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Abstract

Program instrumentation is an important technique for a
different tasks such as performance measurements, debug-
ging, and coverage analysis. Instrumentation, however,
poses two important requirements to be useful: it must be
easy to apply and it should perturb the application as lit-
tle as possible. In this paper, we present the LOPI frame-
work which provides a simple means to automatically in-
strument binary files with low perturbation. An evalua-
tion of the LOPI framework with detailed measurements of
seven SPEC CPU2000 benchmarks show that the it gives
lower perturbation in terms of instructions executed and
cache behavior than Dyninst. For example, a LOPI in-
strumented application executes on average 36% more in-
structions, while a Dyninst instrumented application exe-
cutes 49% more instructions for a common performance-
oriented instrumentation, than the uninstrumented appli-
cation.

Keywords: program instrumentation, perturbation, binary
rewriting, performance measurements

1. Introduction

Program instrumentation is a technique used in many
and diverse areas. Instrumentation is often added to pro-
grams in order to investigate performance aspects of the
applications [7, 21] as a complement to statistical profiling
such as gprof [9], Intel VTune [26], or the Digital Contin-
uous Profiling framework [2]. Instrumentation is also use-
ful in many other areas not directly related to performance
analysis, for instance call graph tracing [24], path profil-
ing [3], reversible debugging [6], code coverage analysis,
and security [16].

Often, instrumentation is added manually by annotat-
ing the source code with instrumentation points. This task,
however, is time-consuming, repetitive and error-prone,
and it is both tied to the high-level language and access
to source code. Over the years, there has therefore been
a number of proposals to alleviate this situation. Today,
there exists several libraries, e.g., ARM [10] and PAPI [13],
which allows code-reuse for the instrumentation. There
are also packages that provide graphical interfaces to se-
lect instrumentation-points and several tools for patching
program binaries or relocatable object files [7, 12].

Another problem with program instrumentation is pro-
gram behavior perturbations caused by the instrumenta-
tion [15, 17]. Regardless of how instrumentation is im-
plemented, it always adds extra work for the program by
affecting compiler optimizations (changed register alloca-
tion, reduced inlining possibilities etc.), altering the data
reference patterns, and changing the execution flow. Taken
together, these perturbations can cause the instrumented
program to exhibit a substantially different behavior than
the uninstrumented program. This problem is especially
severe for performance instrumentation since the instru-
mented program should accurately reflect the uninstru-
mented program, and it is therefore important to measure
and minimize the instrumentation overhead. The measure-
ment itself can also be a problem, however. Although it is
easy to measure the aggregate overhead of instrumenting
a program, observing the detailed behavior of the instru-
mentation is harder since any performance measurement
affects the program execution. Taken together, these prob-
lems lead us to we believe that it is important to explore
optimizations for instrumentation, especially for frequently
performed operations.

In this paper, we present the LOPI (LOw Perturbation
Instrumentation) framework that provides a generic and
easily used framework for instrumenting programs. In
LOPI, we try to optimize for common instrumentation pat-
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terns in order to provide low perturbation on the program
behavior. LOPI rewrites binary ELF-files for GNU/Linux
on the IA-32 architecture in order to instrument an applica-
tion. The current implementation instruments function en-
try and exit, but the approach is expandable to instrument
most points in the code.

We provide measurements of the instrumentation per-
turbation using both real hardware and full-system simu-
lations of seven SPEC CPU2000 benchmarks. We com-
pare the LOPI framework to Dyninst[4] and regular source-
based instrumentation. We find that source-based instru-
mentation usually has the lowest instrumentation overhead,
on average executing 13% more instructions (5% inlined)
for the studied applications, but with more tedious work for
instrumenting the code. Comparing LOPI and Dyninst we
find that LOPI has lower instruction overhead then Dyninst,
on average 36% instruction overhead compared to 49% for
Dyninst. Comparing the total execution times, we find that
source-based instrumentation has 6% overhead, LOPI has
22% overhead, and Dyninst 28% overhead as compared to
an uninstrumented application.

The rest of the paper is organized as follows. In Sec-
tion 2 we provide an overview of program instrumentation,
which is followed by an introduction of the LOPI frame-
work in Section 3. In Section 4 we present the measure-
ment methodology and in Section 5 we provide the mea-
surement results. Finally, we discuss related work in Sec-
tion 6 and conclude our findings in Section 7.

