
VPPB - A Visualization and Performance Prediction Tool
for Multithreaded Solaris Programs

Magnus Broberg, Lars Lundberg, and Håkan Grahn
Department of Computer Science
University of Karlskrona/Ronneby

Soft Center, S-372 25 Ronneby, Sweden
{Magnus.Broberg, Lars.Lundberg, Hakan.Grahn}@ide.hk-r.se

Abstract
Efficient performance tuning of parallel programs is

often hard. In this paper we describe an approach that
uses a uni-processor execution of a multithreaded pro-
gram as reference to simulate a multiprocessor execution.
The speed-up is predicted, and the program behaviour is
visualized as a graph, which can be used in the perfor-
mance tuning process.

The simulator considers scheduling as well as hard-
ware parameters, e.g., the thread priority, no. of LWPs,
and no. of CPUs. The visualization part shows the simu-
lated execution in two graphs: one showing the threads’
behaviour over time and the other the amount of parallel-
ism over time. In the first graph is it possible to relate an
event in the graph to the code line causing the event. Vali-
dation using a Sun multiprocessor with eight processors
and five scientific parallel applications shows that the
speed-up predictions are within +/-6% of a real execution.

1. Introduction

Parallel processing is an important way to increase the
performance. It is often easier to develop parallel applica-
tions for shared memory multiprocessors than for message
passing systems. Shared memory multiprocessors are
therefore becoming increasingly important.

The thread concept in the Solaris operating system [13]
makes it possible to write multithreaded programs which
can be executed in parallel. Having multiple threads does,
however, not guarantee that a program will run faster on a
shared memory multiprocessor. One major performance
problem is that thread synchronizations may create serial-
ization bottlenecks which are often hard to detect.

Removing serialization bottlenecks is referred to as
performance tuning. Different tools for visualizing the
behaviour of, and thus the bottlenecks in, parallel pro-
grams have been developed [1, 2, 3, 5, 6, 9, 10, 11, 12, 14,
16, 18]. The tuning process may benefit significantly from
using such tools.

Some performance visualization tools show the behav-
iour of one particular monitored multiprocessor execution
of the parallel program [1, 2, 3, 5, 6, 9, 10]. If we monitor
the execution on a multiprocessor with four processors

such tools make it possible to detect bottlenecks which are
present when using four processors. The problem with this
approach is the lack of support for detecting bottlenecks
which appear when using another number of processors.

There are a number of tools which make it possible to
visualize the (predicted) behaviour of a parallel program
using any number of processors. However, these tools are
either developed for message passing systems [12] or for
non-standard programming environments [11, 14, 16, 18].

In this paper we present a performance prediction and
visualization tool called VPPB (Visualization ofParallel
ProgramBehaviour). Based on a monitored uni-processor
execution, the VPPB system shows the (predicted) behav-
iour of a multithreaded Solaris program using any number
of processors. To the best of our knowledge, VPPB is the
only available tool which supports this kind of flexible
performance tuning of parallel programs developed for
shared memory multiprocessors using a widely spread
standardized parallel programming environment (Solaris).

Validation using five scientific multithreaded programs
from the SPLASH-2 suite [19] and a multiprocessor with
eight processors showed that VPPB was able to predict the
behaviour very accurately. The maximum difference
between the real speed-up and the speed-up predicted by
VPPB was 6%, and for most cases the difference was less
than or equal to 1%. As discussed above, the predictions
are based on recordings from a monitored uni-processor
execution. The time overhead for doing these recordings
was less than 3% for all five programs.

The paper is structured in the following way. Section 2
gives a short overview. In section 3 the implementation is
described. Section 4 describes the validation. A small case
study is shown in section 5. Section 6 discusses the limita-
tions and applicability. Section 7 concludes the paper.

2. Overview of VPPB

The VPPB consists of three major parts, theRecorder,
the Simulator, and theVisualizer. The workflow when
using the VPPB system is shown in figure 1. The devel-
oper writes the multithreaded program, (a) in figure 1,
compiles it, and an executable binary file is obtained. After
that, the program is executed on a uni-processor. When



starting the monitored execution (b), theRecorder is auto-
matically placedbetween the program and the standard
thread library. Every time the program uses the routines in
the thread library, the call passes through theRecorder (c)
which records information about the call, i.e., the identity
of the calling thread, the name of the called routine, the
time the call was made, and other parameters. The
Recorder then calls the original routine in the thread
library. When the execution of the program finishes all the
collected information is stored in a file, therecorded infor-
mation (d). The recording is done without recompilation
or relinking of the application.

