
G. Bebis et al. (Eds.): ISVC 2007, Part II, LNCS 4842, pp. 681–690, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

Fast kd-Tree Construction for 3D-Rendering Algorithms 
Like Ray Tracing 

Sajid Hussain and Håkan Grahn 

Blekinge Institute of Technology 
SE-371 79 Karlskrona, Sweden 

{sajid.hussain,hakan.grahn}@bth.se 
http://www.bth.se/tek/paarts 

Abstract. Many computer graphics rendering algorithms and techniques use 
ray tracing for generation of natural and photo-realistic images. The efficiency 
of the ray tracing algorithms depends, among other techniques, upon the data 
structures used in the background. kd-trees are some of the most commonly 
used data structures for accelerating ray tracing algorithms. Data structures us-
ing cost optimization techniques based upon Surface Area Heuristics (SAH) are 
generally considered to be best and of high quality. During the last decade, the 
trend has been moved from off-line rendering towards real time rendering with 
the introduction of high speed computers and dedicated Graphical Processing 
Units (GPUs). In this situation, SAH-optimized structures have been considered 
too slow to allow real-time rendering of complex scenes.  Our goal is to demon-
strate an accelerated approach in building SAH-based data structures to be used 
in real time rendering algorithms. The quality of SAH-based data structures 
heavily depends upon split-plane locations and the major bottleneck of SAH 
techniques is the time consumed to find those optimum split locations. We pre-
sent a parabolic interpolation technique combined with a golden section search 
criteria for predicting kd-tree split plane locations.  The resulted structure is 
30% faster with 6% quality degradation as compared to a standard SAH ap-
proach for reasonably complex scenes with around 170k polygons.      

1   Introduction 

Almost everyone in the field of 3D computer graphics is familiar with ray tracing - a 
very popular rendering method for generating and synthesizing photo realistic images. 
The simplicity of the algorithm makes it very attractive. However, it has very high 
computational demands and a lot of research has been done for the last couple of 
decades in order to increase the performance of ray tracing algorithms. Different types 
of acceleration techniques have been proposed like fast ray - object intersections, 
Bounding Volume Hierarchies (BVH), Octrees, kd-trees, and different flavors of grids 
including uniform, non-uniform, recursive, and hierarchical [5], [13], [15].  kd-trees, 
due to their versatility and wide range of application areas, are one of the most used 
techniques to generate efficient data structures for fast ray tracing and are increasingly 
being adopted by researchers around the world. Wald [14] and Havran [5] report that 
kd-trees are good adaptive techniques to deal with varying complexity of the scene 
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and usually perform better, or at least comparable, to any other similar technique. kd-
tree construction normally uses a fixed stop criteria, either depth of the tree or the 
number of objects in the leaf node. Since adaptation is the main property for the kd-
tree to behave better as compared to other similar techniques, the stop criteria should 
also be adaptive for the best generation of kd-trees.  

In this paper, we present an approach to improve and optimize the construction of 
kd-trees. We are concerned about the decision of the separation plane location. Our 
approach is to use parabolic interpolation combined with golden section search to 
reduce the amount of work done when building the kd-trees. The SAH cost function 
used to chose the best split location is sampled at three locations which brackets the 
minimum of the cost function. These three locations are determined by a golden sec-
tion search. A parabolic interpolation is then used to estimate the minimum and the 
algorithm iteratively converges towards optimum. A minimum is then found for the 
optimum locations of split planes (see section 4).   

We have evaluated our proposed approximation as compared to a standard SAH 
algorithm in two ways. First, using Matlab models, we have evaluated how well it 
predicts the actual split plane locations when building the kd-trees. Second, we have 
implemented our model in a real ray tracer and have used five common scenes with 
varying number of geometrical complexities up to 170k polygons. As compared to a 
standard SAH based kd-tree data structures, our approach is considerable faster and 
justified. The demonstrated improvement ranges from 7% to 30% as the scene be-
comes more and more complex. On the other hand, the tree quality decreases.  

The rest of the paper is organized as follows. In section 2, we discuss some previ-
ous work on the topic under investigation. Section 3 presents the basics of the kd-tree 
algorithm and the cost function to be minimized followed by the theory behind para-
bolic interpolation and golden section search criteria in section 4. Section 5 imple-
ments the idea followed by conclusion and future work in section 6. 

