
The Design and Implementation of Multiprocessor

Support for an Industrial Operating System Kernel∗

Simon Kågström, Håkan Grahn, and Lars Lundberg

Department of Systems and Software Engineering

School of Engineering

Blekinge Institute of Technology

P.O. Box 520, SE-372 25 Ronneby, Sweden

{ska, hgr, llu}@bth.se

January 28, 2008

Abstract

The ongoing transition from uniprocessor to multi-core computers requires support from

the operating system kernel. Although many general-purpose multiprocessor operating sys-

tems exist, there is a large number of specialized operating systems which require porting

in order to work on multiprocessors. In this paper we describe the multiprocessor port of

a cluster operating system kernel from a producer of industrial systems. Our initial imple-

mentation uses a giant locking scheme that serializes kernel execution. We also employed

a method in which CPU-local variables are placed in a special section mapped to per-CPU

physical memory pages. The giant lock and CPU-local section allowed us to implement an

initial working version with only minor changes to the original code, although the giant lock

and kernel-bound applications limit the performance of our multiprocessor port. Finally, we

also discuss experiences from the implementation.

keywords: Multiprocessor, operating system, kernel, cluster, porting, implementation

experiences

1 Introduction

A current trend in the computer industry is the transition from uniprocessors to various kinds
of multiprocessors, also for desktop and embedded systems. Apart from traditional SMP (Sym-
metric MultiProcessor) systems, many manufacturers are now presenting chip multiprocessors or
simultaneous multithreaded CPUs [9, 17, 11] which allow more e�cient use of chip area. The
trend towards multiprocessors requires support from operating systems and applications to take
advantage of the hardware.

While there are many general-purpose operating systems for multiprocessor hardware, it is
not always possible to adapt special-purpose applications to run on these operating systems, for
example due to di�erent programming models. These applications often rely on support from
customized operating systems, which frequently run on uniprocessor hardware. There are many
important application areas where this is the case, for example in telecommunication systems or
embedded systems. To bene�t from the new hardware, these operating systems must be adapted.

We are working on a project together with a producer of large industrial systems in providing
multiprocessor support for an operating system kernel. The operating system is a special-purpose

∗This is an extended version of the paper �Experiences from Implementing Multiprocessor Support for an In-
dustrial Operating System Kernel� presented at RTCSA-2005 [12]

1



industrial system primarily used in telecommunication systems. It currently runs on clusters of
uniprocessor Intel IA-32 (32-bit Intel Architecture) computers, and provides high availability and
fault tolerance as well as (soft) real-time response time and high throughput performance. The
system can run on one of two operating system kernels, either the Linux kernel or an in-house
kernel, which is an object-oriented operating system kernel implemented in C++. The in-house
operating system totally contains around 2.5 million lines of code, although the kernel is only part
of that (the rest being middleware and user-space support).

The in-house kernel o�ers higher performance while Linux provides compatibility with third-
party libraries and tools. As a cluster, the system scales through adding more nodes to the cluster,
whereas a traditional multiprocessor system scales by adding more CPUs to the computer. The
goal with the addition of multiprocessor support is to allow single nodes in the cluster to be SMPs
instead of uniprocessors. With multiprocessor hardware becoming cheaper and more cost-e�ective,
a port to multiprocessor hardware is becoming increasingly interesting to harvest the performance
bene�ts of the in-house kernel.

In this paper, we describe the design and implementation of initial multiprocessor support for
the in-house kernel. We have also conducted a set of benchmarks to evaluate the performance,
and also pro�led the locking scheme used in our implementation. Some structure names and terms
have been modi�ed to keep the anonymity of our industrial partner.

The rest of the paper is structured as follows. Section 2 describes the structure of and the
programming model of the operating system. Section 3 thereafter describes the design decisions
made for the added multiprocessor support. Section 4 outlines the method we used for evaluating
our implementation, and Section 5 describes the evaluation results. We thereafter discuss some
experiences we made during the implementation in Section 6, and describe related and future work
in Section 7. Finally, we conclude in Section 8.

2 The Operating System

Figure 1 shows the architecture of the operating system. The system exports a C++ and a Java
application programming interface (API) to programmers for the clusterware. The clusterware
runs on top of either the in-house kernel or Linux and provides access to a distributed RAM-
resident database, cluster management that provides fail-safe operation, and an object broker
(CORBA, Common Object Request Broker Architecture) that provides interoperability with other
systems.

