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Abstract

The current trend of using multiprocessor computers for
server applications requires operating system adoptions for
high performance. However, modifying large bodies of soft-
ware is very costly and time-consuming, and the cost of
porting an operating system to a multiprocessor might not
be motivated by the potential performance benefits.

In this paper we present a novel method, the application
kernel approach, for adaption of an existing uniprocessor
kernel to SMP hardware. Our approach considers the exist-
ing kernel as a “black box”, to which no or small changes
are made. Instead, the original kernel runs OS-services un-
modified on one processor whereas the other processors ex-
ecute applications on top of a small custom kernel.

A prototype implementation illustrates that the approach
can be realized with fairly small resources. We also present
an initial performance evaluation where we show that the
performance is good for user-bound applications.

1. Introduction

Uniprocessor computers are now being replaced with
(small) multiprocessors for performance reasons. More-
over, modern processor chips from Intel and other major
manufacturers often contain more than one logical CPU
core. For instance, current Intel Pentium 4 and Xeon pro-
cessors contain two logical processors [18] and there are
also other multiprocessor chips on the market and in re-
search systems [13, 23, 3]. To take advantage of multipro-
cessing, good operating system support is crucial.

We are currently working on a project together with a
major developer of industrial systems in Sweden. The com-
pany has since more than 10 years developed an operating
system kernel for clusters of uniprocessor IA-32 hardware
which has interesting properties such as fault tolerance and

high performance (mainly in terms of throughput). In or-
der to take advantage of the trend from uniprocessor Intel
hardware to small shared-memory multiprocessors, a mul-
tiprocessor version of the kernel is being developed. The
problems faced then were that it was extremely difficult and
costly to make the needed modifications because of the size
of the code, the long time during which the code had been
developed (this led to a structure which is hard to grasp) and
the intricate nature of OS kernels.

This situation illustrates the fact that making changes to
large software bodies can be very costly and time consum-
ing, and there has also been a surge of interest in alternative
methods lately. For example, as an alternative to altering
operating system code, [1] proposes a method where “gray-
box” knowledge about algorithms and behavior of an op-
erating system is used to acquire control and information
over the OS without explicit interfaces or OS modification.
There has also been some work where the kernel is changed
to provide quality of service guarantees to large unmodified
applications [25].

For the kernel of our industrial partner, it turned out that
the software engineering problems of adding multiproces-
sor support were extremely difficult using a traditional ap-
proach. Coupled to the fact that the target hardware would
not scale to a very large number of processors during the
foreseeable future (we expect systems in the range of 2 to
8 processors), this led us to think of a somewhat uncon-
ventional approach. In our approach, we treat the existing
kernel more or less as a black box and build the multiproces-
sor adoptions on top of the existing kernel. A custom ker-
nel, of which the original kernel is unaware, is constructed
to run beside the original kernel on the other processors.
The original kernel continues to handle kernel access while
unmodified applications are spread out over the other pro-
cessors, redirecting system calls to the uniprocessor kernel.
We expect this approach to substantially lower the develop-
ment and maintenance costs compared to a traditional SMP
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(Symmetric MultiProcessing) port.

In this paper, we describe the ideas behind this approach
and the design decisions we made in an implementation of
the approach for a small prototype uniprocessor kernel. Fur-
ther, we present an evaluation of a prototype implementa-
tion where we show that the approach is feasible from both
a complexity and performance viewpoint.

The paper is structured as follows: In Section 2, an
overview of existing multiprocessor approaches is made,
Section 3 presents our approach while Section 4 discusses
design and implementation issues. Section 5 presents a per-
formance evaluation and finally we conclude in Section 6.

2. Approaches for symmetric multiprocessing

There are several ways of structuring multiprocessor
support for a kernel. In this section, we present the tradi-
tional approaches to SMP porting as well as some alterna-
tive methods.

2.1. Traditional SMP porting

Traditional SMP operating systems have often evolved
from monolithic uniprocessor kernels. These uniprocessor
kernels (for example Linux and BSD UNIX) contain large
parts of the actual operating system, making SMP adap-
tion a complex task. In-kernel data structures need to be
protected from concurrent access from multiple processors
and this requires locking. The granularity of the locks, i.e.
how large portions of code or data structures a lock pro-
tects, is very important for performance and maintainability
reasons.