2. Background

2.1. Instrumentation approaches

Instrumentation packages can be grouped into three
broad categories with different characteristics: source-
based instrumentation, binary rewriting, and memory im-
age rewriting. There are some special cases, for instance
instrumentation at the assembly level, but these can nor-
mally be generalized into one of the above (assembly-level
instrumentation is similar to binary rewriting except that
it avoids some issues with relocatable code). Also, some
completely different approaches exist. Valgrind [22], for
instance, allows instrumentation of unmodified programs.
Valgrind works by running programs in a virtual machine,
translating IA-32 binary code to a intermediate language,
applying instrumentation, and then translated back to IA-
32 code again. Valgrind allows instrumenting unmodified
programs, but also imposes a high runtime overhead due
to the code translation. Another approach is to run the ap-

plication in a simulator, which gives no perturbation to the
actual application, but has issues with accuracy and speed.
Next, we will briefly describe the different approaches.

1. Source-based instrumentation: Source-based in-
strumentation works by inserting instrumentation
calls as statements in the application source code.
This allows the compiler to optimize the instrumented
code, but it also inherently produces a different behav-
ior compared to the non-instrumented code because
of disturbed register allocation, inlining, etc. Fur-
ther, this approach is dependent on the high-level im-
plementation language as well as direct access to the
source code.

This category encompasses both libraries for instru-
mentation, i.e., where instrumentation is inserted
manually into the source code [13], mixed solu-
tions [8], and tools with source-to-source conversion
from a graphical interface [23].

2. Binary rewriting: By patching the executable or the
relocatable files, the high-level source code of the ap-
plication can remain untouched. This prevents the
compiler from optimizing the instrumentation code in
the context of the application source code, but this
should also give a closer correspondence to the unin-
strumented application. This approach is also inde-
pendent of the high-level language of the application
and can in principle be used on applications for which
the source code is unavailable.

Many instrumentation packages work this way, for in-
stance ATOM [1] and EEL [12] for UNIX-based sys-
tems, Etch [21] and PatchWrx [5] for Windows NT
systems, and the LOPI framework presented here.

3. Memory image rewriting A final approach is to
patch the application in-core, i.e., after the program
has been loaded into memory. This approach, used by
Dyninst [4, 7], allows instrumentation to be added to
and removed from the program during runtime. The
characteristics is similar to binary rewriting but mem-
ory image rewriting allows instrumentation to be dy-
namically removed when it is no longer needed, which
can reduce unnecessary overhead.

Memory image rewriting also adds some other inter-
esting possibilities. Some programs, for instance op-
erating system kernels cannot readily be restarted in
order to have the instrumentation take effect. For these
cases, memory image rewriting provides the only re-
alistic alternative, and it has also been used for instru-
mentation of the Solaris [25] and Linux [19] kernels.
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Each of these methods will cause perturbation to the ap-
plication. Next we present an introduction to the various
types of perturbation caused by instrumentation.

2.2. Instrumentation perturbation

Instrumentation perturbation is heavily dependent on the
type of instrumentation applied. For performance instru-
mentation, the instrumentation might read a set of of hard-
ware performance counters whereas call graph tracing re-
quires significantly more complex operations [24]. Some
parts are very common however. At the very basic end,
instrumentation always causes more instructions to be ex-
ecuted, accesses more data in the memory, and can also
cause register spills. Further, there might be kernel invoca-
tions, device access or inter-process communication. The
perturbation also varies over different phases of the pro-
gram execution:

• Initialization: Most instrumentation packages have
some sort of initialization phase. This can include,
e.g., the initialization of hardware performance coun-
ters, creation of data structures, or memory image
patching. This part can sometimes be very expensive,
but is a one-time event.

• Startup-phase: During the first invocations of the in-
strumented code, the system will run with cold caches
and need to bring the code and data into the caches.

• Execution: During the execution of the program, the
instrumentation adds latency because more instruc-
tions are executed, increased cache pressure, and (po-
tentially) extra kernel invocations.

• End: When the program ends, or the instrumentation
is removed, the instrumentation package usually per-
forms some cleanup operations (for instance freeing
allocated memory, storing collected data on disk etc.).
Like the initialization-phase, this is potentially expen-
sive but normally has small effects on long-running
programs.