A cluster consists of processing nodes and gateway machines. The processing nodes handle the
workload and usually run the in-house kernel. Gateway machines run Linux and act as front-ends
to the cluster, forwarding tra�c to and from the cluster. The gateway machines further provide
logging support for the cluster nodes and do regular backups to hard disk of the database. Linux
machines can run as processing nodes as well, but since the in-house kernel is built to suit the pro-
gramming model and applications, Linux typically o�ers worse performance in processing nodes.
The cluster is connected by redundant Ethernet connections internally, while the connections to
the outside world can be either SS7 [8] (Signaling System 7) or Ethernet. Booting a node is per-
formed completely over the network by PXE [7] (Preboot Execution Environment) and TFTP [21]
(Trivial File Transfer Protocol) requests handled by the gateway machines.

2.1 The Programming Model

The operating system employs an asynchronous programming model and allows application devel-
opment in C++ and Java. The execution is event-based and driven by callback functions invoked
on events such as inter-process communication, process startup, termination, or software upgrades.
The order of calling the functions is not speci�ed and the developer must adapt to this. However,
the process will be allowed to �nish execution of the callbacks without being preempted, so two
callbacks will never execute concurrently in one process.

2



Figure 1: The architecture of the operating system.

In the operating system, two types of processes, static and dynamic, are de�ned. Static pro-
cesses are restarted on failure and can either be unique or replicated in the system. For unique
static processes, there is only one process of that type in the whole system, whereas for repli-
cated processes, there is one process per node in the system. If the node where a unique process
resides crashes, the process will be restarted on another node in the system. Replicated static
processes allow other processes to communicate with the static process on the local node, which
saves communication costs.

Dynamic processes are created when referenced by another process, for example by a static
process, typically being keyed to database objects and started when the object is referenced. The
dynamic processes usually run short jobs, for instance checking and updating an entry in the
database. Dynamic processes are often tied to database objects on the local node to provide fast
access to database objects. In a telecommunication billing system for example, a static process
could be used to handle new calls. For each call, the static process creates a dynamic process,
which, in turn, checks and updates the billing information in the database. This mode of operation
requires that creation and destruction of dynamic processes must be fast in the operating system,
which is also re�ected in some design decisions taken.

2.2 The Distributed Main-Memory Database

The operating system employs an object-oriented distributed RAM-resident database which pro-
vides high performance and fail-safe operation. The database stores persistent objects which
contain data and have methods just like other objects. The objects can be accessed transparently
across nodes, but local objects are faster to access than remote ones (which is the reason to tie
processes to database objects).

To protect against failures, each database object is replicated on at least two nodes. On
hardware or software failure, the cluster is recon�gured and the database objects are distributed
to other nodes in the cluster.

2.3 The Process and Memory Model

The operating system bases user programs on three basic entities: threads, processes, and con-
tainers as shown in Figure 2. The in-house kernel has kernel-level support for threading, and
threads de�ne the basic unit of execution for the in-house kernel. The thread control block (TCB)
holds the register state, a thread identi�er and various thread-bound resources. Processes act as
resource holders, containing open �les, sockets, etc., as well as one or more threads. The process
always has one main thread which is handled separately from the other threads to optimize for
the mostly single-threaded process programming model. Containers, �nally, de�ne the protection
domain (an address space). Contrary to the traditional UNIX model, the in-house kernel separates
the concepts of address space and process, and a container can contain one or more processes,
although there normally is a one-to-one correspondence between containers and processes.

3



Figure 2: The process model for the in-house kernel. Containers de�ne an address space and
protection domain, processes hold resources and threads implement threads of execution.

The primary use of multi-process containers is the Java virtual machine, which does not need
separate address spaces for processes since protection is implemented at the language level. Simi-
larly, few processes have multiple threads, again with the JVM being the primary exception.

To allow for the asynchronous programming model and short-lived processes, the in-house
kernel supplies very fast creation and termination of processes. There are several mechanisms
behind the fast process handling. First, each code package (object code) is located at a unique
virtual address range in the address space. All code packages also reside in memory at all times,
similar to how single-address space operating systems [3, 6] work. This allows fast setup of new
containers since no new memory mappings are needed for object code. The shared mappings for
code further means that there will never be any page faults on application code, and also that
remote procedure calls can be implemented e�ciently since functions in the other process can be
identi�ed by their address directly.