Early SMP operating systems often used coarse-grained
locking. These systems employ a locking scheme where
only one processor runs in the kernel (or in a kernel subsys-
tem) at a time [22]. The main advantage with the coarse-
grained method is that most data structures of the kernel
can remain unprotected, and this simplifies the SMP imple-
mentation. In the most extreme case, a single “giant” lock
protects the entire kernel.

Fine-grained locking allow several processors to execute
in the kernel concurrently. Such systems allow for bet-
ter scalability since processes can run without blocking on
kernel-access but also require more careful implementation,
since many data structures in the kernel must be locked.
The FreeBSD SMP implementation, which originally used
coarse-grained locking, have shifted toward a fine-grained
method [15] and mature UNIX systems such as AIX and
Solaris also implement SMP support with fine-grained lock-
ing [5, 14].

2.2. Microkernel-based systems

Another approach is to run the operating system on top
of a microkernel. For example, L4Linux [11], a modified
Linux kernel, runs on top of the L4 microkernel [16]. Also,
the Mach microkernel has been used as the base for many
operating systems, for example DEC OSF/1 [6] and Mk-
Linux [7]. QNX [20] is also a widely adopted microkernel-
based SMP operating system.

Microkernel-based systems potentially provides better
system security by isolating operating system components
(for example separating the network subsystem from de-
vice drivers etc) and also better portability since much
of the hardware dependencies can be abstracted away by
the microkernel. For example, multiserver operating sys-
tems [4, 21] provide a system structured from multiple sep-
arated servers which run on top of a microkernel. These
servers rely on microkernel abstractions such as threads
and address spaces, which could in principle be backed by
multiple processors transparently to the operating system
servers. However, adapting an existing kernel to run as a
multiserver system (which has been attempted in [9]) re-
quires major refactoring of the kernel.

2.3. Other approaches

Like systems which use coarse-grained locking, master-
slave systems (refer to chapter 9 in [22]) allow only one
processor in the kernel at a time. The difference is that in
master-slave systems, one processor is dedicated to han-
dling kernel operations (the “master” processor) whereas
the other processors (“slave” processors) run user-level ap-
plications and only access the kernel indirectly through the
master processor. Since all kernel access is handled by one
processor, this method limits throughput for kernel-bound
applications. The master-slave approach is rarely used in
current SMP operating systems.

An interesting variation of multiprocessor kernels was
presented in [19]. The AsyMOS (Asymmetric Multipro-
cessor Operating System) divides the processors in a sys-
tem between application processors, APs, and device pro-
cessors, DPs. The APs run application code and most OS
functionality whereas the DPs handle hardware devices. For
example, a processor might be allocated to an Ethernet card
to handle hardware interrupts and perform packet handling
needed for the network subsystem. This approach is benefi-
cial if I/O-handling dominates the OS workload, whereas it
is a disadvantage in systems with much computational work
(where the processors would serve better as computational
processors). It also requires modification of the original ker-
nel, including a full SMP adaption for more than one AP.

Several cluster-based approaches have also been pre-
sented. One example is [24] where an SMP system acts
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as a cluster with each processor running a modified ver-
sion of the Linux kernel. The kernels cooperate in a vir-
tual high-speed, low-latency network. The Linux kernel in
turn runs on top of a bare-bones kernel (the Adeos nanok-
ernel) and most features of Linux has been kept intact, in-
cluding scheduling, virtual memory etc. Another cluster-
based method has been presented in [10], where virtualiza-
tion is used to partition a large-scale multiprocessor into a
virtual cluster. These systems provide characteristics sim-
ilar to our approach in that they avoid the complexity is-
sues associated with a traditional approach. However, the
cluster-based systems require another programming model
than single-computer systems. Cluster-based approaches
are probably best suited for large-scale systems where scal-
ability and fault tolerance is hard to achieve using traditional
approaches.

3. The application kernel approach

Because of the intricate nature of our industrial partner’s
kernel, we wanted to avoid the problems associated with
kernel complexity and size. All the approaches presented
in the previous section require extensive knowledge about
and access to the internals of the operating system kernel
and we therefore suggest a radically different approach, the
application kernel approach. In this section we describe the
general ideas behind our approach and also discuss require-
ments on the hardware and the operating systems.