For the execution phase, there are also some indirect ef-
fects on the execution that can arise from instrumentation.
For instance, the addresses of data or executed instructions
might change as a side-effect of instrumentation (this is es-
pecially likely with source instrumentation). The changed
addresses can cause data or code to be aligned differently
with respect to cache-lines, and also in some cases (albeit
unusual) change actual program behavior [17]. In the LOPI
framework, we have tried to minimize these effects by a

number of optimizations, which are described in the next
section.

3. The LOPI instrumentation framework

We have implemented an instrumentation package that
tries to provide low and predictable overhead and still pro-
vide an easy interface to users. The framework uses the
binary rewriting approach, although the ideas are appli-
cable to memory rewriting (such as used by Dyninst) as
well. Although we currently focus on function entry and
exit, the approach is possible to combine with current meth-
ods for instrumentation at arbitrary points (still keeping the
optimized entry/exit techniques). We have developed two
types of performance instrumentations for LOPI, one uti-
lizing the PAPI cross-platform front-end to performance
counters [13] and one simple implementation measuring
the processor cycle counter with the rdtsc instruction.

The process of instrumenting a program with the LOPI
framework is shown in Figure 1. Using the LOPI frame-
work adds one step in the compile process - running the
LOPI executable after the relocatable files have been pro-
duced. The relocatable ELF-files are then linked with a
library produced by LOPI at runtime, which contains stubs
and the user-implemented instrumentation. Note that se-
lecting the instrumentation points is done outside the LOPI
framework in order to keep the framework general enough
to support different kinds of instrumentation.

Before going into details of the operation, we will first
briefly describe the (GCC) calling convention for the IA-
32 architecture. Figure 2 shows how caller calls the
non-instrumented function callee. On IA-32, the call-
instruction pushes the return address to the stack before
switching to the function. On returning with ret, the
instruction pointer is popped from the top of the stack.
The IA-32 calling convention specifies that registers %ebx,
%edi, %esi, and %ebp are callee-saved, whereas %eax,
%ecx and %edx are caller-saved. Parameters are passed on
the stack and the return value is passed in the %eax register.
The function prologue shown initializes the function stack
frame.

A function entry instrumented with the LOPI framework
is shown, somewhat simplified, in Figure 3. When the
program execution reaches an instrumentation point, our
library performs a four step operation. The sequence of
events is shown in the figure and described below.

1. enter_stub is called (from callee) by the overwrit-
ten function prologue (which was replaced by the in-
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src.o ...

src.o’ ...

liblopi.a

lopi -fn fn1,... src.o ... ld src.o’ ... -L. -llopi a.out

Figure 1. Overview of the instrumentation process. The functions and the files to instrument are given on the
command line.

callee

caller

ret

call  callee

pushl  %ebp

movl   %esp, %ebp

subl    $XX, %esp

Figure 2. A non-instrumented function call.

strumentation). The call-instruction is immediately
followed by an identifier for the function (func_nr).
The function identifier defaults to a 8-bit value, but
if more than 256 functions are instrumented this can
be extended to a 16- or 32-bit value at instrumenta-
tion time (this has not yet been implemented, but the
extension is simple to make).

2. enter_stub (shown in Figure 3) reads the function
identifier (which is located at the return address, i.e.,
in the callee-prologue). Then, the enter stub calls in-
str_func_enter, which is common for all instru-
mented function entries.

3. The instr_func_enter-function, implemented in C
(pseudo code in Figure 5), sets up a return frame to
instrument the function return. inst_func_enter
thereafter performs the actual instrumentation opera-
tion for function entries, which is implemented by the
user of the instrumentation library and can be inlined.
Access to the return frames is protected by a spinlock
for multithreaded programs on SMPs.

4. After returning to the enter stub, the overwritten in-
structions of the function prologue are executed and
the control returns to the function prologue (after the
overwritten instructions).