2   Related Work 

kd-tree construction has mainly focused on optimized data structure generation for 
fast ray tracing. Wald [14] and Harvan [5] analyzed the kd-tree algorithm in depth and 
proposed a state-of-the-art O(nlogn) algorithm. Chang [3], in his thesis work de-
scribed the theoretical and practical aspects of ray tracing including kd-tree cost func-
tion modeling and experimental verifications. Current work by Hunt [7] and Harvan 
[6] also aims at fast construction of kd-trees. By adaptive sub-sampling they  
approximate the SAH cost function by a piecewise quadratic function. There are 
many different other implementations of the kd-tree algorithm using SIMD instruc-
tions like Benthin [2]. Another approach is used by Popov [10], where he experiments 
with stream kd-tree construction and explores the benefits of parallelized streaming. 
Both Hunt [7] and Popov [10] demonstrate considerable improvements as compared 
to conventional SAH based kd-tree construction. 

The cost function to optimally determine the depth of the subdivision in kd-tree 
construction has been demonstrated by several authors. Cleary and Wyvill [16] derive 
an expression that confirms that the time complexity is less dependent on the number 
of objects and more on the size of the objects. They calculate the probability that the 
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ray intersects an object as a function of the total area of the subdivision cells that 
(partly) contain the object. MacDonald and Booth [8] use a similar strategy but refine 
the method to avoid double intersection tests of the same ray with the same object. 
They determine the probability that a ray intersects at least one leaf cell from the set 
of leaves within which a particular object resides. They use a cost function to find the 
optimal cutting planes for a kd- tree construction. A similar method was also imple-
mented by Whang [17]. kd-tree acceleration structures for modern graphics hardware 
have been proposed by Daniel [20] and Tim [21], where they experimented kd-tree 
acceleration structure for GPU raytracers and achieved considerable improvement.  

3   Basics of kd-Tree Construction 

In this section, we give some background about the kd-tree algorithm, which will be 
the foundation for the rest of the paper. Consider a set of points in a space Rd, the kd-
tree is normally built over these points. In general, kd-trees are used as a starting point 
for optimized initialization of k-means clustering [11] and nearest neighbor query 
problems [12]. In computer graphics, and especially in ray tracing applications, kd-
trees are applied over a scene S with points as bounding boxes of scene objects.  

The kd-tree algorithm subdivides the scene space recursively. For any given leaf 
node Lnode of the kd-tree, a splitting plane splits the bounding box of the node into two 
halves, resulting in two bounding boxes, left and right. These are called child nodes 
and the process is repeated until a certain criterion is met. Havran [5] reports that the 
adaptability of the kd-tree towards the scene complexity can be influenced by choos-
ing the best position of the splitting plane.  

The choice of the splitting plane is normally the mid way between the scene  
maximum and minimum along a particular coordinate axis [9] and a particular cost 
function is minimized. MacDonald and Booth [8] introduced SAH for the kd-tree 
construction algorithm which works on probabilities and minimizes a certain cost 
function. The cost function is built by firing an arbitrary ray through the kd-tree and 
applying some assumptions. Fig. 1 uses the conditional probability P(y/x) that an 
arbitrary fired ray hits the region y inside region x provided that it has already touched 
the region x. Bayes rule can be used to calculate the conditional probability P(y/x) as 

 

                                       
( ) ( )

( )
( )

P x y P y
P y x

P x
= .                                               (1) 

 

P(x/y) is the conditional probability that the ray hits the region x provided that it has 
intersected y, and here P(x/y) = 1. P(x) and P(y) can be expressed in terms of areas [5]. 

 

Fig. 1. Visualization of the conditional probability P(y/x) that a ray intersects region y given 
that it has intersected region x 
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In Fig. 2, if we start from the root node or the parent node and assume that it con-
tains N elements and the ray passing the root node has to be tested for intersection 
with N elements. If we assume that the computational time it takes to test the ray 
intersection with element n N⊆ is Tn, then the overall computational cost C of the 
root node would be 
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After further division of root node (Fig. 2), the ray intersection test cost for each 
left and right child nodes changes to CLeft and CRight. Thus the overall new cost be-
comes CTotal and 

 

 Total Trans Right LeftC C C C= + + . (3) 
 

Where, CTrans is the cost of traversing the parent or root node. The equation can be 
written as 
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Where A is the surface area of the root node and the area of two child nodes are ALeft 
and ARight. PLeft and PRight are the probabilities of a ray hitting the left and the right 
child nodes. NLeft and NRight are the number of objects present in the two nodes and Ti 
and Tj are the computational time for testing ray intersection with the ith and jth objects 
of the two child nodes. The kd-tree algorithm minimizes the cost function Ctotal, and 
then subdivides the child nodes recursively. 