The Simulator simulates a multiprocessor execution.
The input for the simulator is therecorded information, (d)
in figure 1, the hardware configuration (e), and scheduling
policies (f). The output from the simulator is information
describing the predicted execution (g).

Using theVisualizer the predicted parallel execution of
the program can be inspected (h). The Visualizer uses the
simulated execution (g) as input. When visualizing a simu-
lation, it is possible for the developer to use the mouse to
click on a certain interesting event, get the source code dis-
played, and the line making the call that generated the
event highlighted. With these facilities the developer may
detect problems in the program and can modify the source
code (a). Then the developer can re-run the execution to
inspect the performance change. The VPPB system is
designed for C or C++ programs that uses the built-in
thread package in the Solaris 2.X operating system.

3. Tool Description and Implementation

3.1. The Recorder
In order to trace the behaviour of the program when

executed on a uni-processor, the Recorder inserts probes
when the program starts. The probes are inserted at spe-
cific events, i.e., before and after calls to the thread library,
and they do not affect the behaviour or function of the pro-
gram. For each event, the probes record the following
information: when an event has occurred; the type of

No of Processors
Communication delays

No of LWPs
Thread priorities
Binding of threadsC or C++ source code

Compiler

Binary file

Execution

Solaris 2.X
Thread Library

Calls

Calls Returns

Returns

Recorder
(Instrumented

Thread Library)
Encapsulating

Recorded
information

Simulator

Information describing

Visualizer
h

Start

Figure 1: Schematic flowchart of the VPPB system.

Scheduling policies

Hardware configuration
simulated execution

VPPB

a

b

c

d

e

f

g

event, e.g., locking of a mutex; which object the event con-
cerns, e.g., the identity of the mutex being used; the iden-
tity of the thread generating the event; and the location of
the event in the source code. The data collected by the
Recorder is kept in memory until the program terminates,
then the recorded data is written to a log file. By using this
technique, the intrusion is kept to a minimum.

We will use a small multithreaded program, found in
the upper left corner of figure 2, as an example when dem-
onstrating the functionality of the VPPB. The optimal par-
allel execution of this program can be found in the lower
left corner of figure 2; a solid line denotes execution, no
line that the thread is blocked, and an arrow represents an
event. The Recorder executes the threads sequentially on a
uni-processor. The output of the Recorder is the list of
events found on the right side of figure 2. The sequentially
ordered list is used as the behaviour profile when simulat-
ing a multiprocessor execution of the program.

Our current implementation of the Recorder is based on
the ideas described in [8]. We insert a new library between
the program and the dynamically linked library
libthread.so.1 , which implements the threads in
Solaris 2.X. This is achieved by using the built-in facilities
of Solaris with run-time linking and shared objects. The
insertion is handled at program start-up by the run-time
linker via an environment variable calledLD_PRELOAD.
The probes in the inserted library are exemplified in figure
3, where we show howthr_exit  is implemented.

The probe does four things. First it looks up the address
of the real implementation ofthr_exit  and stores it in a
variable. This is done only the first time the probe is
called. The next thing is to make a time stamp and store
the data about the event. The next part of the code stores
which source line the thread primitive was called from.
Finally, the probe calls the original function in the Solaris
thread library.

The time recorded for each event is wall clock time
with a resolution of 1 microsecond. We are can not moni-

void* thread(void *) {
work();

}
int main() {

thread_t thr_a, thr_b;
thr_create(0, 0, thread, 0, 0, &thr_a);
thr_create(0, 0, thread, 0, 0, &thr_b);
thr_join(thr_a, 0, 0);
thr_join(thr_b, 0, 0);

}

Figure 2: An example program and the output from the
Recorder. The operating system assigns the following
thread identity numbers to the threads: main = 1, thr_a
= 4, and thr_b = 5. We will use T1, T4, and T5, respec-
tively, when we refer to the different threads.