There are some special cases for instrumenting func-
tion entry points, which suggest separate handling. First,
we detect the common function prologue where the frame
pointer (the %ebp register) is stored and a new stack frame
is setup. This code sequence only varies with a constant,
which gives the size of the new stack frame, and can there-
fore easily be represented by a common stub.

pushl %ebp /* Save the old frame pointer */

movl %esp, %ebp /* Set the start of the new frame */

subl $XX, %esp /* Allocate stack space */

In the seven SPEC CPU2000 benchmarks we used (see
Section 4), almost 80% of the function prologues had this
pattern. This function prologue is represented with a spe-
cial stub that stores the stack size XX. In the rare case that
the function prologue is smaller than 6 bytes (the size of the
call-instruction plus the function identifier) and the first ba-
sic block at the same time contains a branch target within
the first 6 bytes, patching the function prologue is unsafe
because the target instruction is overwritten. LOPI will de-
tect and mark such areas as unavailable for instrumentation,
although this functionality is only sketched in the prototype
implementation.
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callee

caller

enter

stub

call  enter_stub

[func_nr]

movl  [func_nr], %ecx

call  instr_func_enter(%ecx, &ret_addr)

[perform overwritten part]

jmp   [back to function]

call  callee

1

2

4

Figure 3. A function call instrumented with our approach.

callee

return

frame

ret

pushl  %eax

call   instr_func_leave

movl   %eax, %ecx

popl   %eax

jmp    *%ecx

caller

call  callee

func_t *p_func;

long    ret_addr;

Figure 4. An instrumented function return.

Function returns are instrumented lazily with the return
frames set up in instr_func_enter, i.e., without patch-
ing or adding source lines to the program. The return frame
is a data structure with the original return address (i.e., back
to caller in this case), which also contains a machine code
stub, copied to the structure at startup. The padding is
needed since the return frame is accessed both as data and
executed as code. Without the padding, the cache block
(the stub is only 16 bytes) would ping-pong between the
data and the instruction cache, degrading performance. The
machine code stub acts as a trampoline for the function re-
turn instrumentation. The logic is as follows (refer to Fig-
ure 4):

1. The callee function returns with the ret instruction
(i.e., exactly as without instrumentation). Since the
return address was overwritten it will return to the re-
turn frame stub setup in instr_func_enter.

2. The return frame stub calls instr_func_leave.
Since the position of the return frame (and thus the
return stub) is unknown at compile-time, we need to
do a register-relative call to instr_func_leave (not
shown in the figure).

3. instr_func_leave performs the instrumentation on
function exit (again specified by the user of the li-

brary), deallocates the return frame, and returns the
original return address (i.e., to caller in this example).
The pseudo code is shown in Figure 6.

For functions which modify the return address them-
selves, this optimization is unsafe, and a revert to a more
traditional return instrumentation is needed. We reduce the
perturbation of the instrumented application in a number of
ways both during the program patching and during runtime:

1. Inlined function identifiers. The function identifier
(shown in Figure 3) is placed directly in the instru-
mented code in order to avoid the need for calling sep-
arate stubs for every instrumentation point. The func-
tion identifier also allows us to lookup meta data for
the instrumentation point by using it as a vector index
instead of performing an expensive hash table lookup.

2. Code reuse. A call-stub is shared for every instrumen-
tation point with the same overwritten instructions.
Also, the stubs are kept as short of possible with most
of the logic in the generic enter and exit functions.

3. Optimize for common cases. We use a special stub
for the common stack frame setup as explained in Sec-
tion 3. This helps down the i-cache miss rate by reduc-
ing the number of instrumentation stubs.
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Table 1. Description of the SPEC CPU2000 benchmarks used in this study.
Benchmark Description Data set size

164.gzip Compression lgred.log
176.gcc Compiler smred.c-iterate.i
181.mcf Combinatorial optimization lgred.in
183.equake Simulation of seismic wave propagation lgred.in
197.parser Grammar analysis lgred.in
256.bzip2 Compression lgred.graphic
300.twolf CAD, Placement and global routing lgred

struct ret_frame_t {

func_t *p_func

long ret_addr

/* For icache/dcache conflict reduction */

uint8_t padding0[XX]

uint8_t program[16]

uint8_t padding1[XX]

...

}

ret_frame_t ret_frames[]

function instr_func_enter(func_nr, ret_addr) {

/* Setup return frame */

ret_frame = pop_ret_frame()

ret_frame.func = funcs[func_nr]

ret_frame.ret_addr = ret_addr

ret_addr = ret_frame.program

/* Perform the instrumentation */

do_enter_func(func)

}

Figure 5. Pseudo code for the instr_func_enter-
function.