3.1. Overview of the approach

In the following discussion, we assume that the imple-
mentation platform is the Intel IA-32 although the approach
is applicable to other architectures as well. We will fol-
low the Intel terminology when describing processors, i.e.
the processor booting the computer will be called the boot-
strap processor while the other processors in the system are
called application processors. Also, we use a similar nam-
ing terminology for the two kernels: the original uniproces-
sor kernel is called the bootstrap kernel whereas the second
kernel is called the application kernel. Further, we will as-
sume single-threaded processes in the discussion below, al-
though multi-threaded processes can also be supported with
minor adaptations.

The basic idea in our approach is to run the original
uniprocessor kernel as it is on the bootstrap processor. All
other processors run the application kernel on which the
user-part of the applications execute. One way of describ-
ing the overall approach is that the part of the application
program that needs to communicate with the kernel (and
hardware interrupts) is executed by the bootstrap processor
and the other parts of the program are distributed among
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Figure 1. Overview of the application kernel
approach.

the other processors in the system, i.e. a mode of operation
similar to master-slave kernels.

Every process is modified to run two threads, a bootstrap
thread and an application thread. The application thread
runs the unmodified application on the application proces-
sors and the bootstrap thread runs on the bootstrap processor
waiting for messages from the application kernel. For every
application thread there is one bootstrap thread and each
such thread pair communicates through a communication
area in the process’ address space. Figure 1 shows the over-
all approach with the bootstrap kernel and bootstrap thread
shown on the left and the application kernel and application
thread on the right. The communication area is shown in
the center of the process.

The application runs as before except when performing
operations involving the kernel, i.e. system calls and pro-
cessor exceptions (for instance page faults). On such an
event, the application thread traps into the application ker-
nel which handles the event by placing a message in the
communication area. The actual event will be handled at a
later point by the bootstrap thread, which simply issues the
same system call or exception.

With this approach, very few modifications need to be
done to the original kernel or applications. Applications
need to be relinked in order to start the thread pair and the
bootstrap kernel must start the application kernel, which can
commonly be achieved through loadable modules without
kernel modification. There are some special situations that
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require kernel modification, described in Section 4.3.
Compared to master-slave kernels, our approach tries to
minimize the knowledge needed to implement a SMP port,
in the best case not even requiring access to the uniproces-
sor kernel source code. The focus is therefore a bit different.
For master-slave kernels the added SMP-complexity goes
into the original kernel (albeit most of it is easily separa-
ble), whereas in our case almost all of the added complexity
is kept in a separate kernel. In a sense, our approach can
be seen as a more general revitalization of the master-slave
idea. The approach can also be compared to single system
image distributed systems such as MOSIX [2], which redi-
rects system calls to the “unique home node” of the process,
although the goals of the two approaches are quite different.

3.2. Requirements

A number of requirements are placed on the architec-
tural support by the application kernel approach, although
most common processor architectures support these. The
requirements are:

1. The processor architecture must support binding of in-
terrupts to a specific processor.

2. It must be possible to generate timer interrupts locally
to processors.

3. There must be a way of retrieving the current page ta-
ble address.

4. It must be possible to use different interrupt handlers
on different processors.

The first requirement must be fulfilled since only the
bootstrap kernel handles external interrupts in our approach.
The second requirement is needed for thread scheduling on
the application kernel whereas the page table address is re-
quired when creating new processes. Further, since the ap-
plication kernel need to handle system calls and exceptions
differently than the bootstrap kernel, the application kernel
needs private system call and exception handlers. All these
are fulfilled on the IA-32 architecture.

Our approach also places a number of requirements on
the bootstrap kernel, as listed below. These are normally
available in most operating system kernels.

1. It must be possible to extend the kernel with code run-
ning in supervisor mode.

2. The bootstrap kernel must not change or remove any
page mappings from the application kernel.

3. The page table must be the same for the kernel and the
current process.

The first of the kernel requirements is normally fulfilled
by some sort of loadable entity, e.g. kernel modules in
Linux, which allow code to be inserted into a running ker-
nel. The second requirement is necessary since the applica-
tion kernel would run in invalid memory if a page mapping
is removed. Also, the application processor TLB contents
would be incorrect unless the bootstrap processor notifies
the other processors when remapping a page. This is also a
problem for applications, as we discuss in Section 4.3. Fi-
nally, the application kernel needs to be able to retrieve the
current process page table which explains the last require-
ment. The IA-32 architecture poses an additional limitation.
At SMP startup, physical memory addresses below 1MB is
needed [12], a limitation posed by the legacy 8086-mode of
IA-32 processors. On IA-32 it must therefore be possible
to retrieve such memory from the kernel, or use known safe
memory areas (this is only needed during startup).