Time

T5 (thr_b)

T4 (thr_a)

T1 (main)

time thread action duration
0.00 T1 start_collect
0.0 T1 Running 0.03
0.03 T1 thr_create thr_a 0.04
0.0 T1 Running 0.03
0.10 T1 thr_create thr_b 0.02
0.0 T1 Running 0.05
0.17 T1 thr_join thr_a 0.05
0.0 T4 Running 0.10
0.32 T4 thr_exit
0.0 T5 Running 0.11
0.43 T5 thr_exit
0.0 T1 Running 0.10
0.53 T1 ok thr_join thr_a 0.05
0.0 T1 Running 0.01
0.59 T1 thr_join thr_b 0.05
0.0 T1 Running 0.10
0.74 T1 ok thr_join thr_b 0.05
0.0 T1 Running 0.01
0.80 T1 thr_exit

0.11

0.10

0.030.03



tor the kernel switches between LWPs (lightweight pro-
cesses) and are forced to do the monitoring on one single
LWP. A more thorough discussion is found in Section 6.

We have divided the tracing of the source code location
of the call to a probe into two steps. The first step is to
record where the calling code is placed in memory. This is
done by saving the return address which is the place where
execution will continue after the function has returned. On
the SPARC processor this return address is kept in a CPU
register called i7. The second step translates the recorded
memory addresses into specific source code lines. This is
done by using a source code debugger and a small parser,
which converts the output from the debugger into a format
that is readable for the Simulator and Visualizer.

In everythr_create  call, a function pointer is sup-
plied. This pointer contains the start address of a new
thread. The function pointer is recorded and the debugger
is used to translate the address to the function name in the
source code.

3.2. The Simulator
The Simulator emulates the scheduling in Solaris 2.5

[13]. In Solaris, threads are used at two levels [17]. The
application programmers use user-level threads for
expressing parallel execution within a process. Kernel
threads are used within the operating system kernel. The
kernel knows nothing about user-level threads.

Between the user-level and kernel threads are LWPs.
Each Solaris process contains at least one LWP. In most
cases, user-level threads are multiplexed on the LWPs of
the process, such threads are referred to as unbound
threads. It is, however, possible to bind a thread to an
LWP. Compared to unbound threads, it is much more
expensive to create and synchronize threads which are
bound to an LWP [17].

There is a kernel thread for each LWP. However, some
kernel threads have no associated LWP, e.g., a thread to
service disk requests. Kernel threads are the only objects
scheduled by the operating system, and they can either be
multiplexed on the processors in the system, or bound to a
specific processor. To some extent, the user can control
thread scheduling, e.g. by binding threads to LWPs and

void thr_exit(void *status) {
static void (* fptr)() = 0;
if ( fptr == 0 ) {

fptr = (void (*)())dlsym(RTLD_NEXT, "thr_exit");
if ( fptr == NULL ) {

(void) printf("dlopen: %s\n", dlerror());
return;

}
}
mthr_collect(THR_EXIT, thr_self(), BEFORE, -1);
asm("set returnpointer, %l0");
asm("st %i7, [%l0]");
mthr_recallAddress();
(*fptr)(status);
return;

}

Figure 3: The implementation of the thr_exit probe.

LWPs to processors. It is also possible to indicate how
many LWPs a certain process should have. The (user-
level) threads can be created dynamically at run-time.

In the Simulator, threads may be manipulated in the fol-
lowing ways: Each thread can individually be unbound;
bound to a LWP; or bound to a certain CPU. A thread that
is bound to a CPU is automatically bound to an LWP. Each
thread can individually be assigned a certain priority level.
This will then override all manipulation of that thread’s
priority within the log file, e.g., thethr_setprio  event
for that thread will be ignored.

Binding a thread to a CPU can increase the speed of the
program [7]. When a thread is moved to a different CPU,
parts of the old cache contents has to be moved to the
cache on the new processor. This may result in a perfor-
mance-loss. The Simulator does not simulate the caches,
but it is possible to use this facility to determine which
thread to bind to which CPU in order to get the best result
from a load balancing point of view.

Not only user-level threads has a priority level, but also
the LWPs. The priority of an LWP is set by the operating
system and is adjusted during run-time depending on, e.g.,
whether the LWP is interactive or only runs in batch mode.
The simulator emulates the priority adjustment as it is han-
dled in Solaris. The length of a time slice for an LWP is
related to the priority level, thus we also adjust the time
slice length during our simulation.