4. Register saving. Our entry stubs does not store any
registers for the function entries since we do not use
any callee-saved registers in the stub. The return frame
saves the %eax register since this is used for return
values on IA-32.

5. Data reuse. The return frames are allocated in a stack-
based scheme where the most recently used return
frame is reused first.

The pollution of the instruction cache is limited by the
number of function call stubs used in the instrumentation
and the number of return frames used. The number of ac-
tive return frames at a given point of time is equal to the
current nesting depth of the instrumented functions, in most
cases a fairly low number (the worst case occurs with deep
recursion).

function instr_func_leave() {

/* This code is contained in the ret_frame */

ret_frame = [return address]-XX

/* Perform the instrumentation */

do_leave_func(ret_frame.func)

push_ret_frame(ret_frame)

/* Found in the ret_frame */

return [original return address]

}

Figure 6. Pseudo code for the instr_func_leave-
function.

Taken together, these optimizations significantly reduce
the overhead of instrumentation. Further, since the call-
stubs are aggressively reused, we expect the perturbation
to be more predictable since less code is added to the pro-
gram. The next section presents measurements comparing
our approach to the Dyninst tool and basic source-based
instrumentation.

4. Measurement methodology

For our measurements, we have used both real hardware
and the Simics full-system simulator [14]. The machine
we used is a Pentium III system running Linux, with a 1
GHz processor and 256 MB RAM. We use the hardware
performance counters available on the Pentium III (through
the PAPI [13] library) to capture the measures presented in
Table 2, e.g., the number of instructions and cache misses.

As for our simulations, we simulate a complete Pen-
tium III system with caches running a real operating sys-
tem for performing the instrumentation measurements. The
simulated system has 16 KB, 4-way set-associative, first-
level data and instruction caches, and a unified 512KB,
8-way set-associative, second-level cache. Simics allows
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Figure 7. Cycles per function call on a subset of the SPEC CPU2000 benchmarks.

us to create a complete non-intrusive measurement of
the application execution, both for instrumented and non-
instrumented applications. We can therefore isolate the im-
pact of instrumentation from the application traces. We use
Simics to provide detailed execution characteristics which
were not possible to capture on real hardware, i.e., the fig-
ures in Figure 8.

We ran tests with seven applications from the SPEC
CPU2000 benchmarks (compiled with GCC 2.95.4, op-
timization level -O3) on a minimal Linux 2.4.22-based
system. A short description of the selected benchmarks
is presented in Table 1. All measurements ran with the
MinneSPEC [11] workloads in order to provide reasonable
execution times in the simulated environment and each of
the tests ran to completion. We chose to instrument the
functions that make up 80% of the total execution time (as
reported by gprof). Unfortunately, with Dyninst we were
unable to instrument three of the applications when run-
ning on real hardware due to a software upgrade.

The simulator was setup to flush the caches when start-
ing the program (i.e., at “main”, after the instrumentation
package setup) to avoid situations where data was brought
into the caches before the program execution starts (for
instance because of the instrumentation package startup-
phase touching the functions). Our accumulated values for
real hardware excludes initialization and cleanup of the in-
strumentation library, but does not invalidate the cache con-
tents.

The benchmarks were instrumented with four meth-
ods, source-based instrumentation (split in inlined and non-

inlined operation), Dyninst (version 4.0.1 of the Dyninst
API, function instrumentation with tracetool), and our
LOPI framework. The source-based instrumentation was
added by hand, a tedious task that required us to add instru-
mentation points to over 500 places for the largest bench-
mark (176.gcc). The 176.gcc benchmark also illustrates the
effectiveness of our stub reuse, requiring only two stubs
for 54 instrumented functions. For all 92 instrumentation
points (in all benchmarks), totally 5 different stubs were
needed.

To get comparable results, we implemented the same in-
strumentation for each package. The instrumentation per-
forms a fairly common instrumentation operation, reading
a 4-byte value at function entry and accumulating it at the
function exit, similar for instance to accumulating a hard-
ware performance counter (the kernel is not accessed). We
exclude the perturbation caused by the OS kernel in our
simulated environment by pausing the measurements on
kernel entry and starting them again on kernel entry (the
simulated caches are also disabled when executed kernel
code). This was done to avoid timing behavior to affect the
measurements and also to make the measurements more
OS-independent.