The paging system uses a two-level paging structure on the IA-32. The �rst level on the IA-32 is
called a page directory and is an array of 1024 page directory entries, each pointing to a page table
mapping 4MB of the address space. Each page table in turn contains page table entries which
describe the mapping of 4KB virtual memory pages to physical memory pages. During kernel
initialization, a global page directory containing application code and kernel code and kernel data
is created, and this page directory then serves as the basis for subsequent page directories since
most of the address space is identical between containers. The address space of the in-house kernel
is shown in Figure 3.

The in-house kernel also keeps all data in-memory at all times, so there is no overhead for
handling pageout to disk. Apart from reducing time spent in waiting for I/O, this also reduces
the complexity of page fault handling. A page fault will never cause the faulting thread to sleep,
and this simpli�es the page fault handler and improves real-time predictability of the page fault
latency.

The memory allocated to a container initially is very small. The container process (which will
be single-threaded at startup time), starts with only two memory pages allocated, one containing
the page table and the other the �rst 4KB of the process stack. Because of this, the container can
use the global page directory, replacing the page directory entry for the 4MB region which contains
the entire container stack, the global variables, part of the heap and some global variables. Any
page fault occurring in this 4MB region can be handled by adding pages to the page table.

For some short-lived processes, the initial space for stack and heap is enough, and they can
run completely in the global page directory. Switching between such processes is also quite fast
since the page directory itself does not need to change, and the switch can be done by simply

4



Figure 3: The in-house kernel address space on Intel IA-32 (simpli�ed).

updating one page table pointer in the page directory. The small memory requirements for new
processes contribute to making the system fast and contributes a large part of the viability of the
process-based programming model by allowing for fast process turnaround.

Figure 4 shows the container address space handling in the operating system. In Figure 4a, the
situation right after process startup is shown. The container �rst uses the global page directory,
with two pages allocated: one for the stack page table and one for the process stack. This situation
gradually evolves into Figure 4b, where the process has allocated more pages for the stack, the
heap or global variables, still within the 4MB area covered by the stack page table. When the
process accesses data outside the stack page table, the global page directory can no longer be used
and a new page directory is allocated and copied from the global as shown in Figure 4c.

3 Design of the Multiprocessor Support

In this section, we discuss the design of multiprocessor support for the in-house kernel. We describe
the locking scheme we adopted, the implementation of CPU-local data, and optimizations made
possible by the special properties of the in-house kernel.

3.1 Kernel Locking and Scheduling

For the �rst multiprocessor implementation, we employ a simple locking scheme where the entire
kernel is protected by a single, �giant� lock (see Chapter 10 in [20]). The giant lock is acquired
when the kernel is entered and released again on kernel exit. The implementation uses execution
levels for the uniprocessor kernel to make kernel operations safe for system calls and interrupts,
which enter the kernel in di�erent ways. The uniprocessor keeps track of three levels represented
by integers 0, 1, and 2 respectively. The level increases on entry into the kernel from userspace
and on interrupts, and is decreased again on the return path. The execution level when running
in userspace is 0, and 1 during system calls or interrupts occuring while in userspace. If the kernel
itself is interrupted, the level becomes 2.

For the giant locking implementation, it was therefore fairly easy to just follow the changes in
execution level - taking the giant lock when the execution level increases and releasing it when the
execution level decreases. In e�ect, the lock serves to serialize kernel execution by allowing only

5



Figure 4: Handling of container address spaces in the in-house kernel

one processor in the kernel (either while executing interrupt handlers or kernel operations). The
giant lock is also recursive and can therefore be taken multiple times by the same processor.

The advantage of the giant locking mechanism is that the implementation is kept close to the
uniprocessor version. Using the giant lock, the uniprocessor semantics of the kernel can be kept,
since two CPUs will never execute concurrently in the kernel. For the initial version, we deemed
this important for correctness reasons and to get a working version early. However, the giant
lock has shortcomings in performance since it locks larger areas than potentially needed. This is
especially important for kernel-bound processes and multiprocessors with many CPUs. Later on,
we will therefore relax the locking scheme to allow concurrent access to parts of the kernel.

We also implemented CPU-a�nity for threads in order to avoid cache lines being moved be-
tween processors. Since the programming model in the operating system is based on short-lived
processes, we chose a model where a thread never is migrated from the CPU it was started on.
For short-lived processes, the cost of migrating cache lines between processors would cause major
additional latency. Further, load imbalance will soon even out with many short processes. With
fast process turnaround, newly created processes can be directed to idle CPUs to quickly even out
load imbalance.