The following parameters can also be adjusted: the
communication delay between the CPUs; the number of
processors; and the number of LWPs. In this case the
thr_setconcurrency  in the program has no effect.
The communication delay affects how fast an event on one
CPU is propagated to another CPU.

The concept ofmutex_trylock  and similar try-
operations are handled in the following way: If the thread
gained access to the lock in the log file, the simulation will
do amutex_lock , otherwise no action is taken by the
simulator. Thecond_timedwait  is handled as a delay
if the operation timed out in the log file and as an ordinary
cond_wait  operation otherwise. Consequently, the
information in the log file corresponds to a deterministic
execution of the program with some minor exceptions,
which are explained in Section 6.

Creating a bound thread is simulated to take 6.7 times
longer than an unbound thread [17]. A synchronization on
a semaphore takes 5.9 times longer [17] with bound
threads than unbound. This value is used in the simulator
for mutexes, conditions, and read/write locks, as well.

When running the Simulator, all events in the log file
from the Recorder are sorted into a set of lists, one list for
each thread as shown in figure 4.

Our simulation technique is an ordinary eventdriven
approach. When the simulation starts, all threads are



marked as blocked except for the starting (main) thread,
i.e., T1. In order to run the threads, the number of LWPs
and CPUs specified by the user are simulated. Each (simu-
lated) CPU picks a (simulated) LWP, which in turn picks a
(simulated) thread. Each CPU executes the minimum time
required for one of the threads to reach an event from the
thread’s list. The event is simulated and, if appropriate,
some blocking or scheduling of threads or LWPs are done.

3.3. The Visualizer
The Visualizer offers two graphs: the parallelism vs.

time graph, orparallelism graph for short; and the execu-
tion flow vs. time graph, orexecution flow graph for short.
The parallelism graph is the upper graph in figure 5. The
higher the graph reaches the more parallelism exists in the
application. The number ofrunning threads are indicated
with green. On top of the graph, all the threads that are
runnable but not running are presented in red. It is easy
see where the performance bottlenecks are in time as well
as the potential parallelism. This kind of graph har previ-
ously been presented as two separete graphs in [15].

The execution flow graph (the lower graph in figure 5)
contains more detailed information than the parallelism
graph. In the execution flow graph the time is represented
on the X-axis and the threads are represented on the Y-
axis. A horizontal line indicates that the thread of that Y-
position is executing, the lack of a line indicates that the
thread can not execute, a grey line that the thread is ready
to run but does not have any LWP or CPU to run on. Dif-
ferent events are displayed with different symbols and
colours, e.g., all semaphores are shown in red, and the
primitivessema_post  andsema_wait  are represented
as an upward and a downward facing arrow, respectively.

The zoom utility can increase (or decrease) the magnifi-
cation to an arbitrary magnification degree in steps of a
factor of 1.5 or 3. The zoom keeps the left-most time fixed

Recorder output

Figure 4: The Simulator’s sorting of the log file from
the Recorder. We use the same program as in figure 2.

time thread action duration
0.00 T1 start_collect
0.0 T1 Running 0.03
0.03 T1 thr_create thr_a0.04
0.0 T1 Running 0.03
0.10 T1 thr_create thr_b0.02
0.0 T1 Running 0.05
0.17 T1 thr_join thr_a0.05
0.0 T4 Running 0.10
0.32 T4 thr_exit
0.0 T5 Running 0.11
0.43 T5 thr_exit
0.0 T1 Running 0.10
0.53 T1 ok thr_join thr_a0.05
0.0 T1 Running 0.01
0.59 T1 thr_join thr_b0.05
0.0 T1 Running 0.10
0.74 T1 ok thr_join thr_b0.05
0.0 T1 Running 0.01
0.80 T1 thr_exit

time thread action duration
0.00 T1 start_collect
0.0 T1 Running 0.03
0.03 T1 thr_create thr_a0.04
0.0 T1 Running 0.03
0.10 T1 thr_create thr_b0.02
0.0 T1 Running 0.05
0.17 T1 thr_join thr_a0.05
0.0 T1 Running 0.10
0.53 T1 ok thr_join thr_a0.05
0.0 T1 Running 0.01
0.59 T1 thr_join thr_b0.05
0.0 T1 Running 0.10
0.74 T1 ok thr_join thr_b0.05
0.0 T1 Running 0.01
0.80 T1 thr_exit

time thread action duration
0.0 T4 Running 0.10
0.32 T4 thr_exit

time thread action duration
0.0 T5 Running 0.11
0.43 T5 thr_exit

T1’s event list

T4’s event list

T5’s event list

Time

T5 (thr_b)

T4 (thr_a)

T1 (main)

0.11
0.10

0.030.03

in the execution flow graph. The user can mark a time
interval in the parallelism graph , and the execution graph
will automatically show only the marked interval.

