
G. Bebis et al. (Eds.): ISVC 2007, Part II, LNCS 4842, pp. 681–690, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Fast kd-Tree Construction for 3D-Rendering Algorithms
Like Ray Tracing

Sajid Hussain and Håkan Grahn

Blekinge Institute of Technology
SE-371 79 Karlskrona, Sweden

{sajid.hussain,hakan.grahn}@bth.se
http://www.bth.se/tek/paarts

Abstract. Many computer graphics rendering algorithms and techniques use
ray tracing for generation of natural and photo-realistic images. The efficiency
of the ray tracing algorithms depends, among other techniques, upon the data
structures used in the background. kd-trees are some of the most commonly
used data structures for accelerating ray tracing algorithms. Data structures us-
ing cost optimization techniques based upon Surface Area Heuristics (SAH) are
generally considered to be best and of high quality. During the last decade, the
trend has been moved from off-line rendering towards real time rendering with
the introduction of high speed computers and dedicated Graphical Processing
Units (GPUs). In this situation, SAH-optimized structures have been considered
too slow to allow real-time rendering of complex scenes. Our goal is to demon-
strate an accelerated approach in building SAH-based data structures to be used
in real time rendering algorithms. The quality of SAH-based data structures
heavily depends upon split-plane locations and the major bottleneck of SAH
techniques is the time consumed to find those optimum split locations. We pre-
sent a parabolic interpolation technique combined with a golden section search
criteria for predicting kd-tree split plane locations. The resulted structure is
30% faster with 6% quality degradation as compared to a standard SAH ap-
proach for reasonably complex scenes with around 170k polygons.

1 Introduction

Almost everyone in the field of 3D computer graphics is familiar with ray tracing - a
very popular rendering method for generating and synthesizing photo realistic images.
The simplicity of the algorithm makes it very attractive. However, it has very high
computational demands and a lot of research has been done for the last couple of
decades in order to increase the performance of ray tracing algorithms. Different types
of acceleration techniques have been proposed like fast ray - object intersections,
Bounding Volume Hierarchies (BVH), Octrees, kd-trees, and different flavors of grids
including uniform, non-uniform, recursive, and hierarchical [5], [13], [15]. kd-trees,
due to their versatility and wide range of application areas, are one of the most used
techniques to generate efficient data structures for fast ray tracing and are increasingly
being adopted by researchers around the world. Wald [14] and Havran [5] report that
kd-trees are good adaptive techniques to deal with varying complexity of the scene

682 S. Hussain and H. Grahn

and usually perform better, or at least comparable, to any other similar technique. kd-
tree construction normally uses a fixed stop criteria, either depth of the tree or the
number of objects in the leaf node. Since adaptation is the main property for the kd-
tree to behave better as compared to other similar techniques, the stop criteria should
also be adaptive for the best generation of kd-trees.

In this paper, we present an approach to improve and optimize the construction of
kd-trees. We are concerned about the decision of the separation plane location. Our
approach is to use parabolic interpolation combined with golden section search to
reduce the amount of work done when building the kd-trees. The SAH cost function
used to chose the best split location is sampled at three locations which brackets the
minimum of the cost function. These three locations are determined by a golden sec-
tion search. A parabolic interpolation is then used to estimate the minimum and the
algorithm iteratively converges towards optimum. A minimum is then found for the
optimum locations of split planes (see section 4).

We have evaluated our proposed approximation as compared to a standard SAH
algorithm in two ways. First, using Matlab models, we have evaluated how well it
predicts the actual split plane locations when building the kd-trees. Second, we have
implemented our model in a real ray tracer and have used five common scenes with
varying number of geometrical complexities up to 170k polygons. As compared to a
standard SAH based kd-tree data structures, our approach is considerable faster and
justified. The demonstrated improvement ranges from 7% to 30% as the scene be-
comes more and more complex. On the other hand, the tree quality decreases.