3.2 CPU-local Data

Some structures in the kernel need to be accessed privately by each CPU. For example, the
currently running thread, the current address space, and the kernel stack must be local to each
CPU. A straightforward method of solving this would be to convert the a�ected structures into
vectors, and index them with the CPU identi�er. However, this would require extensive changes
to the kernel code, replacing every access to the structure with an index-lookup. It would also
require three more instructions (on IA-32) for every access, not counting extra register spills etc.

This led us to adapt another approach instead, where each CPU always runs in a private address
space. With this approach, each CPU accesses the CPU-local data at the same virtual address
without any modi�cations to the code, i.e., access of a CPU-local variable is done exactly as in
the uniprocessor kernel. To achieve this, we reserve a 4KB virtual address range for CPU-local
data and map this page to di�erent physical pages for each CPU. The declarations of CPU-local

6



variables and structures are modi�ed to place the structure in a special ELF-section [22], which
is page-aligned by the linker.

The CPU-local page approach presents a few problems, however. First, some CPU-local struc-
tures are too large to �t in one page of memory. Second, handling of multithreaded processes
must be modi�ed for the CPU-local page, which is explained in the next section. The kernel
stack, which is 128KB per CPU, is one example of a structure which is too large to store in the
CPU-local page. The address of the kernel stack is only needed at a few places, however, so we
added a level of indirection to set the stack pointer register through a CPU-local pointer to the
kernel stack top. The global page directory (which needs to be per-CPU since it contains the
CPU-local page mapping) is handled in the same manner.

3.3 Handling of multithreaded Processes

The CPU-local page presents a problem for multithreaded containers (address spaces). Normally,
these would run in the same address space, which is no problem on a uniprocessor system. In a
multiprocessor system, however, using a single address space for all CPUs would cause the CPU-
local virtual page to map to the same physical page for all CPUs, i.e., the CPU-local variables
would be the same for all CPUs. To solve this problem, a multithreaded container needs a separate
page directory for every CPU which executes threads in the container. However, we do not want to
compromise the low memory requirements for containers by preallocating a page for every CPU.

Since multithreaded containers are fairly rare in the operating system, we chose a lazy method
for handling the CPU-local page in multithreaded containers. Our method allows singlethreaded
containers to run with the same memory requirements as before, while multithreaded containers
require one extra memory page per CPU which executes in the container. Further, the method
requires only small modi�cations to the kernel source code and allows for processor a�nity opti-
mizations without changes.

Figure 5: Handling of container address spaces in the in-house kernel for multiprocessor computers

Figure 5 shows the handling of multithreaded containers on multiprocessors in the in-house
kernel. The �gure shows the container memory data structure, which has a container page direc-
tory pointer and an initial page directory entry as before (see Figure 4 and Section 2.3), but has
also been extended with an array of per-CPU page directory pointers.

When the process starts up it will have only one thread and the situation is then as in Figure 5a.
The process initially starts without a private address space and instead uses the global address
space (which is CPU-local). The global page directory is modi�ed with a page table for the process
stack, global variables and part of the heap. As long as the process is singlethreaded and uses
moderate amounts of heap or stack space, this will continue to be the case.

7



When the process becomes multithreaded the �rst time, as shown in Figure 5b, a new container
page directory is allocated and copied from the global page directory1. The current CPU will then
be set as the owner of the container page directory. The CPU-local entry of the page directory is
thereafter setup to point to the CPU-local page table of the CPU that owns the container page
directory. Apart from setting the owner, this step works exactly as in the uniprocessor version.
Since the thread stacks reside outside the 4MB process stack area, multithreaded processes will
soon need a private address space, so there is no additional penalty in setting up the address space
immediately when the process becomes multithreaded.

As long as only one CPU executes the threads in the process, there will be only one page
directory used. However, as soon as another CPU schedules a thread in the process, a single page
directory is no longer safe. Therefore, the container page directory is copied to a new CPU-local
page directory which is setup to map the CPU-local page table. This is shown in Figure 5c. Note
that apart from the CPU-local page table, all other page tables are identical between the CPUs.
When scheduling the thread, the CPU-local page directory will be used.