 
 

Fig. 2. Example scene division and the corresponding nodes in the kd-tree  
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As shown in [10], the cost function is a bounded variation function as it is the dif-
ference of two monotonically varying functions CLeft and CRight. In [10], this important 
property of the cost function has been exploited to increase the approximation accu-
racy of cost function and only those regions that can contain the minimum have been 
adaptively sampled. We have used the golden section search to find out the region 
that could contain the minimum and combined it with parabolic interpolation to 
search for that minimum. In next section, we present the mathematical foundations of 
the technique and simulations in Matlab.   

4   Parabolic Interpolation and Golden Section Search 

The technique takes advantage of the fact that a second order polynomial usually 
provides a good approximation to the shape of a parabolic function. As the cost func-
tion we are dealing with is parabolic in nature, parabolic interpolation can provide 
good approximation of the cost function minima and hence the split plane locations. 
The idea behind is  
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Where, x1, x2 and x3 are the three values of x for which the right hand side of the 
equation (7) is equal to its left hand side f(x). Since a parabola is uniquely defined by 
a set of three points and this is the parabola that we want and we want the minimum, 
we differentiate equation (7) and put it equal to zero. After some algebraic manipula-
tions we get the minimum of the parabola through these three points as 
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Where x4 is the point where the minimum of the parabola occurs and f(x4) is the 
minimum of the parabola. The golden section search is similar in spirit to the bisec-
tion approach for locating roots of a function.  We use golden ratio to find two inter-
mediate sampling points as the starting points for optimization search. 
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Where x1, x2 are two intermediate points and xL, xU are lower and upper bounds of 
the cost function which contains the minimum. h can be calculated as  

 

 ( 1)( )U Lh x xϕ= − − . (10) 

 
Where ϕ  is called the golden ratio and 1.618ϕ ≈ . The cost function is evaluated at 

points x1 and x2 and f(x1) is compared with f(x2). If f(x1) < f(x2), then x2, x1 and xU are 
used in equation (8) to find the minimum of the parabola.  
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Fig. 3. Calculation of initial guess for parabolic interpolation  

If f(x2) < f(x1), then xL, x2 and x1 are used in equation (8) to find the minimum of the 
parabola. This will give us a good initial guess to start our optimization through para-
bolic interpolation. With a good initial guess, the result converges more rapidly on the 
true value. Fig. 3 depicts the whole situation in graphical format. Two cost functions 
in Fig. 3 have been generated using Matlab and care has been taken that one of the 
cost functions contains the minimum in the right half of the x-axis and the other one 
contains the minimum in the left half of the x-axis. This is done to simulate the golden 
section search direction information. After x4 has been calculated, f(x4) is evaluated 
and compared with the intermediate point which is x1 in x2, x1 and xU case and x2 in  
xL, x2 and x1 case. If f(x4) < Intermediate Point (either f(x1) or f(x2)), then we shift the 
parabola towards the right direction in the next iteration. In this case the upper bound 
remains the same, while the lower bound is shifted toward right with a constant step 
size called μ  and the intermediate point (either x1 or x2) becomes x4.  If f(x4) > Inter-
mediate Point (either f(x1) or f(x2)), then we shift the parabola towards the left direc-
tion in the next iteration. In this case the lower bound remains the same and we shift 
the upper bound towards left with the same step μ .  The choice of the step size varies 
and the size decreases with increased tree depth as the number of primitives decreases 
and the size of the division axis also decreases.  Consider a real case depicted in Fig. 4 

 

x1 

x4

x2
xU 

Optimum 

 

Fig. 4. Optimum search with parabolic interpolation  
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and taken from [7].  After, golden section search, x1 and x2 are found and it is clear 
from Fig. 4 that f(x1) < f(x2). We chose x2, x1 and xU for interpolation and from equa-
tion (8) we find x4. Since f(x4) < f(x2), means we have to move towards right. For next 
iteration, x1 becomes x4, xU remains unchanged and x2 increases to x2 + μ . Us-

ing 10μ = , we reach to the optimized solution as indicated by a dotted line in Fig. 4. 

Note that for each iteration other than first one, we need to sample the cost function 
only at one location i.e., in the second iteration, we only have to sample the cost func-
tion at x2 + μ . In this case we only need to sample the cost function at five different 

locations x1, x2, x4, x2 + μ  and xU. 