The rest of the paper is organized as follows. In section 2, we discuss some previ-
ous work on the topic under investigation. Section 3 presents the basics of the kd-tree
algorithm and the cost function to be minimized followed by the theory behind para-
bolic interpolation and golden section search criteria in section 4. Section 5 imple-
ments the idea followed by conclusion and future work in section 6.

2 Related Work

kd-tree construction has mainly focused on optimized data structure generation for
fast ray tracing. Wald [14] and Harvan [5] analyzed the kd-tree algorithm in depth and
proposed a state-of-the-art O(nlogn) algorithm. Chang [3], in his thesis work de-
scribed the theoretical and practical aspects of ray tracing including kd-tree cost func-
tion modeling and experimental verifications. Current work by Hunt [7] and Harvan
[6] also aims at fast construction of kd-trees. By adaptive sub-sampling they
approximate the SAH cost function by a piecewise quadratic function. There are
many different other implementations of the kd-tree algorithm using SIMD instruc-
tions like Benthin [2]. Another approach is used by Popov [10], where he experiments
with stream kd-tree construction and explores the benefits of parallelized streaming.
Both Hunt [7] and Popov [10] demonstrate considerable improvements as compared
to conventional SAH based kd-tree construction.

The cost function to optimally determine the depth of the subdivision in kd-tree
construction has been demonstrated by several authors. Cleary and Wyvill [16] derive
an expression that confirms that the time complexity is less dependent on the number
of objects and more on the size of the objects. They calculate the probability that the

Fast kd-Tree Construction for 3D-Rendering Algorithms Like Ray Tracing 683

ray intersects an object as a function of the total area of the subdivision cells that
(partly) contain the object. MacDonald and Booth [8] use a similar strategy but refine
the method to avoid double intersection tests of the same ray with the same object.
They determine the probability that a ray intersects at least one leaf cell from the set
of leaves within which a particular object resides. They use a cost function to find the
optimal cutting planes for a kd- tree construction. A similar method was also imple-
mented by Whang [17]. kd-tree acceleration structures for modern graphics hardware
have been proposed by Daniel [20] and Tim [21], where they experimented kd-tree
acceleration structure for GPU raytracers and achieved considerable improvement.

3 Basics of kd-Tree Construction

In this section, we give some background about the kd-tree algorithm, which will be
the foundation for the rest of the paper. Consider a set of points in a space Rd, the kd-
tree is normally built over these points. In general, kd-trees are used as a starting point
for optimized initialization of k-means clustering [11] and nearest neighbor query
problems [12]. In computer graphics, and especially in ray tracing applications, kd-
trees are applied over a scene S with points as bounding boxes of scene objects.

The kd-tree algorithm subdivides the scene space recursively. For any given leaf
node Lnode of the kd-tree, a splitting plane splits the bounding box of the node into two
halves, resulting in two bounding boxes, left and right. These are called child nodes
and the process is repeated until a certain criterion is met. Havran [5] reports that the
adaptability of the kd-tree towards the scene complexity can be influenced by choos-
ing the best position of the splitting plane.

The choice of the splitting plane is normally the mid way between the scene
maximum and minimum along a particular coordinate axis [9] and a particular cost
function is minimized. MacDonald and Booth [8] introduced SAH for the kd-tree
construction algorithm which works on probabilities and minimizes a certain cost
function. The cost function is built by firing an arbitrary ray through the kd-tree and
applying some assumptions. Fig. 1 uses the conditional probability P(y/x) that an
arbitrary fired ray hits the region y inside region x provided that it has already touched
the region x. Bayes rule can be used to calculate the conditional probability P(y/x) as

() ()

()
()

P x y P y
P y x

P x
= . (1)

P(x/y) is the conditional probability that the ray hits the region x provided that it has
intersected y, and here P(x/y) = 1. P(x) and P(y) can be expressed in terms of areas [5].