One complication with this scheme is page fault handling. If two or more CPUs run in a
container, a page fault will be generated for the CPU-local page directory. We therefore modi�ed
the page fault handler to always update the container page directory beside the CPU-local page
directory. However, there can still be inconsistencies between page directories if the owner of
the container page directory causes a page fault, which would only update the container page
directory. A later access on the same page from another CPU will then cause a spurious page
fault. We handle this situation lazily by checking if the page was already mapped in the container
page directory, in which case we just copy the entry to the faulting page directory. Note that this
situation is fairly uncommon since it only a�ects faults on unmapped page directories, i.e., 4MB
areas. Faults on 4KB pages will be handled transparently of our modi�cations since the page
tables are shared by all CPUs.

We also handle inconsistencies in the address translation cache (TLB) lazily. If a page table
entry in a container is updated on one CPU, the TLBs on other CPUs executing in the container
can contain stale mappings, which is another source of spurious page faults. Spurious page faults
from a inconsistent TLB can be safely ignored in the in-house kernel since pages are never un-
mapped from a container while the process is running. This saves us from invalidating the TLBs
on other CPUs, which would otherwise require an inter-processor interrupt.

4 Evaluation Framework

We have performed an initial evaluation of our multiprocessor implementation where we evaluate
contention on our locking scheme as well as the performance of the multiprocessor port. We ran
all performance measurements on a two-way 300MHz Pentium II SMP equipped with 128MB
SDRAM main memory.

For the performance evaluation, we constructed a benchmark application which consists of
two processes executing a loop in user-space which at con�gurable intervals performs a system
call. We then measured the time needed (in CPU-cycles) to �nish both of these processes. This
allows us to vary the proportion of user to kernel execution, which will set the scalability limit
for the giant locking approach. Unfortunately, we were not able to con�gure the operating system
to run the benchmark application in isolation, but had to run a number of system processes
beside the benchmark application. This is incorporated into the build process for applications,
which normally need support for database replication, logging etc. During the execution of the
benchmark, around 100 threads were started in the system (although not all were active).

We also benchmarked the locking scheme to see the proportion of time spent in holding the giant
lock, spinning for the lock, and executing without the lock (i.e., executing user-level code). The
locking scheme was benchmarked by instrumenting the acquire lock and release lock procedures
with a reading of the CPU cycle counter. The lock time measurement operates for one CPU at a

1Note that a new page directory can be allocated for singlethreaded processes as well, if they access memory
outside the 4MB area of the stack page table.

8



time, in order to avoid inconsistent cycle counts between the CPUs and to lessen the perturbation
from the instrumentation on the benchmark. The locking scheme is measured from the start of
the benchmark application until it �nishes.

5 Evaluation Results

In this section we present the evaluation results for the locking scheme and the application bench-
mark. We also evaluate our CPU-a�nity optimization and the slowdown of running the multipro-
cessor version of the operating system on a uniprocessor machine. Consistent speedups are only
seen when our benchmark application executes almost completely in user-mode, so the presented
results refer to the case when the benchmark processes run only in user-mode.

Executing the benchmark with the multiprocessor kernel on a uniprocessor gives a modest
slowdown of around 2%, which suggests that our implementation has comparatively low overhead
and that the multiprocessor kernel can be used even on uniprocessor hardware. Running the
benchmark on the multiprocessor gives a 20% speedup over the uniprocessor kernel, which was
less than we expected. Since the two benchmark processes run completely in user-mode and does
not interact with each other, we expected a speedup close to 2.0 (slightly less because of interrupt
handling costs etc.).

Table 1: Proportion of time spent executing user and kernel code.
User-mode Kernel Spinning

UP 64% 36% < 0.1%
SMP 55%-59% 20%-22% 20-23%

Table 1 shows the lock contention when the benchmark application run completely in user-
mode, both the uniprocessor and the multiprocessor. For the uniprocessor, acquiring the lock
always succeeds immediately. From the table, we can see that the uniprocessor spends around
36% of the time in the kernel. On the multiprocessor, all times are shared between two CPUs,
and we see that 20%-23% of the time is spent spinning for the giant lock. Since the in-kernel time
is completely serialized by the giant lock, the theoretically maximum speedup we can achieve on
a dual processor system is 36+64

36+ 64
2
≈ 1.47 according to Amdahl's law [1].