5   Experimental Evaluation  

To evaluate the performance of our algorithm, we have compared it with the conven-
tional SAH construction techniques and measured the time needed for building the 
kd-tree structure for different test scenes. We have also tried to measure the cost over-
head introduced by the approximation errors. As [7] uses SIMD support (SSE) and 
proposes to sample the cost function at more than one location during a single scan. 
Our algorithm exhibits the property to sample the cost function at four different loca-
tions during a single scan. The locations are x1, x2, x2 + μ  and xU. Hence, it provides 

the base for SIMD support. However, we have not used this strategy in our implemen-
tations in this version. 

We implemented our algorithm in C++ and tested on a variety of scenes (Fig. 5). 
The BUNNY model is used from the Stanford 3D Scanning Repository [19]. This 
image is acquired from a 3D scanner and hence contains regularly distributed trian-
gles. On the other hand, Square Flake, F15 and HAND are designed with CAD tools 
and the regularity of primitive distribution varies.  As, the algorithm described above 
behaves well if the cost function is slowly varying. The BUNNY model is more suit-
able scene for our algorithm. All the measurements were performed on a workstation 
with an Intel Core 2 CPU 2.16GHz processor and 2GB of RAM.  

We see from Table 1 that the cost increase for BUNNY is approximate 1.62% de-
spite of 26% increase in speed. The reason is that our algorithm performs well if the 
primitives are more towards normal distribution. As, this scene was acquired using a 
3D scanner and the primitives are uniformly distributed, our technique works well in 
this case. On the other hand, take the example of spheres. Although the complexity is 
less as compared to that of BUNNY, but the increase in cost is 2.5% because of the 
fact that primitives are not uniformly distributed in this case. The Fairy scene contains 
more empty spaces and the cost increase jumps to 5.72%. The main reason behind is 
that the algorithm performs poor once there is a step change or abrupt change in the 
cost function as discussed in [7]. Its quality degrades because parabolic interpolation 
exhibits swinging characteristics while interpolating step changes.  

To overcome this problem, we can use splines piecewise interpolation to minimize 
oscillations by interpolating lower order polynomials, in this case linear spline piece-
wise interpolations. 
 
 



688 S. Hussain and H. Grahn 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 

Fig. 5. Test scenes : Spheres, Mesh, F15, Hand, Fairy and Bunny 

Table 1. Comparison of conventional kd-tree SAH and modified kd-tree SAH. The comparison 
is made in built time and quality of kd-tree. 

Conventional SAH Modified SAH Scene Primitives 
(msec) Exp.Cost (msec) Exp.Cost 

Speedup 
 

Cost 
Increase 

F15 9250 80.32 45.10 73.12 46.23 9.84% 2.27% 
Hand 17135 140.54 73.24 130.33 74.12 7.83% 1.20% 
Mesh 56172 480.53 83.36 401.98 85.21 19.54% 2.21% 
Spheres 66432 540.28 92.17 450.25 94.46 20.06% 2.51% 
Bunny 69451 692.36 96.31 550.35 97.85 25.81% 1.62% 
Fairy 174117 1450.4 105.29 1120.2 111.32 29.46% 5.72% 

 

6   Conclusion and Future Work 

In this paper, we have presented an algorithmic approach to improve and optimize the 
split plane location search criteria used for the kd-tree construction in fast ray tracing 
algorithms. The major contribution is the combination of golden section search crite-
ria with parabolic interpolation. The golden section search provides us with a better 
initial guess for the sampling locations of the cost function. The better the initial 
guess, the faster is the convergence of the algorithm. We have demonstrated in section 
3 that the algorithm reaches the optimum within two iterations in a real scenario taken 
from [7]. Our idea gives us two important parameters, first, the initial guess and sec-
ond, towards which direction we should move to reach the optimum. The information 
is very critical in order to get the convergence faster.  

We have evaluated two aspects of our proposed modified model. First, we evalu-
ated how well it predicts the actual split locations of the planes when building the kd-
tree using Matlab models. Second, we have implemented our modified model in a ray 
tracer and compared its performance to a standard SAH ray tracer. We have used six 
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different scenes, with varying complexity levels. The performance improvement is 
small for the scenes with low complexity as the kd-tree depth is small. As the kd-tree 
depth increases for the more complex scenes, the performance improvement increases 
and we have successfully demonstrated an improvement of 30% for a scene complex-
ity of around 170k polygons with only less than 6% degradation of the tree quality. 
We expect the performance difference to increase when the complexity and the num-
ber of objects in a scene increases. 

Further use of the technique could be demonstrated with the combination of SIMD 
support and spline interpolation where the cost function is very ill-behaved or changes 
abruptly. We hope to increase the tree quality even more with this technique and also 
intend to implement another version of this algorithm on dynamic scenes with multi-
ple objects like Fairy in Fig.5.   
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