When there are too many threads to fit in one display,
irrelevant threads can be removed automatically. The com-
pression only shows the threads active during the time
interval shown in the execution flow graph. It is also possi-
ble to control which threads to be shown by hand, allowing
the user to select which threads to show from a list.

By selecting a particular (interesting) event, e.g., when
thread T1 joins with thread T4 (marked in Figure 5 with a
circle), a popup window is shown that gives more informa-
tion. The selected event starts to flash in the execution flow
graph. The popup window gives information about the
thread causing the event: the thread identity; the name of
the function passed to thethr_create  function; the
time the thread started and ended; how long time the
thread actually was working; and finally, the total execu-
tion time of the thread (including the time the thread was
blocked or runnable). There are also information about the
event: that the event was a join operation with thread T4;
that the thread was running on CPU 0 in the simulated exe-
cution; when the event started, ended, and how long it took
to perform; and the source code file and source code line.

The user can step to the previous or next event made by
this thread. The execution flow graph is automatically
scrolled in order to place the event in the centre of the win-
dow. The the popup window is updated with the corre-
sponding data about the new event. Further, the user can
find the next or previous similar event. This means that the
next event caused by the same event type or variable, e.g.,
the next operation on the same mutex variable, will be
found. Finally, the tool can start an editor with the source
code file and highlight the line where the event took place.

4. Validation

The validation of the predictions was made using a sub-
set of the SPLASH-2 benchmark suite  [19]. The programs
that we use from the SPLASH-2 suite are: Ocean (with
data set 514-by-514 grid), Water-Spatial (512 molecules,
30 time step), FFT (4M points), Radix (16M keys, radix
1024), and LU (contiguous, 768x768 matrix, 16x16
blocks). All programs that we use are from the scientific
and engineering domain.

Figure 5: The execution parallelism and flow graphs
after running a simulation.



The other benchmarks in the SPLASH-2 suite could not
be used as validations. Barnes, Radiosity, Cholesky, and
FMM could not run in one single LWP as required by the
Recorder. The reason is that these programs all spin on a
variable, and since the thread never yields the CPU, no
other thread could possibly change the value of that vari-
able. The program Raytrace and Volrend could not be used
since all tasks that are executed by a thread are put in a
queue. Whenever a thread is idle it steals a task from
another thread’s queue. The impact of using one LWP
gives the result that only one thread steals all tasks, since it
never yields the CPU.

All executions were made on a Sun Ultra Enterprise
4000 with 8 processors and 512MByte memory. Since the
SPLASH-2 programs are designed to create one thread per
physical processor, one log file were made for each pro-
cessor setup when using the Recorder.

Table 1 shows the measured and predicted speed-up for
the five programs. The real speed-up is the middle value of
five executions of the program. The values between paran-
thesis show the maximum and minimum speedup for the
executions. The error is defined as |((Real speed-up) -
(Predicted speed-up))/(Real speed-up)|.

With one exception the predicted speed-up is very close
to the real speed-up, i.e., the error is less than 1.5%. The
exception is Ocean where the error is 6.2% on eight pro-
cessors. However, the values between brackets show that
the variations in the real speedup is rather large , and the
predicted value is within the interval defined by the execu-
tions.

Table 1: Measured and predicted speed-ups.