4. Application kernel design and implementa-
tion

We have implemented a prototype application kernel for
a small in-house uniprocessor kernel. The uniprocessor ker-
nel has been implemented to provide a test platform for
porting our industrial partner’s kernel and is a basic kernel
with threads, processes, and IPC (inter-process communi-
cation). This kernel supports dynamic creation and termi-
nation of threads and processes and is also extensible by
device drivers (currently the drivers must be added at kernel
compile-time). The application kernel was implemented as
a device driver for our uniprocessor kernel. In this section
we describe a prototype implementation of the application
kernel approach. We also describe some of the design deci-
sions for the application kernel more in detail.

4.1. System calls and exception handling

Figure 2 shows a detailed view of system call handling
in our approach. Exceptions such as page faults, file I/O,
device driver interaction etc. are handled the same way. For
system calls, seven steps can be identified:

1. The application thread issues a system call and traps
into the application kernel. The thread is then blocked
by the application kernel and removed from the ready
queue.

2. The application kernel enters information about the
system call, i.e. the passed parameters etc., into the
communication area.

3. The bootstrap thread is scheduled at some point later
and finds a new message in the communication area.
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Figure 2. Execution flow when performing a
system call.

4. The bootstrap thread issues the same system call with
the parameters passed in the message and traps into the
bootstrap kernel.

5. The bootstrap kernel handles the system call and re-
turns control to the bootstrap thread, which in turn
stores the result of the system call in the communi-
cation area.

6. The bootstrap thread issues the apkern_activate_-
thread (described in Section 4.2) to signal that the sys-
tem call has been handled.

7. Finally, the application kernel returns control to the ap-
plication thread which can now continue since the sys-
tem call has been handled.

System calls such as the UNIX exit call and exceptions
that cause the process to be terminated (for example ille-
gal instructions) are handled slightly differently than page
faults and other system calls. This is because the bootstrap
kernel is unaware of the application thread and will termi-
nate the process without notifying the application kernel. If
this is not handled, the application kernel will later schedule
a thread which runs in a non-existing address space. For this
case, step 2 of the algorithm is therefore modified to clean
up after the application thread (i.e. free the memory used
by the thread control block and remove the thread from any
lists or queues).

Another special case is when the information flows the
opposite way, i.e. when the kernel asynchronously activates
a process (for instance using UNIX signals), e.g. through
an arriving network packet. In this case, the handler (which
is installed at startup, if needed) in the bootstrap thread will
issue the apkern_activate_thread call directly, passing in-
formation about the operation through the shared area. The

User-level
(process)

’
apkern_create_thread

®

Supervisor-level
(kernel)

Bootstrap kernel Application kernel

Figure 3. apkern_create_thread execution flow.

application kernel will then issue the same signal to the ap-
plication thread, activating it asynchronously.

On every system call or exception, the application ker-
nel schedules another thread. Since the system call latency
depends on the scheduling of the bootstrap thread, the ap-
plication kernel could otherwise stall for a long time waiting
for the call to be performed. The processor also reloads the
page table on each thread switch to clear the TLB if a page
fault caused the page table to be updated.

4.2. Application kernel interface

The application startup library (crt0) is modified for
our approach. We modified crt0 so that it (on the boot-
strap processor) opens the application kernel device driver
and calls the driver to add a new application thread. There-
after a message-waiting loop of the bootstrap thread is en-
tered. There are three main routines in the application ker-
nel that are called from the bootstrap thread or the boot-
strap kernel. These cannot (other than indirectly) be called
by application threads since the functions are only available
through the driver. The exported interface is shown below.

e apkern_init: This routine is called once on system
startup, for instance on the device driver initialization
call. It performs the following tasks:

— Itinitializes data structures in the application ker-
nel, including the ready-queue structure.