There are several reasons why the speedup is only 1.2 for our benchmark. First, the benchmark
processes do not execute in isolation, which increases the in-kernel time and consequently the time
spent spinning for the lock. Second, some heavily accessed shared data structures in the kernel,
e.g., the ready queue cause cache lines to be transferred between processors, and third, spinning
on the giant lock e�ectively makes the time spent in-kernel on the multiprocessor longer than for
the uniprocessor.

CPU-a�nity does not exhibit clear performance bene�ts, with the benchmark �nishing within
a few percent faster than without a�nity. This is likely caused because of the high proportion of
in-kernel execution. We also tried some other optimizations such as prioritizing the benchmark
processes over other processes and di�erent time slice lengths, but did not get any signi�cant
bene�ts over the basic case.

6 Implementation Experiences

The implementation of multiprocessor support for the in-house kernel was more time consuming
than we �rst expected. The project has been ongoing part-time for two years, during which a
single developer has performed the multiprocessor implementation. Initially, we expected that a
�rst version would be �nished much sooner, in approximately six months. The are several reasons
for the delay.

First, the development of a multiprocessor kernel is generally harder then a uniprocessor kernel
because of inherent mutual exclusion issues. We therefore wanted to perform the development in

9



the Simics full-system simulator [16], and a related project investigated running the operating
system on Simics. It turned out, however, that it was not possible at that time to boot the system
on Simics because of lacking hardware support in Simics. Second, we performed most of the
implementation o�-site, which made it harder to get assistance from the core developers. Coupled
to the fact that the system is highly specialized and complex to build and setup, this led us to
spend a signi�cant amount of time on con�guration issues and build problems. Finally, the code
base of the operating system is large and complex. The system consists of over 2.5 million lines
totally, of which around 160,000 were relevant for our purposes. The complexity and volume of the
code meant that we had to spend a lot of time to grasp the functionality of the code. Most of the
�rst year was spent in analyzing the code and in implementing functionality largely separate from
the operating system kernel (e.g., processor startup), which could be done without an in-depth
knowledge of the kernel internals.

In the end, we wrote around 2,300 lines of code in new �les and modi�ed 1,600 existing lines
for the implementation. The new code implement processor startup and support for the locking
scheme whereas the modi�ed lines implement CPU-local data, acquiring and releasing the giant
lock etc. The changes to the original code is limited to around 1% of the total relevant code base,
which shows that it is possible to implement working multiprocessor support with a relatively
modest engineering e�ort. We chose the simple giant lock to get a working version fast and the
focus is now on continuous improvements which we discuss in Section 7.

7 Related and Future Work

The operating system studied in this paper has, as mentioned before, a number of properties
that are di�erent from other cluster operating systems. It provides a general platform with high
availability and high performance for distributed applications and an event-oriented programming
environment based on fast process handling. Most other platforms/programming environments are
mainly targeted at high performance and/or parallel and distributed programming, e.g., MPI [18]
or OpenMP [19]. These systems run on networked computer nodes running a standard operating
system, and are not considered as cluster operating systems.

There exists some distributed operating systems running on clusters of Intel hardware. One
such example is Plurix [5], which has several similarities with the operating system. Plurix pro-
vides a distributed shared memory where communication is done through shared objects. The
consistency model in Plurix is based on restartable transactions coupled with an optimistic syn-
chronization scheme. The distributed main memory database in the operating system serves the
same purpose. However, to the best of our knowledge, Plurix only runs on uniprocessor nodes
and not on multiprocessors in a cluster. Plurix is also Java-based whereas the operating system
presented in this paper supports both C++ and Java development.

Many traditional multiprocessor operating systems have evolved from monolithic uniprocessor
kernels, e.g., Linux and BSD. Such monolithic kernels contain large parts of the actual operating
system which make multiprocessor adaptation a complex task. Early multiprocessor operating
systems often used coarse-grained locking, for example using a giant lock [20]. The main advantage
with the coarse-grained method is that most data structures of the kernel can remain unprotected,
and this simpli�es the multiprocessor implementation. For example, Linux and FreeBSD both
initially implemented giant locks [2, 14].

For systems which have much in-kernel time, the time spent waiting for the kernel lock can be
substantial, and in many cases actually unnecessary since the processors might use di�erent paths
through the kernel. Most evolving multiprocessor kernels therefore moves toward �ner-grained
locks. The FreeBSD multiprocessor implementation has for example shifted toward a �ne-grained
method [14] and mature UNIX systems such as AIX and Solaris implement multiprocessor support
with �ne-grained locking [4, 10], as do current versions of Linux [15].

