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Although directory-based write-invalidate cache coherence
protocols have a potential to improve the performance of large-
scale multiprocessors, coherence misses limit the processor utili-
zation. Therefore, so-called competitive-update protocols—
hybrid protocols that on a per-block basis dynamically switch
between write-invalidate and write-update—have been consid-
ered as a means to reduce the coherence miss rate and have
been shown to be a better coherence policy for a wide range
of applications. Unfortunately, such protocols may cause high
traffic peaks for applications with extensive use of migratory
objects. These traffic peaks can offset the performance gain of
a reduced miss rate if the network bandwidth is not sufficient.
We propose in this study to extend a competitive-update proto-
col with a previously published adaptive mechanism that can
dynamically detect migratory objects and reduce the coherence
traffic they cause. Detailed architectural simulations based on
five scientific and engineering applications show that this adap-
tive protocol outperforms a write-invalidate protocol by reduc-
ing the miss rate and bandwidth needed by up to 71 and 26%,
respectively. [0 1996 Academic Press, Inc.

1. INTRODUCTION

Private caches in conjunction with a directory-based
cache coherence protocol constitute an effective approach
to reducing memory system latencies in large-scale shared-
memory multiprocessors [17]. Such protocols maintain
consistency by either invalidating [8], called write-invali-
date, or updating [14], called write-update, remote copies
when a local copy is modified.

Write-update protocols are not appropriate since they
may incur severe performance degradation in comparison
to write-invalidate protocols as a result of heavy network
traffic. However, a previous study [9] has shown that a
competitive-update protocol, a hybrid between write-in-
validate and write-update protocols, outperforms write-
invalidate protocols under relaxed memory consistency
models [7] for a wide range of applications because of a
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lower miss rate. The idea of the competitive-update proto-
col is very simple. Instead of a copy of the block being
invalidated at the first write by another processor, the copy
is updated. If the local processor does not access the copy,
it is invalidated after a number of global updates deter-
mined by a competitive threshold. As a result, only those
copies regularly accessed are updated.

Although competitive-update protocols have better per-
formance, they can be suboptimal for coherence mainte-
nance of migratory objects [10]. The reason is that migra-
tory objects are often accessed in a read—modify—write
manner by each processor in turn; i.e., a processor first
reads the shared block and then updates the other copies
of the block, and then another processor reads and updates
the block. Thus, the block will migrate between caches.
For a competitive-update protocol, there is a risk that
updates may be sent to caches whose processors will not
access the block until it has been invalidated due to the
competitive threshold. This may cause unnecessary traffic
that can increase the read penalty, i.e., the time the proces-
sors must stall due to cache misses, for networks with
insufficient bandwidths. Therefore, write-invalidate is a
better policy for migratory blocks.

To reduce the traffic of competitive-update protocols
and still maintain a low miss rate, we propose in this work
to extend them with a previously published mechanism
[4, 20] that dynamically detects memory blocks exhibiting
migratory sharing. Such blocks are handled with read-ex-
clusive requests to avoid unnecessary network traffic, while
all other blocks are still handled according to the competi-
tive-update policy.

Based on a detailed architectural simulation study using
five parallel applications from the SPLASH benchmark
suite [16], we find that competitive-update protocols ex-
tended with a simple migratory detection mechanism can
reduce the miss rate by up to 71% compared to a write-
invalidate protocol. Our experimental results also show
that the bandwidth requirements of the applications are
reduced by up to 26% from the requirements of a write-
invalidate protocol for applications exhibiting migratory
sharing. The miss rate and traffic reduction help to reduce
the read penalty by up to 42% compared to a write-
invalidate protocol. Compared to those of a competitive-
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update protocol without the migratory detection mecha-
nism, the bandwidth requirements are reduced by up to
62% for applications with migratory data. Parts of this work
are presented in [15]. Here, we extend that study with a
more detailed evaluation of the different protocol alterna-
tives.

The rest of the paper is organized as follows. As a back-
ground, we begin in the next section by defining what
migratory sharing is and how previously proposed cache
coherence policies act with respect to migratory sharing.
This serves as a motivation for the adaptive protocol we
propose in Section 3. We move on to the experimental
evaluation in Sections 4 and 5, starting with the experimen-
tal methodology, the detailed architectural assumptions,
and the benchmark programs used in Section 4 and pre-
senting the experimental results in Section 5. Finally, we
compare our findings with work by others in Section 6 and
conclude the study in Section 7.

2. CACHE COHERENCE PROTOCOLS AND
MIGRATORY SHARING

In this section we first discuss migratory sharing and the
access pattern caused by this type of sharing behavior.
Then we describe a write-invalidate protocol and discuss
the implications migratory objects have on the perfor-
mance of write-invalidate protocols. Finally, we describe
how the competitive-update protocol works and its perfor-
mance limitations with respect to migratory objects.