— It starts the application processors in the system.
On startup, each processor will initialize the in-
terrupt vector to support system calls and excep-
tions. The processor will also enable paging and
enter the idle thread waiting for timer interrupts.

e apkern_create_thread: This function is called from
the thread running on the bootstrap kernel when the
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loop
if (communication area has entry) then
handle message (entry)
apkern activate_ thread()
else
reschedule ()

function handle message (msg)
if (msg is page fault) then

force pagefault by referencing the address

else if (msg is system call)
cause the corresponding system call
place result in communication area
else if (msg is exception)
cause the corresponding exception
place result in communication area

Figure 4. Bootstrap thread loop

process is started. This function creates a new thread
on the application kernel and makes it schedulable.

e apkern_activate_thread: This routine is called when
the bootstrap thread has handled a message (and
should therefore wake up an application thread). The
call changes the state of the corresponding application
thread from blocked to ready and inserts the TCB into
the ready queue.

Figure 3 shows a detailed chain of events when ap-
kern_create_thread is called. The handling is split in five
stages:

1. The newly created bootstrap thread starts executing.

2. The bootstrap thread makes a call to apkern_create_-
thread.

3. The application kernel creates and initializes the TCB
(thread control block) associated with the new applica-
tion thread and inserts it into the ready queue.

4. The thread on the bootstrap kernel then enters a loop
polling for messages in the communication area. The
loop and message handling is shown in Figure 4.

5. The application thread is scheduled for execution on
one of the application processors.

The logical and actual implementation structure is shown
in Figure 5. As illustrated by the Figure, the bootstrap
thread logically issues the apkern_create_thread call di-
rectly to the application kernel. Implementation-wise, com-
munication between the bootstrap thread and the applica-
tion kernel is done through a device-driver call to the boot-
strap kernel. There are are therefore three steps for an ap-
kern_create_thread call:

Logically Implementation

Bootstrap
thread

Bootstrap
thread

\

mpkern_create_thread
Bootstrap kernel Application kernel

@7dmver,control(apkern,duver,

apkern_create_thread)

¥ Bootstrap kernel
3 Application
‘w__kernel driver

Application kerne! ‘

Bootstrap
processor

: T L%?‘

Bootstrap R
Applicatio
processors

Application
processors

] [

processor
Bootstrap Application

Processor processors

Figure 5. Implementation structure of the ap-
plication kernel approach.

1. The bootstrap thread issues a driver_control call (in
our kernel, for other systems write or ioctl might
be used) to the bootstrap kernel, passing the ap-
kern_create_thread operation as argument.

2. The bootstrap kernel parses the request, checks per-
missions etc and passes the call to the device driver-
specific driver_control implementation.

3. Finally, the device driver performs the operation on the
application kernel data structures, in this case adding a
thread to the ready queue.

Note that all the steps above are performed by the device
driver running on the bootstrap processor. Data structures
such as the ready queue in the application kernel therefore
have to be protected both from application processors and
the bootstrap processor. The ready queue is protected by a
spinlock in our implementation.

4.3. Limitations and extensions

A special correctness problem is asynchronous page ta-
ble invalidations, i.e. page table changes not caused by the
process itself, which could occur for instance if the boot-
strap kernel swaps out a page to disk. The problem is that,
although the bootstrap kernel updates the page table, the
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TLB contents on the application processor will be incon-
sistent in the address space with the unmapped page. If
the corresponding application thread is scheduled, it would
then run in invalid memory. To handle this situation, the
bootstrap kernel must be modified to send invalidation mes-
sages to the application processors, a change which should
be straightforward to implement in most systems.

There is also a number of optimizations possible for the
approach. For instance, some threads could run entirely on
the bootstrap kernel, which would mainly be interesting for
kernel-bound applications. A migration scheme similar to
that in MOSIX [2] could then be used to move kernel-bound
threads to the bootstrap processor during runtime. Further,
it is also possible to implement some system calls directly
on the application kernel, providing the semantics of the
system calls are known. For example, sleeping, yielding the
CPU and returning the process ID of the current process can
easily be implemented on the application kernel. We have
chosen not to pursue these optimizations for the prototype,
as well as implementing load balancing, process migration
etc., since we deemed a proof-of-concept more important.

Another fairly simple extension is to allow multithreaded
processes. In order to run multithreaded programs, we sim-
ply start a bootstrap thread for each application thread. One
difference for multithreaded applications is that all threads
in a process must be blocked when one of the threads gen-
erates a page fault (again in order to not execute a thread in
an invalid address space), which adds some cross-processor
synchronization issues.