Fig. 1. Visualization of the conditional probability P(y/x) that a ray intersects region y given
that it has intersected region x

684 S. Hussain and H. Grahn

In Fig. 2, if we start from the root node or the parent node and assume that it con-
tains N elements and the ray passing the root node has to be tested for intersection
with N elements. If we assume that the computational time it takes to test the ray
intersection with element n N⊆ is Tn, then the overall computational cost C of the
root node would be

1

N

n
n

C T
=

=∑ . (2)

After further division of root node (Fig. 2), the ray intersection test cost for each
left and right child nodes changes to CLeft and CRight. Thus the overall new cost be-
comes CTotal and

 Total Trans Right LeftC C C C= + + . (3)

Where, CTrans is the cost of traversing the parent or root node. The equation can be
written as

1 1

. .
Left RightN N

Total Trans Left i Right j
i j

C C P T P T
= =

= + +∑ ∑ . (4)

Where,

 Left
Left

A
P

A
= , (5)

and

 Right
Right

A
P

A
= . (6)

Where A is the surface area of the root node and the area of two child nodes are ALeft
and ARight. PLeft and PRight are the probabilities of a ray hitting the left and the right
child nodes. NLeft and NRight are the number of objects present in the two nodes and Ti
and Tj are the computational time for testing ray intersection with the ith and jth objects
of the two child nodes. The kd-tree algorithm minimizes the cost function Ctotal, and
then subdivides the child nodes recursively.

Fig. 2. Example scene division and the corresponding nodes in the kd-tree

Fast kd-Tree Construction for 3D-Rendering Algorithms Like Ray Tracing 685

As shown in [10], the cost function is a bounded variation function as it is the dif-
ference of two monotonically varying functions CLeft and CRight. In [10], this important
property of the cost function has been exploited to increase the approximation accu-
racy of cost function and only those regions that can contain the minimum have been
adaptively sampled. We have used the golden section search to find out the region
that could contain the minimum and combined it with parabolic interpolation to
search for that minimum. In next section, we present the mathematical foundations of
the technique and simulations in Matlab.

4 Parabolic Interpolation and Golden Section Search

The technique takes advantage of the fact that a second order polynomial usually
provides a good approximation to the shape of a parabolic function. As the cost func-
tion we are dealing with is parabolic in nature, parabolic interpolation can provide
good approximation of the cost function minima and hence the split plane locations.
The idea behind is

2 3 3 1 1 2
1 2 3

1 2 1 3 2 3 2 1 3 1 3 2

()() ()() ()()
() () () ()

()() ()() ()()

x x x x x x x x x x x x
f x f x f x f x

x x x x x x x x x x x x

− − − − − −= + +
− − − − − −

. (7)

Where, x1, x2 and x3 are the three values of x for which the right hand side of the
equation (7) is equal to its left hand side f(x). Since a parabola is uniquely defined by
a set of three points and this is the parabola that we want and we want the minimum,
we differentiate equation (7) and put it equal to zero. After some algebraic manipula-
tions we get the minimum of the parabola through these three points as

2 2

2 1 2 3 2 3 2 1
4 2

2 1 2 3 2 3 2 1

() [() ()] () [() ()]1

2 () [() ()] () [() ()]

x x f x f x x x f x f x
x x

x x f x f x x x f x f x

− − − − −= −
− − − − −

 . (8)

Where x4 is the point where the minimum of the parabola occurs and f(x4) is the
minimum of the parabola. The golden section search is similar in spirit to the bisec-
tion approach for locating roots of a function. We use golden ratio to find two inter-
mediate sampling points as the starting points for optimization search.

 1

2

L

U

x x h

x x h

= +
= −

 . (9)

Where x1, x2 are two intermediate points and xL, xU are lower and upper bounds of
the cost function which contains the minimum. h can be calculated as

 (1)()U Lh x xϕ= − − . (10)

Where ϕ is called the golden ratio and 1.618ϕ ≈ . The cost function is evaluated at

points x1 and x2 and f(x1) is compared with f(x2). If f(x1) < f(x2), then x2, x1 and xU are
used in equation (8) to find the minimum of the parabola.

