In Proc. of the 9th ACS/IEEE Int’l Conf.
on Computer Systems And Applications, pages XX–YY, December 2011.

3. J.K. Martinsen, H. Grahn, and A. Isberg. Evaluating four aspects of JavaScript
execution behavior in benchmarks and web applications. Technical Report No.
2011:01, Blekinge Institute of Technology, Sweden, 2011.

4. P. Ratanaworabhan, B. Livshits, and B.G. Zorn. JSMeter: Comparing the behavior
of JavaScript benchmarks with real web applications. In WebApps’10: Proc. of the
2010 USENIX Conf. on Web Application Development, pages 3–3, 2010.

5. G. Richards, S. Lebresne, B. Burg, and J. Vitek. An analysis of the dynamic behavior
of JavaScript programs. In PLDI ’10: Proc. of the 2010 ACM SIGPLAN Conf. on
Programming Language Design and Implementation, pages 1–12, 2010.

6. WebKit. The WebKit open source project, 2010. http://www.webkit.org/.