Like systems which use coarse-grained locking, master-slave systems (refer to Chapter 9 in [20])
allow only one processor in the kernel at a time. The di�erence is that in master-slave systems, one
processor is dedicated to handling kernel operations (the �master� processor) whereas the other

10



processors (�slave� processors) run user-level applications and only access the kernel indirectly
through the master processor. Since all kernel access is handled by one processor, this method
limits throughput for kernel-bound applications.

In [13], an alternative porting approach focusing on implementation complexity is presented.
The authors describe the application kernel approach, whereby the original uniprocessor kernel is
kept as-is and the multiprocessor support is added as a loadable module to the uniprocessor kernel.
This allows the uniprocessor kernel to remain essentially unchanged, avoiding the complexity of
in-kernel modi�cations. The approach is similar to master-slave systems performance-wise since
all kernel operations are performed by one processor in the system. Neither the master-slave
approach nor the application kernel approach provide any additional performance bene�t over our
giant lock, and incrementally improving the giant locking with �ner-grained strategies is easier.

The in-house kernel uses a large monolithic design. The kernel contains very much function-
ality such as a distributed fault-tolerant main-memory database and support for data replication
between nodes. Therefore, adding multiprocessor support is a very complex and challenging task.
In the operating system, a large portion of the execution time is spent in the kernel, making it
even more critical when porting the kernel to multiprocessor hardware. As described earlier in
this paper we chose a giant lock solution for our �rst multiprocessor version of the in-house kernel
in order to get a working version with low engineering e�ort. As a result of the single kernel-lock
and the large portion of kernel time, this locking strategy resulted in rather poor multiprocessor
performance.

Future work related to the multiprocessor port of the in-house kernel will be focused around
the following. The speedup is low when running on more than one CPU because of the giant
lock and kernel-bound applications. Therefore, one of our next steps is to implement a more �ne-
grained locking structure. As an example, we are planning to use a separate locks for low-level
interrupt handling to get lower interrupt latency. Further, we have also identi�ed the parts of the
kernel where the processor spend most time, which are mainly the database and the inter-process
communication subsystem, which are therefore good candidates for subsystem locks. Another
area of possible improvements is the CPU scheduler were we will investigate dividing the common
ready queue into one queue per processor, which is done in for example Linux 2.6 [15].

Finally, we would like to further explore CPU-a�nity optimizations for short-lived processes.
For example, although the processes currently will not move to another processor, it might be
started on another processor the next time it is created. Depending on the load on the instruction
cache, keeping later processes on the same processor might be bene�cial by avoiding pollution of
the instruction caches.

We expect that the relaxing of the locking scheme to e.g., subsystem locks will require less
e�ort than the initial giant-locking implementation. This is because the locking infrastructure is
in place and CPU-local variables and the memory management can be kept the same. We estimate
the initial relaxing of the giant lock to require development time in the order of months.

8 Conclusions

In this paper, we have described the design decisions behind an initial multiprocessor port of an
in-house cluster operating system kernel. The in-house kernel is a high performance fault-tolerant
operating system kernel targeted at soft real-time telecommunication applications.

Since our focus was to get an initial version with low engineering e�ort, we chose a simple
�giant� locking scheme where a single lock protects the entire kernel from concurrent access. The
giant locking scheme allowed us to get a working version without making major changes to the
uniprocessor kernel, but it has some limitations in terms of performance. Our model where CPU-
local variables are placed in a virtual address range mapped to unique physical pages on di�erent
CPUs allowed us to keep most accesses of private variables unchanged. We also show how this
method can be applied to multithreaded processes with a very small additional memory penalty.

The evaluation we made shows that there is room for performance improvements, mainly by
relaxing the locking scheme to allow concurrent kernel execution. The current implementation

11



will likely not scale beyond two CPUs without relaxed kernel locking. Our experience illustrates
that refactoring of a large and complex industrial uniprocessor kernel for multiprocessor operation
is a major undertaking, but also that it is possible to implement multiprocessor support without
intrusive changes to the original kernel (only changing around 1% of the core parts of the kernel).