Our architectural framework consists of a cache-coher-
ent NUMA (nonuniform memory access) architecture [19]
with a directory-based cache coherence protocol which is
described in detail in Section 3. In such an architecture
the processor stall times due to completion of memory
accesses limit the performance of the whole system. The
stall times stem mainly from two causes: the read stall time
arises mainly from cache misses, and the write stall time
arises when new values are propagated to remote copies
upon processor writes. Previous studies have shown that
it is possible to hide all write latency, and thus remove all
write stall time, by using a relaxed memory consistency
model, e.g., release consistency (RC) [6], and a sufficient
amount of buffering in the local node. This has been shown
to be possible both under write-invalidate protocols [7]
and under competitive-update protocols [9]. In order to
achieve high performance we assume in this study release
consistency since it hides all write latency.

2.1. Migratory Sharing

Gupta and Weber [10] classify data objects based on the
access pattern they exhibit. Migratory data objects are data
structures that are manipulated by only a single processor
at any given time. When such a data object is manipulated
by another processor it is said to migrate from one proces-
sor to another. In parallel programs such objects are not
unusual; e.g., data structures that are accessed in critical
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sections and high-level language statements such as
| : =1 +1 exhibit migratory sharing.

A way of formally defining migratory sharing is as a
sequence of read—modify—write actions on a data object
by alternating processors. The global reference stream to
a migratory object can then be described by the following
regular expression:

- (Ry) (R)* (Wi) (R [ W)* (R;) (R;)* (W) (R;[ Wy)* ..
1)

In the expression above, R; and W, represent a read
access and a write access, respectively, by processor i, ‘*’
denotes zero or more occurrences of the preceding string,
and ‘|’ denotes the logical OR operation. As we will see,
the difference in how the protocols respond to migratory
sharing stems from the fact that there is at least one R;
followed by at least one W; by the same processor, i, before
the next processor, j, starts accessing the block in the
same way.

2.2. Write-Invalidate Protocols and Migratory Sharing

Write-invalidate protocols rely on invalidation messages
to maintain coherence among cached copies of a shared
memory block. We describe the actions associated with a
write-invalidate protocol and refer to the regular expres-
sion (1). We assume that the block is valid in memory
before the read request R; is issued. R; results in a read-
miss request since the block is not present in the cache.
The block is loaded into cache i as shared. Upon the write
request W; to the shared block, the copy in memory is
invalidated and processor i receives an exclusive (dirty)
copy of the block. Subsequent writes by processor i can
be performed locally until another processor accesses
the block.

When processor j reads the block (R;) a cache miss is
encountered and a read-miss request is forwarded to cache
i, which has the exclusive copy. Cache i then sends a copy
to cache j and the block becomes shared again. Later,
when processor j modifies the block (W;), the modification
results in a single invalidation message sent to cache i, the
cache that had the block exclusive before. An optimization
is to merge the read-miss request and invalidation request
into a single read-exclusive request. Two previous papers
have described this migratory detection mechanism [4, 20].
In both papers migratory blocks are dynamically detected
by the hardware and are handled by read-exclusive re-
quests instead of separate read-miss and invalidation re-
quests. This optimization reduces the network traffic be-
cause all single invalidations to migratory blocks are
removed. However, the coherence miss rate is unaffected.

In [20], the merits of the migratory detection mechanism
were evaluated in an architectural framework similar to
the one we use in this study. It was found that the write-
invalidate protocol extended with the migratory detection
mechanism reduces the number of global write requests
by up to 96% for applications exhibiting migratory sharing.
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Under a relaxed memory consistency model, this optimiza-
tion makes it possible to reduce the read penalty as a result
of lower contention, especially for applications with higher
network bandwidth requirements than the network can
sustain. In fact, the network traffic was found to be reduced
by more than 20% for the studied applications that exhibit
migratory sharing.

2.3. Competitive-Update Protocols
and Migratory Sharing

In competitive-update protocols coherence is main-
tained by update messages rather than invalidation mes-
sages. Upon a write request, update messages are sent to
all caches sharing the same memory block. In contrast to
write-update protocols, a competitive threshold, C, is used
to locally invalidate copies that are not accessed by the
local processor between a number of updates; i.e., when
a copy has been updated C times it is invalidated and the
update messages to it cease. Thus, the network traffic is
reduced compared to a write-update protocol since only
those copies regularly accessed are updated. Although
more details on how competitive-update protocols work
and a detailed performance evaluation are found in [9],
we discuss the main results below.

The performance evaluation in [9] shows that competi-
tive-update protocols can reduce the read penalty by up
to 46% below that for write-invalidate protocols, mainly
as a result of a highly reduced coherence miss rate. The
coherence miss rate is reduced by up to 76% compared to
a write-invalidate protocol. A drawback of competitive-
update protocols is an increased number of global writes.
However, under a relaxed memory consistency model this
extra write traffic was shown not to offset the reduced read
penalty given sufficient network bandwidth.