686 S. Hussain and H. Grahn

Fig. 3. Calculation of initial guess for parabolic interpolation

If f(x2) < f(x1), then xL, x2 and x1 are used in equation (8) to find the minimum of the
parabola. This will give us a good initial guess to start our optimization through para-
bolic interpolation. With a good initial guess, the result converges more rapidly on the
true value. Fig. 3 depicts the whole situation in graphical format. Two cost functions
in Fig. 3 have been generated using Matlab and care has been taken that one of the
cost functions contains the minimum in the right half of the x-axis and the other one
contains the minimum in the left half of the x-axis. This is done to simulate the golden
section search direction information. After x4 has been calculated, f(x4) is evaluated
and compared with the intermediate point which is x1 in x2, x1 and xU case and x2 in
xL, x2 and x1 case. If f(x4) < Intermediate Point (either f(x1) or f(x2)), then we shift the
parabola towards the right direction in the next iteration. In this case the upper bound
remains the same, while the lower bound is shifted toward right with a constant step
size called μ and the intermediate point (either x1 or x2) becomes x4. If f(x4) > Inter-
mediate Point (either f(x1) or f(x2)), then we shift the parabola towards the left direc-
tion in the next iteration. In this case the lower bound remains the same and we shift
the upper bound towards left with the same step μ . The choice of the step size varies
and the size decreases with increased tree depth as the number of primitives decreases
and the size of the division axis also decreases. Consider a real case depicted in Fig. 4

x1

x4

x2
xU

Optimum

Fig. 4. Optimum search with parabolic interpolation

Fast kd-Tree Construction for 3D-Rendering Algorithms Like Ray Tracing 687

and taken from [7]. After, golden section search, x1 and x2 are found and it is clear
from Fig. 4 that f(x1) < f(x2). We chose x2, x1 and xU for interpolation and from equa-
tion (8) we find x4. Since f(x4) < f(x2), means we have to move towards right. For next
iteration, x1 becomes x4, xU remains unchanged and x2 increases to x2 + μ . Us-

ing 10μ = , we reach to the optimized solution as indicated by a dotted line in Fig. 4.

Note that for each iteration other than first one, we need to sample the cost function
only at one location i.e., in the second iteration, we only have to sample the cost func-
tion at x2 + μ . In this case we only need to sample the cost function at five different

locations x1, x2, x4, x2 + μ and xU.

5 Experimental Evaluation

To evaluate the performance of our algorithm, we have compared it with the conven-
tional SAH construction techniques and measured the time needed for building the
kd-tree structure for different test scenes. We have also tried to measure the cost over-
head introduced by the approximation errors. As [7] uses SIMD support (SSE) and
proposes to sample the cost function at more than one location during a single scan.
Our algorithm exhibits the property to sample the cost function at four different loca-
tions during a single scan. The locations are x1, x2, x2 + μ and xU. Hence, it provides

the base for SIMD support. However, we have not used this strategy in our implemen-
tations in this version.

We implemented our algorithm in C++ and tested on a variety of scenes (Fig. 5).
The BUNNY model is used from the Stanford 3D Scanning Repository [19]. This
image is acquired from a 3D scanner and hence contains regularly distributed trian-
gles. On the other hand, Square Flake, F15 and HAND are designed with CAD tools
and the regularity of primitive distribution varies. As, the algorithm described above
behaves well if the cost function is slowly varying. The BUNNY model is more suit-
able scene for our algorithm. All the measurements were performed on a workstation
with an Intel Core 2 CPU 2.16GHz processor and 2GB of RAM.