5. Measurement results

Figure 7 shows the average number of instructions per
function for a subset of the SPEC CPU2000 benchmarks.
The length includes that of called functions (even for re-
cursive function calls). From the figure, we can get a feel-
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Table 2. Aggregate overhead for the SPEC benchmarks. Note that the average values are calculated on all
application for LOPI, while only on four of the applications for Dyninst.

Instructions Branches L1 Dcache L1 Icache L2 unified
Benchmark Total cycles nr miss pred. refs misses refs misses refs misses

164.gzip src 1.03 1.06 1.06 1.00 1.10 1.01 1.02 1.02 1.01 1.02
src (inline) 1.01 1.02 1.02 1.03 1.04 1.01 0.97 0.95 1.01 0.97
LOPI 1.17 1.16 1.13 1.74 1.29 1.04 1.12 1.06 1.03 1.20
Dyninst 1.25 1.21 1.23 1.00 1.43 1.02 1.23 1.14 1.02 1.16

176.gcc src 1.09 1.13 1.11 1.07 1.16 1.06 1.11 1.03 1.03 0.97
src (inline) 1.02 1.05 1.03 0.99 1.06 1.05 1.02 1.05 1.05 0.96
LOPI 1.37 1.42 1.30 1.51 1.54 1.32 1.46 1.13 1.14 1.08
Dyninst n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

181.mcf src 1.17 1.46 1.38 1.00 1.61 0.99 1.18 1.06 0.99 0.99
src (inline) 1.04 1.18 1.13 0.90 1.23 1.00 1.04 1.02 1.00 1.01
LOPI 1.43 2.17 1.88 2.16 2.62 1.14 1.43 1.65 1.00 0.99
Dyninst 1.67 2.50 2.51 1.02 3.39 0.99 1.69 1.24 0.99 0.98

183.equake src 1.00 1.00 1.01 1.00 1.01 1.00 1.00 1.00 1.00 1.00
src (inline) 1.00 1.00 1.00 0.99 1.01 1.00 1.00 1.31 1.02 1.00
LOPI 1.01 1.02 1.02 1.03 1.02 1.04 1.02 1.04 1.04 1.01
Dyninst 1.01 1.02 1.03 1.00 1.03 1.04 1.02 1.00 1.03 1.01

197.parser src 1.03 1.07 1.06 1.02 1.08 1.00 1.03 0.97 1.00 1.00
src (inline) 1.01 1.03 1.02 1.01 1.03 1.00 1.01 1.01 1.00 1.00
LOPI 1.11 1.19 1.15 1.36 1.25 1.02 1.11 1.66 1.02 1.01
Dyninst 1.21 1.24 1.25 1.03 1.37 1.01 1.21 1.06 1.01 0.99

256.bzip2 src 1.04 1.08 1.11 0.99 1.09 1.00 1.04 1.06 1.00 1.00
src (inline) 1.02 1.04 1.04 1.00 1.04 1.00 1.01 1.01 1.00 1.00
LOPI 1.21 1.22 1.26 2.47 1.28 1.00 1.20 1.15 1.00 1.00
Dyninst n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

300.twolf src 1.08 1.12 1.15 1.03 1.14 1.02 1.08 1.75 1.03 0.58
src (inline) 1.01 1.05 1.04 1.01 1.06 1.01 1.01 1.28 1.02 0.97
LOPI 1.25 1.33 1.33 1.34 1.39 0.95 1.25 1.28 0.96 0.75
Dyninst n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

Average src 1.06 1.13 1.13 1.01 1.17 1.01 1.07 1.13 1.01 0.94
src (inline) 1.02 1.05 1.04 0.99 1.07 1.01 1.01 1.09 1.01 0.99
LOPI 1.22 1.36 1.30 1.66 1.48 1.07 1.23 1.28 1.03 1.00
Dyninst 1.28 1.49 1.50 1.01 1.80 1.01 1.29 1.11 1.01 1.03

ing for the cost of instrumenting functions, i.e., instrument-
ing a program with frequent short functions is likely to be
more costly than instrumenting one with longer functions.
We observe that for many applications, e.g., 164.gzip,
176.gcc and 300.twolf, a large proportion of the functions
are shorter than 90 instructions (183.equake also show a
large proportion of short instruction, but almost all work is
done in a few long-running functions). This indicates that
keeping the cost of instrumenting a function as low as pos-
sible is very important for these programs.