Acknowledgments

The authors would like to thank the core developers of the in-house kernel, especially Hans,
without whom this work would have been impossible. We would also like to thank the anony-
mous reviewers for valuable comments on the paper and the PAARTS-group at BTH for ideas
for the implementation. This work was partly funded by The Knowledge Foundation in Swe-
den under a research grant for the project �Blekinge - Engineering Software Qualities (BESQ)�
(http://www.bth.se/besq).

References

[1] Amdahl, G. The validity of the single processor approach to achieving large scale computing
capabilities. AFIPS Conf. Proc. 30 (1967), 483�485.

[2] Beck, M., Böhme, H., Dziadzka, M., Kunitz, U., Magnus, R., and Verworner, D.
Linux Kernel Internals, 2nd ed. Addison-Wesley, 1998.

[3] Chase, J. S., Levy, H. M., Baker-Harvey, M., and Lazowska, E. D. How to use a
64-bit virtual address space. Tech. Rep. TR-92-03-02, University of Washington, 1992.

[4] Clark, R., O'Quin, J., and Weaver, T. Symmetric multiprocessing for the AIX operating
system. In Compcon '95.'Technologies for the Information Superhighway', Digest of Papers.
(1995), pp. 110�115.

[5] Goeckelmann, R., Schoettner, M., Frenz, S., and Schulthess, P. A kernel run-
ning in a DSM � design aspects of a distributed operating system. In IEEE International
Conference on Cluster Computing (CLUSTER'03) (December 2003), IEEE, pp. 478�482.

[6] Heiser, G., Elphinstone, K., Vochteloo, J., Russell, S., and Liedtke, J. The
Mungi single-address-space operating system. Software Practice and Experience 28, 9 (1998),
901�928.

[7] Intel Corporation. Preboot Execution Environment (PXE) Speci�cation, September 1999.
Version 2.1.

[8] ITU-T. ITU-T Recommendation Q.700, Introduction To ITU-T Signalling System No. 7
(SS7). International Telecommunication Union, 1993.

[9] Keltcher, C. N., McGrath, K. J., Ahmed, A., and Conway, P. The AMD opteron
processor for multiprocessor servers. IEEE Micro 23, 2 (2003), 66�76.

[10] Kleiman, S., Voll, J., Eykholt, J., Shivalingiah, A., Williams, D., Smith, M.,
Barton, S., and Skinner, G. Symmetric multiprocessing in Solaris 2.0. In Compcon
(1992), IEEE, pp. 181�186.

[11] Kongetira, P., Aingaran, K., and Olukotun, K. Niagara: A 32-way multithreaded
sparc processor. IEEE Micro 25, 2 (2005), 21�29.

[12] Kågström, S., Grahn, H., and Lundberg, L. Experiences from implementing multipro-
cessor support for an industrial operating system kernel. In Proceedings of the International
Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA'2005)
(Hong Kong, China, August 2005), pp. 365�368.

12



[13] Kågström, S., Lundberg, L., and Grahn, H. The application kernel approach - a novel
approach for adding SMP support to uniprocessor operating systems. Software: Practice and
Experience 36, 14 (November 2006), 1563�1583.

[14] Lehey, G. Improving the FreeBSD SMP implementation - a case study. In Asian Enterprise
Open Source Conference (Singapore, October 2003).

[15] Love, R. Linux Kernel Development, 1st ed. Sams, Indianapolis, Indiana, 2003.

[16] Magnusson, P. S., Christensson, M., Eskilson, J., Forsgren, D., Hållberg, G.,
Högberg, J., Larsson, F., Moestedt, A., and Werner, B. Simics: A full system
simulation platform. IEEE Computer 35, 2 (February 2002), 50�58.

[17] McNairy, C., and Bhatia, R. Montecito: A dual-core, dual-thread itanium processor.
IEEE Micro 25, 2 (2005), 10�20.

[18] Message Passing Interface (MPI) Forum. The Message Passing Interface Standard.
See http://www.mpi-forum.org/, accessed 28/7-2005.

[19] OpenMP Architecture Review Board. OpenMP Version 2.5 Speci�cation, May 2005.
See http://www.openmp.org, accessed 28/7-2005.

[20] Schimmel, C. UNIX Systems for Modern Architectures, 1st ed. Addison-Wesley, Boston,
1994.

[21] Sollins, K. The TFTP Protocol (Revision 2) (RFC 1350). MIT, July 1992. STD 33.

[22] Tool Interface Standard (TIS) Committee. Executable and Linking Format (ELF)
Speci�cation, 1995. Version 1.2.

13