We see from Table 1 that the cost increase for BUNNY is approximate 1.62% de-
spite of 26% increase in speed. The reason is that our algorithm performs well if the
primitives are more towards normal distribution. As, this scene was acquired using a
3D scanner and the primitives are uniformly distributed, our technique works well in
this case. On the other hand, take the example of spheres. Although the complexity is
less as compared to that of BUNNY, but the increase in cost is 2.5% because of the
fact that primitives are not uniformly distributed in this case. The Fairy scene contains
more empty spaces and the cost increase jumps to 5.72%. The main reason behind is
that the algorithm performs poor once there is a step change or abrupt change in the
cost function as discussed in [7]. Its quality degrades because parabolic interpolation
exhibits swinging characteristics while interpolating step changes.

To overcome this problem, we can use splines piecewise interpolation to minimize
oscillations by interpolating lower order polynomials, in this case linear spline piece-
wise interpolations.

688 S. Hussain and H. Grahn

Fig. 5. Test scenes : Spheres, Mesh, F15, Hand, Fairy and Bunny

Table 1. Comparison of conventional kd-tree SAH and modified kd-tree SAH. The comparison
is made in built time and quality of kd-tree.

Conventional SAH Modified SAH Scene Primitives
(msec) Exp.Cost (msec) Exp.Cost

Speedup

Cost
Increase

F15 9250 80.32 45.10 73.12 46.23 9.84% 2.27%
Hand 17135 140.54 73.24 130.33 74.12 7.83% 1.20%
Mesh 56172 480.53 83.36 401.98 85.21 19.54% 2.21%
Spheres 66432 540.28 92.17 450.25 94.46 20.06% 2.51%
Bunny 69451 692.36 96.31 550.35 97.85 25.81% 1.62%
Fairy 174117 1450.4 105.29 1120.2 111.32 29.46% 5.72%

6 Conclusion and Future Work

In this paper, we have presented an algorithmic approach to improve and optimize the
split plane location search criteria used for the kd-tree construction in fast ray tracing
algorithms. The major contribution is the combination of golden section search crite-
ria with parabolic interpolation. The golden section search provides us with a better
initial guess for the sampling locations of the cost function. The better the initial
guess, the faster is the convergence of the algorithm. We have demonstrated in section
3 that the algorithm reaches the optimum within two iterations in a real scenario taken
from [7]. Our idea gives us two important parameters, first, the initial guess and sec-
ond, towards which direction we should move to reach the optimum. The information
is very critical in order to get the convergence faster.

We have evaluated two aspects of our proposed modified model. First, we evalu-
ated how well it predicts the actual split locations of the planes when building the kd-
tree using Matlab models. Second, we have implemented our modified model in a ray
tracer and compared its performance to a standard SAH ray tracer. We have used six

Fast kd-Tree Construction for 3D-Rendering Algorithms Like Ray Tracing 689

different scenes, with varying complexity levels. The performance improvement is
small for the scenes with low complexity as the kd-tree depth is small. As the kd-tree
depth increases for the more complex scenes, the performance improvement increases
and we have successfully demonstrated an improvement of 30% for a scene complex-
ity of around 170k polygons with only less than 6% degradation of the tree quality.
We expect the performance difference to increase when the complexity and the num-
ber of objects in a scene increases.

Further use of the technique could be demonstrated with the combination of SIMD
support and spline interpolation where the cost function is very ill-behaved or changes
abruptly. We hope to increase the tree quality even more with this technique and also
intend to implement another version of this algorithm on dynamic scenes with multi-
ple objects like Fairy in Fig.5.