Table 2 provides aggregate execution times/overhead
and cache behavior with source instrumentation (both in-
lined and not inlined), Dyninst, and the LOPI framework.
We see that source instrumentation, particularly inlined, is
the approach with lowest overhead (on average 13% more
instructions non-inlined and 5% inlined). This is an ex-
pected result since the source instrumentation can be op-
timized by the compiler. LOPI and Dyninst execute 36%
and 49% more instructions, respectively, than an uninstru-
mented application. In terms of execution time, we find that
LOPI generates 22% longer execution times on average and
Dynint 28% longer execution times than an uninstrumented
application.

Analyzing the cache misses we find that LOPI generates
fewer first level cache accesses on average than Dyninst
does, but LOPI has more first-level cache misses than
Dyninst. This indicates a higher locality in the Dyninst
code. However, when we look at the second-level cache
accesses we find that the number of misses is comparable
for LOPI and Dyninst. One reason for the higher number of
data read misses for LOPI is that the return frames (which
are logically code) are allocated as data.

We have identified one performance limitation for
LOPI – a high number of miss-predicted branches. The
Pentium III employs a branch predictor for function re-
turns, which work as long as functions are called in the
“normal” manner, i.e., through a call/ret pair. Since
LOPI overwrites the return address with an address in the
return frame, the return branch predictor misses its predic-
tion, resulting in a performance loss. This problem was not
visible in the simulated results.

Figure 8 presents a partial execution profile for the
183.equake and 197.parser SPEC benchmarks. The fig-
ure shows the difference between an instrumented and a
non-instrumented run for both LOPI and Dyninst (note that
the graph does not show the absolute values, which start
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at higher than zero). The profiles are constructed from a
trace of every instruction in the shown code snippet (ex-
cept for the instrumentation code), i.e., every point in time
in the figure corresponds to one instruction in the non-
instrumented code. Instrumentation points for function en-
tries are shown as vertical bars below the x-axis.

The 183.equake profile comes from the execution of a
nested execution loop, which calls three short functions
phi0, phi1, and phi2 where phi2 is instrumented. For the
197.parser profile, the instrumented section shows a sec-
tion with numerous recursive function calls. As the Figure
shows, the return frames cause some pressure on the caches
when the frames cannot be reused on deeper levels of func-
tion nesting (because of the recursion). This is especially
visible for L1 read misses that increase with each additional
instrumented call in Figure 8.

From the graphs, we can see that the Dyninst instru-
mentation is more intrusive than our instrumentation. Our
instrumentation is mainly cheaper when instrumenting the
function returns (shown as the second climb in the upper
graphs), which shows that the lazy return instrumentation
pays off. We can also see that the number of cache misses
is somewhat higher for Dyninst, although both instrumen-
tation packages primarily cause cache misses on the first
invocation.

6. Related work

In this section we discuss some other tools that are
similar to our instrumentation framework. We start with
those that rewrite binary files in order to instrument an
application. Examples of such tools are PatchWrx [5],
Etch [21], ATOM [1], and EEL [12]. We thereafter dis-
cuss Dyninst [4, 7], which rewrites the memory image in
order to instrument an application.

PatchWrx, ATOM, and EEL works on RISC processors,
where it is easier to rewrite and patch a binary file since
all instructions have the same size. In order to patch and
trace an instruction, you simply replace the traced instruc-
tion with a branch instruction to a code snippet where the
replaced instruction together with the instrumentation code
reside. In contrast, rewriting a binary file for an IA-32-
processor is much harder due to variable instruction length.
Etch and LOPI both works for IA-32-binaries, and Dyninst
is available for both RISC and CISC processors.

PatchWrx [5] is developed for Alpha processors and
Windows NT. PatchWrx utilizes the PALcode on the Alpha
processor to capture traces, and it can patch, i.e., instru-

ment, Windows NT application and system binary images.
PatchWrx replaces all types of branching instructions with
unconditional branches to a patch section where the instru-
mentation code reside. PatchWrx can also trace loads and
stores by replacing the load or store instruction with an un-
conditional branch to the instrumentation code, where also
the replaced load or store resides.