Application/
Speed-up

2 processors 4 processors 8 processors

Ocean Real 1.97 (1.97-1.98) 3.87 (3.85-3.89) 6.65 (6.42-7.11)

Pred. 1.98 3.89 7.06

Error 0.5% 0.5% 6.2%

Water-
spatial

Real 1.99 (1.99-2.00) 3.95 (3.94-3.97) 7.67 (7.37-7.76)

Pred. 1.98 3.91 7.56

Error 0.5% 1.0% 1.4%

FFT Real 1.55 (1.54-1.55) 2.14 (2.14-2.15) 2.62 (2.61-2.63)

Pred. 1.55 2.14 2.63

Error 0.0% 0.0% 0.4%

Radix Real 2.00 (1.99-2.00) 3.99 (3.98-3.99) 7.79 (7.77-7.81)

Pred. 1.98 3.95 7.87

Error 1.0% 1.0% 1.0%

LU Real 1.79 (1.78-1.80) 3.15 (3.12-3.15) 4.82 (4.74-4.90)

Pred. 1.79 3.14 4.81

Error 0.0% 0.3% 0.2%

Due to the recordings, the monitored uni-processor exe-
cution takes somewhat longer than an ordinary uni-proces-
sor execution of the program. However, our measurements
showed that the execution time overhead for doing the
recordings was very small. The maximum overhead,
which was obtained for Ocean, was 2.6% of the total exe-
cution time. Another concern was the size of the log files.
The largest log file, obtained for Ocean, was 1.4 MByte.
This file could be handled without any problems. Conse-
quently, neither the execution time overhead, nor the size
of the log files caused any problems for these programs.

Programs with fine granularity generate more synchro-
nization events, and thus larger log files, per time unit than
coarse grained programs. The maximum number of events
per second for our programs was 653 (Ocean). The uni-
processor execution time for the five programs ranged
from 60 seconds to 210 seconds. The size of the log files
could become a problem for very long executions of fine
grained programs.

We have done experiments with log files up to 15
MByte. Unfortunately the time required for obtaining the
predicted speed-up values, and also the graph visualizing
the behaviour of the program, increases for large log files.

5. A Simple Example

We use a producer-consumer problem to demonstrate
how the tool can be used for improving the performance of
an application. There are 150 Producers, each imple-
mented by a thread, which inserts ten items in the buffer
and then exits. There are 75 Consumers, picking one item
each from the buffer. A semaphore is used to represent the
number of items in the buffer, insertion and fetching of
items is controlled by one mutex. The buffer size is large
enough to avoid producer stalling as a result of a full
buffer.

We began with making a log file on a uni-processor
computer. After simulating the log file, we found that the
program ran only 2.2% faster on 8 CPUs. To find out the
reason of the poor performance, we use the Visualizer. A
small part of the simulated execution is found in figure 6.
In the execution flow graph we see that no threads are
actually running in parallel. We also see that all threads are
being blocked by a wait on a mutex, the arrow facing
downwards. By clicking with the mouse on the arrows, we
reach the conclusion that it is the same mutex causing the
blocking for all threads. The mutex is the one that we use
to lock the insertion and fetching.

When we have pinpointed the performance bottleneck
we have to find a solution to our problem. One solution is
to have 100 buffers with their own mutex locks. We keep a
mutex for the whole buffer system to lock the small
amount of time to check which buffer to insert the item in.
We also have different mutexes for inserting and fetching.



After making a new log of the improved program, we
find that the program runs 7.75 times faster when using the
simulated eight processor machine. A validation gives the
speed-up of 7.90 on a real multiprocessor, thus the error in
the prediction is only 1.9%. A picture of the simulated
execution is found in figure 7. In the parallelism graph we
can see that a larger number of thread are runnable but has
no processor to run on. This is indicated by the high red
part of the graph, and the constant low green part.

6. Discussion

Our approach is based on the assumption that the
behaviour of the multithreaded program is (more or less)
independent of the scheduling policy and the number of
processors used for executing the program. Using the trace
log file in a deterministic way when simulating and visual-
izing the execution may cause some problem. Some of
them will be discussed below.

Conditions variables [17] are hard to simulate, since
their behaviour depends on the value of an ordinary vari-
able, which can not be traced by the Recorder. However,
since it is common to use condition variables when imple-
menting barriers, the simulator is designed to model the
behaviour of a barrier as accurate as possible. The problem
concerns the last thread that arrives at the barrier in the
monitored execution. In the simulation that thread may be
scheduled in a way that makes the thread arrive at the bar-
rier before some other threads do. If the number of threads
released during the recorded execution are less than those
in the log file, thecond_broadcast  will block the call-

Figure 6: Parts of the execution of the initial program.

Figure 7: Simulated execution the improved program.

ing thread waiting for the correct number of threads to
arrive at the barrier. Thus, the last thread arriving at the
barrier releases all the waiting threads.