4.4. Implementation complexity

The implementation complexity of our approach is a
very important component. Our implementation consists of
about 2500 lines of C and assembly code, most of which
deals with SMP initialization (support libraries, like the
C-library, have been excluded from these numbers). The
changes at the application level is limited to a few lines of
modified code to crt 0 and the implementation of the boot-
strap thread loop (about 120 lines). The device driver im-
plementation encompasses slightly more than 250 lines. We
did not implement any exception handling apart from page
faults in our prototype kernel, although adding exception
handling should not require very much code. The handling
of additional system calls also does not add any extra code
to the implementation.

No changes were made to the original (bootstrap) ker-
nel, although an implementation of TLB invalidation would
be needed for the case where the bootstrap kernel asyn-
chronously unmaps memory pages. An implementation of
TLB invalidation should require fairly small amounts of
work.

We believe that our approach is fairly generic, i.e. most
of the application kernel code could be reused for other
operating systems. The parts that are operating system-
specific is the driver implementation, the startup library,
system call parameter passing, some exception handling
and (on IA-32) the initialization of the IDT (Interrupt De-
scriptor Table, the interrupt vector). We are therefore confi-
dent that the application kernel approach could be added to
other operating systems without a major effort.

5. Performance evaluation

In this section, we present an evaluation of the perfor-
mance of the application kernel approach in order to show
under what conditions it is feasible performance-wise. The
performance measurements were done under the Simics
simulator [17], which simulates a complete IA-32 system
with 1 to 8 processors. The implementation runs on real
hardware, but the Simics simulator is a cost-effective and
flexible tool for running automated tests on many different
hardware configurations.

It should be noted that Simics does not implement in-
struction timing accurately on IA-32, so the base for the
measurements is the number of instructions executed and
not clock cycles. Further, other performance issues relevant
in multiprocessor systems [8], such as costs associated with
data alignment, cross-processor cache access etc. is not ac-
counted for. However, we believe that these measurements
still gives an accurate enough indication of real-world per-
formance for the approach.

We have performed two kinds of microbenchmarks on
our approach. First we evaluated the added latency intro-
duced to system calls and exceptions. Second, we measured
the throughput as the effective work performed by proces-
sors under varying system load.

5.1. Latency

We first performed a benchmark of system call latency
with our approach. Exception handling (for instance page
faults) would produce similar latencies since it works by the
same principles. We measured latency by adding inspection
points before and after a system call (gettid, which only re-
turns the thread id of the current thread) in an empty system.
The results are an average of 1000 measurement iterations.

Since the application thread remains blocked while the
bootstrap thread handles the system call, the latency of sys-
tem calls depends on three factors. First, the bootstrap
thread must be scheduled and issue the system call. There-
after, the bootstrap kernel must handle the system call. Fi-
nally, the application kernel must reschedule the applica-
tion thread (the thread was entered into the ready queue
through a call to the device driver made by the bootstrap
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thread). The worst-case system call latency therefore oc-
curs when the processes in the system are completely CPU-
bound, since the application thread scheduling then depends
completely on the ready queue length and timer interval.
For our uniprocessor kernel, the gettid system call takes
about 100 instructions to complete (this system call never
switches thread). With the application kernel, the latency
added using our approach is about 1200 instructions. The
latency is not dependent on the number of processors since
the main delay occurs on the bootstrap processor (the appli-
cation processors spin until some thread becomes schedula-
ble). From the latency measurements, we conclude that our
approach is not feasible for applications and systems with
many system calls or requirements on short response time.

5.2. Throughput

We evaluated two factors in our throughput measure-
ments. First we measured the number of loops a thread
iterated during a given time (totally there are 20 single-
threaded loop-processes in the system). In the loop, the
application executes a fixed amount of user-level instruc-
tions after which it performs a system call. The system call
in turn spins in the kernel for a configurable number of in-
structions. This measurement gives an indication of system
throughput in terms of how much work the collection of
threads perform during a given time.

We also measured the proportion of non-idle time in the
bootstrap thread, i.e. the proportion of bootstrap thread
loops that contained message handling. This measurement
shows the room for further scalability improvements, or in
other words gives the point when adding more processors
not will give any performance increase.