ATOM [1] is developed for Alpha processors and works
under Tru64 UNIX. ATOM is a general framework for
building a range of program analysis tools, e.g., block
counting, profiling, and cache simulation. ATOM allows
a procedure call to be inserted before and after any proce-
dure, basic block, or instruction. The user indicates where
the instrumentation points are, and provides analysis rou-
tines that are called at the instrumentation points. ATOM
then builds an instrumented version of the application in-
cluding the analysis routines.

EEL [12] (Executable Editing Library) is a library for
building tools to analyze and modify executable files.
It can be used, e.g., for program profiling and tracing,
cache simulation, and program optimization. EEL runs on
SPARC processors under Solaris, and provides a mostly
architecture- and system-independent set of operations to
read, analyze and modify code in an executable file. The
user can provide code snippets that can be inserted at arbi-
trary places in the binary code. EEL is capable of sophis-
ticated code analysis, e.g., control-flow graph analysis and
live/dead register analysis.

Etch [21] is a general-purpose tool for rewriting Win32
binaries for IA-32-processors. Etch provides a framework
for handling the complexities of both the Win32 executable
format as well as the IA-32 instruction set. Important is-
sues with the Win32 format that Etch solves are to correctly
identify code and data sections, as well as identification of
all dynamically loaded libraries and modules. Etch can be
used, e.g., for tracing all loads and stores, measuring in-
struction mixes, and code transformation for performance
improvements. There is also a graphical user interface pro-
vided with Etch.

Dyninst [4, 7] patches and instruments the application
in-core, i.e., after the program has been loaded into mem-
ory. This approach allows instrumentation to be added to
and removed from the program during runtime. For exam-
ple, instrumentation can be added where new hot-spots in
the code are detected during runtime, and instrumentation
can be dynamically removed when it is no longer needed,
which can reduce unnecessary overhead. Memory image
rewriting also opens up the possibility to instrument op-
erating system kernels [25], which cannot be restarted in
order to have the instrumentation take effect.
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Figure 8. Partial execution profile for 183.equake and 197.parser. LOPI is shown on the left, Dyninst on the right.
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Pin [20, 18] is a tool for dynamic instrumentation of
Linux applications available for IA-32e, ARM, Itanium and
IA-32e. It provides an API for inserting function calls to
user-defined measurement functions at arbitrary points in
the code. Pin performs the program instrumentation at run
time, using a just-in time compiler to instrument and trans-
late the application. As a result, Pin can handle shared li-
braries, multi-threaded applications, as well as mixed code
and data.

7. Conclusions

Program instrumentation is an important technique in
many areas, e.g., performance measurements, debugging,
and coverage analysis. To be useful, instrumentation must
be easy to apply and it should perturb the application ex-
ecution as little as possible. In this paper we present
and evaluate the LOPI framework, which provides a low-
overhead generic solution to program instrumentation. The
LOPI framework automatically instruments an application
by rewriting the binary file(s) by adding one step in the
compilation process. LOPI gives low overhead by apply-
ing techniques to reduce the number of added instructions
to the program and by using a lazy method for instrument-
ing function returns.

We provide detailed measurements of the instrumenta-
tion perturbation using hardware and full-system simula-
tions of seven SPEC CPU2000 benchmarks. We compare
the LOPI framework to the state-of-the-art Dyninst pack-
age and regular source-based instrumentation. The mea-
surements show that source-based instrumentation has the
lowest instruction overhead, on average 13%, but requires
significantly more tedious work for instrumenting the code.
Comparing LOPI and Dyninst we find that LOPI has lower
instruction overhead than Dyninst, on average 36% as com-
pared to 49%, respectively. In terms of execution time,
LOPI increases the execution time by 22% compared to
uninstrumented operation whereas Dyninst adds 28%.

We believe that the LOPI framework is a viable and
flexible way for automatic program instrumentation with
low perturbation. Future work on LOPI involves adding
support for instrumentation at arbitrary program locations,
which would require copying overwritten instruction into
the entry stub and saving live registers at the instrumen-
tation point. Like Dyninst does, this would require care-
ful handling of replacing instructions, especially on archi-
tectures with variable-length instructions. Another possi-
bility is to port the framework to other architectures than
IA-32, which could require other optimizations than those
explored here.
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