The primitive thr_join  [17], waits until another
(specific) thread has exited. It is possible to pass a wild-
card tothr_join , meaning that the thread will wait for
any thread the exit, which may not be the one that exited in
the log file. Finally, the simulator does not consider the
overhead for LWP context switches on a multiprocessor.

The Recorder can only be used when running one sin-
gle LWP since the Recorder can not detect when an LWP’s
time slice is over and another LWP starts to execute. This
makes it impossible to run a program with several threads
where one thread executes in a tight loop during the whole
execution since the loop will be the only one executing.
Also having a thread spinning on a (ordinary, volatile)
variable will cause a livelock for the same reason. Further
reading on thread synchronization and scheduling can be
found in [17]. Finally, our technique does not model I/O,
and is therefore applicable only to CPU-intensive applica-
tions. We are currently working on solving this problem.

In the current implementation VPPB supports Solaris
2.X threads. However, the tool can easily be adjusted to
support, e.g., POSIX threads [17] with only small modifi-
cations of the probes in the Recorder.

We have chosen not to use the recording facilities found
in TNF [4], although the technique is similar to our
Recorder. The main reason is that TNF uses a circular
buffer to store the recorded information and thus informa-
tion may be overwritten if the buffer is too small.

In [16] and [20] the authors stress the following issues:
selective representation; integration between development
time and run-time information; high-level and automated
performance debugger; automated instrumentation of par-
allel programs; low overhead in monitoring program exe-
cution; and graphs and indices to expose performance
bottlenecks. As mentioned throughout this paper all these
requirements are met.

In parallel program development today there exists a
number of tools, most ones with graphical (and even aural)
displays. VPPB offers two different graphs, the execution
flow graph and the parallelism graph. The execution flow
graph is a commonly used graph, e.g.,  [5, 16]. We expect
the parallelism graph to be very useful for detecting per-
formance bottlenecks in large applications. A huge
amount of graphs may cause more confusion than clarity
of the performance problem as stated in [2]. Some other
tools use statistical graphs [5]. The main problem with sta-
tistical graphs and data is that they often give only average
values which are often useless since it is hard to identify
when and where the program generated the statistics.



7. Conclusion

In this paper we describe a tool called VPPB, Visual-
ization of Parallel Program Behaviour. The main goals are
to predict the speed-up of a multithreaded application and
to visualize the application’s multiprocessor behaviour for
the developer. The target programs are written in C or C++
and run on the Solaris 2.X operating system, an environ-
ment commonly used in both industry and academia.

Our approach relies on a monitored execution of the
multithreaded application on a uni-processor. During that
execution a log file is created containing all calls that the
application made to the thread library. Then, the multipro-
cessor execution is simulated according to user supplied
scheduling and hardware parameters. The result of the
simulation is visualized graphically. The developer can
then inspect the behaviour of the application as if it had
been run on a multiprocessor without even having one.

The visualization of the execution is based on an execu-
tion flow graph along with some numeric data, a concept
that previously has been shown to be successful [9]. The
execution flow graph can be scrolled and zoomed, both in
fixed steps and according to a specific time interval. A sec-
ond graph shows the number of threads running at the
moment, as well as the number of threads that are runnable
but not running, i.e., the amount of available parallelism.
VPPB gives the developer information enough to pin point
the bottlenecks and correct them.

The tool also has a unique stepping facility, which gives
the user of the tool a possibility to follow all operations on,
e.g., a specific semaphore. Further, the tool supports an
automatic mapping between an event in the execution flow
graph and the source code line causing the event. It also
starts an editor with the correct code line high-lighted.

We have validated the predicted speed-up using five
benchmarks from the SPLASH-2 suite [19] and a multi-
processor with 8 processors. The predictions were found
to be very accurate; for four of the applications the error
was less than 2% as compared to a real multiprocessor
execution. For the fifth application the error in the pre-
dicted speed-up was 6%. The intrusion made by the probes
that collect the event log is very low; the execution time of
the monitored application is prolonged by at most 3%.

References
[1] H. Chen, B. Shirazi, J. Yeh, H. Youn, and S. Thrane, “A

Visualization Tool for Display and Interpretation of SISAL
Programs,”Proc. ISCA Int’l Conf. on Parallel and Distrib-
uted Computing Systems, pp. 734-739, Oct. 1994.