Both the number of user and kernel instructions in our
tests were configurable. We ran the tests at three levels
of kernel load, 151, 451, and 4510 instructions per system
call. The number of user instructions were then selected to
provide user/kernel proportions of 80, 90, 92.5, 95, 97 and
99%. These tests show the performance at frequent, rela-
tively short system invocations, fairly long system calls and
infrequent time-consuming system calls at different levels
of user/kernel execution.

Figures 6, 7 and 8 show the results of the throughput
measurements for the three levels of kernel load, 151, 451
and 4510 instructions per system call respectively. The
upper part of the figures illustrate the speedup gained by
adding additional processors, normalized to the uniproces-
sor performance. The lower part shows the load on the
bootstrap processor. From the figures we can see that the
approach scales fairly well for long system calls. The fig-
ures also show that the potential for scalability increases
with longer, less frequent system calls. Also, Figure 8 il-
lustrates that even two processors (i.e. one application pro-
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Figure 6. Speedup and bootstrap kernel load
at 151-instruction system calls.

cessor) can give performance increases. This is because the
bootstrap kernel handles kernel calls while the application
kernel runs user code in this case. Further, the figures show
that the maximum throughput using our approach is lim-
ited by the capacity of the bootstrap processor. It turns out
that the maximum capacity of the bootstrap processor can
be written as

C = ips = scps * (ipsc + opsc)

Where C' is the capacity, ips the number of instructions per
second, scps the system calls per second, ipsc the average
number of instructions per system call and opsc is the over-
head in instructions per system call.

We know the capacity in terms of instructions per sec-
ond and by looking at the values in figures 6, 7 and 8 we
can calculate the average overhead per system call added
by our approach. From the curves for 99% in Figure 6, 97%
in Figure 7, and 90% in Figure 8 we get an overhead per
system call of about 2000 instructions.

The equation above makes it possible to calculate the
maximum throughput for arbitrary application program be-
havior. For instance, if we have a case where a system call
takes 1000 instructions on average and the application pro-
gram issues one system call every 15,000th instruction on
average, we know that the maximum number of system calls
per second is (if we assume 100,000,000 instructions per
second)

ips 100 = 108

= ~ 30000
(ipsc+ opsc) (1000 + 2000)
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Figure 7. Speedup and bootstrap kernel load
at 451-instruction system calls.

The number of system calls per second for the unipro-
cessor case is 100 * 10°/15000 and the maximum speedup
is thus

100 % 109/(1000 +2000) 15000
100 * 106/15000

~ 7000 + 2000

In a highly optimized production version of our approach
it is reasonable to expect that we would be able to decrease
the overhead per system call even more, and thus obtain
better performance. The above equation makes it possible
to quantify the performance increase as a function of the
implementation optimizations leading to lower overhead.

6. Conclusion

In this paper, we have presented an novel approach for
adding SMP support to a uniprocessor operating system.
Our approach provides an alternative with less implemen-
tation complexity than the traditional approaches, carrying
similarities to both traditional master-slave systems and dis-
tributed systems. In some cases, our approach does not
require any modification at all of the uniprocessor kernel,
while some minor changes are required in other cases.

There are several advantages with our approach. First,
we do not need to go into the large and complex code of
the uniprocessor kernel. Second, the development of the
uniprocessor kernel can continue as usual with improve-
ments propagating automatically to the SMP version. We
also expect that a large portion of the effort of writing the
application kernel can be reused for other uniprocessor ker-
nels.

& s
2 6 &
>
3 Y ©
2 s -~
g 7
e
g 4 5
b P B
= ¥
S 3 P
5 57
o A7
s 2 72
R e
© 99% user
T3 3 d 5 6 55 ol
; © 95% user
100 = / v 92.5% user
yd S / < 90% user
75 ~ VA 4 80% user

Bootstrap thread load
n

Number of processors

Figure 8. Speedup and bootstrap kernel load
at 4510-instruction system calls.

The disadvantage with the application approach is lim-
ited performance. However, our microbenchmarks show
that our approach can provide good speedup for applica-
tions with a low frequency of system calls. For applica-
tions with frequent and short system calls, the performance
gains do not show up until we use more than two processors.
However, systems with time-consuming kernel invocation
show performance gains also for two processors. We also
provide a formula that makes it possible to quantify the user
perceived performance in terms of throughput as a function
of the overhead per system call added by our approach.
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