References

1. Amanatides, J., Woo, A.: A Fast Voxel Traversal Algorithm. In: Proceeding of Eurograph
-ics 1987, pp. 3–10 (August 1987)

2. Benthin, C.: Realtime Raytracing on Current CPU Architectures. PhD thesis, Saarland
University (2006)

3. Chang, A.Y.: Theoretical and Experimental Aspects of Ray Shooting. PhD Thesis, Poly-
technic University, New York (May 2004)

4. Fussell, D.S., Subramanian, K.R.: Automatic Termination Criteria for Ray tracing Hierar-
chies. In: Proceedings of Graphics Interface 1991 (GI 91), Calgary, Canada, pp. 93–100
(June 1991)

5. Havran, V.: Heuristic Ray Shooting Algorithm. PhD thesis, Czech Technical University,
Prague (2001)

6. Havran, V., Herzog, R., Seidel, H.-P.: On fast construction of spatial hierarchies for ray
tracing. In: Proceedings of the 2006 IEEE Symposium on Interactive Ray Tracing, pp. 71–
80 (September 2006)

7. Hunt, W., Mark, W., Stoll, G.: Fast kd-tree construction with an adaptive error-bounded
heuristic. In: Proceedings of the 2006 IEEE Symposium on Interactive Ray Tracing, pp.
81–88 (September 2006)

8. MacDonald, J.D., Booth, K.S.: Heuristics for ray tracing using space subdivision. The
Visual Computer 6(3), 153–166 (1990)

9. Kaplan, M.: The Use of Spatial Coherence in Ray Tracing. In: ACM SIGGRAPH 1985
Course Notes 11, pp. 22–26 (July 1985)

10. Popov, S., Gunther, J., Seidel, H.-P., Slusallek, P.: Experiences with Streaming Construc-
tion of SAH KD-Trees. In: Proceedings of the 2006 IEEE Symposium on Interactive Ray
Tracing, pp. 89–94 (September 2006)

11. Redmonds, S.J., Heneghan, C.: A method for initializing the K-means clustering algorithm
using kd-trees. Pattern Recognition Letters 28(8), 965–973 (2007)

12. Stern, H.: Nearest Neighbor Matching Using kd-Trees. PhD thesis, Dalhousie University,
Halifax, Nova Scotia (August 2002)

13. Stoll, G.: Part I: Introduction to Realtime Ray Tracing. SIGGRAPH 2005 Course on Inter-
active Ray Tracing (2005)

14. Wald, I.: Realtime Ray Tracing and Interactive Global Illumination. PhD thesis, Computer
Graphics Group, Saarland University, Saarbrucken, Germany

690 S. Hussain and H. Grahn

15. Zara, J.: Speeding Up Ray Tracing - SW and HW Approaches. In: Proceedings of 11th
Spring Conference on Computer Graphics (SSCG 1995), Bratislava, Slovakia, pp. 1–16
(May 1995)

16. Cleary, J.G., Wyvill, G.: Analysis of an algorithm for fast ray tracing using uniform space
subdivision. The Visual Computer, (4), 65–83 (1988)

17. MacDonald, J.D., Booth, K.S.: Heuristics for ray tracing using space subdivision. The
Visual Computer (6), 153–166 (1990)

18. Whang, K.-Y., Song, J.-W., Chang, J.-W., Kim, J.-Y., Cho, W.-S., Park, C.-M., Song, I.-
Y.: An adaptive octree for efficient ray tracing. IEEE Transactions on Visualization and
Computer Graphics 1(4), 343–349 (1995)

19. Stanford 3D scanning repository.: http://graphics.stanford.edu/ data/3Dscanrep/
20. Horn, D.R., Sugerman, J., Houston, M., Hanrahan, P.: Interactive k-d tree GPU raytracing.

In: Symposium on Interactive 3D Graphics I3D, pp. 167–174 (2007)
21. Foley, T., Sugerman, J.: KD-tree acceleration structures for a GPU raytracer. In: Proceed-

ings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, pp.
15–22 (2005)

	Fast kd-Tree Construction for 3D-Rendering Algorithms Like Ray Tracing
	Introduction
	Related Work
	Basics of kd-Tree Construction
	Parabolic Interpolation and Golden Section Search
	Experimental Evaluation
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