[2] J. K. Hollingsworth and B. P. Miller, “Dynamic Control of
Performance Monitoring on Large Scale Parallel Systems,”
Proc. Int’l Conf. on Supercomputing, pp. 185-194, Jul.
1993.

[3] A. Hondroudakis, “Performance Analysis Tools for Parallel
Programs,” Edinburgh Parallel Computer Centre, The Uni-
versity of Edinburgh, Jul. 1995.

[4] S. Kleiman, D. Shah, and B. Smaalders, “Programming
with threads,” Prentice Hall, 1996, ISBN 0-13-172389-8.

[5] E. Kraemer and J. Stasko, “The Visualization of Parallel
Systems: An Overview,”J. of Parallel and Distributed Com-
puting, Vol. 18, pp. 105-117, 1993

[6] S. Lei and K. Zhang, “Performance Visualization of Mes-
sage Passing Programs Using Relational Approach,”Proc.
ISCA Int’l Conf. on Parallel and Distributed Computing
Systems, pp. 740-745, Oct. 1994.

[7] L. Lundberg, “Multiprocessor Performance Evaluation of
Billing Gateway Systems for Telecommunication Applica-
tions,” Proc. ISCA Int’l Conf. on Parallel and Distributed
Computer Systems, pp. 225-231, Sep. 1996.

[8] L. Lundberg and M. Roos, “Predicting the speed-up of mul-
tithreaded programs,”Proc. IEEE Conf. on High Perfor-
mance Computing, pp. 386-392, Dec. 1997.

[9] W. E. Nagel and A. Arnold, “Performance Visualization of
Parallel Programs - The PARvis Environment,”Proc. 1994
Intel Supercomputer Users Group (ISUG) Conference, pp.
24 - 31, May 1994.

[10] G. J. Nutt, A. J. Griff, J. E. Mankovich, and J. D.
McWhirter, “Extensible Parallel Program Performance
Visualization,”Proc. Mascots ‘95, 1995.

[11] E. Papaefstathiou, D. J. Kerbyson, G. R. Nudd, and T. J.
Atherton, “An Overview of the CHIP3S Performance Pre-
diction Toolset for Parallel Systems,”Proc. 8th ISCA Int’l
Conf. on Parallel and Distributed Computing Systems, pp.
527-533, 1995.

[12] V. Pillet, J. Laboarta, T. Cortes, and S. Girona, “PARAVER:
A Tool to visualize and Analyse Parallel Code,” University
of Politencia, Catalonia, CEPBA/UPC Report No. RR-95/
03, Feb. 1995.

[13] M. L. Powell, S. R. Kleiman, S. Barton, D. Shah, D. Stein,
and M. Weeks, “SunOS 5.0 Multithreaded Architecture,”
Sun Soft, Sun Microsystems Inc., Sep. 1991.

[14] S. R. Sarukkai and D. Gannon, “SIEVE: A Performance
Debugging Environment for Parallel Programs,”J. of Paral-
lel and Distributed Computing, Vol. 18, pp. 147-168, 1993.

[15] V. Sarkar, “Partitioning and Scheduling Parallel Programs
for Multiprocessors,” MIT Press, 1989.

[16] Z. Segall and L. Rudolph, “PIE: A Programming and Instru-
mentation Environment for Parallel Processing,”IEEE Soft-
ware, 2(6):22-37, Nov. 1985.

[17] SunSoft, “Solaris Multithreaded Programming Guide,”
Prentice Hall, 1995.

[18] S. Toledo, “PERFSIM: A Tool for Automatic Performance
Analysis of Data-Parallel Fortran Programs,”Proc. 5th
Symp. on the Frontiers of Massively Parallel Computation,
IEEE Computer Society Press, Feb. 1995.

[19] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta, “The
SPLASH-2 Programs: Characterization and Methodological
Considerations,”Proc. 22nd Annual Int’l Symp. on Com-
puter Architecture, pp. 24-36, Jun. 22-24 1995.

[20] J. Yan, S. Sarukkai, and P. Mehra, “Performance Measure-
ments, Visualization and Modelling of Parallel and Distrib-
uted Programs using the AIMS Toolkit,”Software-Practice
and Experience, 25(4):429-461, Apr. 1995.