Unfortunately, for memory blocks that migrate between
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several caches, competitive-update protocols work subop-
timally since cached copies are often updated a large num-
ber of times (without any local access), and thus they are
invalidated. This results in unnecessary network traffic.
For networks with insufficient bandwidth, contention may
offset the benefits of the competitive-update protocol. To
address this problem we propose in this study to extend the
competitive-update protocol with the previously published
migratory detection mechanism [20] discussed in Section
2.2. One would expect that such an extended protocol
would reduce the traffic caused by blocks exhibiting migra-
tory sharing, while still maintaining the same low coher-
ence miss rate as in the competitive-update protocol for
blocks that do not exhibit migratory sharing. In the next
section we describe the details regarding the migratory
detection mechanism and how it is incorporated into the
competitive-update protocol.

3. THE PROPOSED ADAPTIVE PROTOCOL

In Section 3.1 we present the architecture we use as a
base for the implementation and performance evaluation
of our protocol. Then in Section 3.2 we provide a detailed
description of the competitive-update protocol and in Sec-
tion 3.3 we describe how to extend the competitive-update
protocol with the migratory detection mechanism.

3.1. The Simulated Multiprocessor Architecture

As a base for our protocol evaluation, we assume a
cache-coherent nonuniform memory access (CC-NUMA)
architecture. It consists of a number of processor nodes
interconnected by a general network. The organization of
a processor node and an overview of the simulated system
architecture are shown in Fig. 1.

A processor node consists of a processor with a two-
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FIG. 1. The processor environment and the simulated architecture.
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level cache hierarchy and associated write buffers. The
cache hierarchy is interfaced to the local portion of the
shared memory and the network interface control (NIC)
by a local bus, as shown in Fig. 1. Global cache coherence
is supported by a directory-based protocol as defined by
Censier and Feautrier [3]; each memory block associates
a presence-flag vector indicating which nodes have copies
of the block.

The first-level cache (FLC) is a write-through on-chip
cache, whereas the second-level cache (SLC) is a copy-
back cache. Both caches are direct-mapped with the same
line size in both caches and full inclusion is supported; if
a block is present in the FLC it is also present in the
SLC. The SLC is lockup-free [12, 18], whereas the FLC is
blocking and has an invalidation pin, so a block can be
invalidated from outside the processor. All coherence ac-
tions associated with the system-level cache coherence pro-
tocol are handled by the SLC and by the memory con-
troller.

3.2. The Competitive-Update Protocol

In the competitive-update protocol, each memory block
can be in two different stable states: Present (a clean copy
resides in the memory module) and Modified (exactly one
cache has an exclusive copy of the block). In addition,
transient states dictate, e.g., whether updates are pending
as a result of a global write request. Each cache block can
be in one of three states: Invalid (the cache does not have
a copy of the block), Shared (other copies of the block
exist in the system), or Exclusive (the cache has the only
copy of the block in the system). A counter indicating how
many external updates that have been received since the
last access by the local processor to the block is associated
with each SLC cache block. We now describe how read
and write accesses are handled by the protocol. We will
refer to the node where the page containing the block
is allocated as home, the node from which the request
originated as local, and finally any other node involved in
the coherence action as remote.

Processor-read accesses, that miss in the FLC, to a cache
block in states Shared or Exclusive are satisfied by the
SLC and the counter is preset to the competitive threshold.
If the block is Invalid, as in Fig. 2, an SLC read miss occurs
and a global read request (GRd) is sent to home. If home
is the local node and if the memory block is clean, the
miss is serviced locally in the processor node. Otherwise,
the miss is serviced either in two (to the left in Fig. 2) or

FIG. 2. A read miss is serviced in two (left) or four (right) node-
to-node traversals depending on whether the block is in state Present
or Modified.
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FIG. 3. Coherence actions taken upon a write request.

in four (to the right in Fig. 2) node-to-node traversals,
depending on whether the memory block is in state Present
or Modified. If the block is in state Modified, memory must
be updated by a UMem message before the read request
is serviced. When the requesting cache receives the block
through the Data message, it is loaded into the cache in
state Shared and the counter is preset to the competitive
threshold. The memory block ends up in state Present after
the global read request is satisfied.

A processor write access is serviced locally in the SLC
if the cache block is in state Exclusive and the counter is
preset to the competitive threshold. When the cache block
is in state Shared or Invalid, the other copies of the block
must be notified of the write. According to Fig. 3, a global
write request along with the data (GWr) is issued from
the local node to home. The home memory controller is
responsible for sending explicit update messages (CUp) to
each node with a copy according to the state of the pres-
ence-flag vector and the global coherence state of the
block. Upon the reception of a CUp message, the SLC
controller checks the counter associated with the block. If
the counter is zero the block is invalidated in both the
FLC and the SLC and a CIAck is sent to home. Otherwise,
the counter is decremented, the SLC copy is updated, the
FLC copy is invalidated, and a CAck is sent to home
indicating that the cache block is still to be updated.
When home has received all acknowledgments, it decides
whether local shall receive an exclusive copy (WrAckE)
or not (WrAck), based on the existence of any copies
left in other caches. When the write acknowledgment is
received by local, the counter is initialized to the competi-
tive threshold. The memory block ends up in state Modified
or Present depending on whether there is an exclusive copy
in the system or not.

The competitive-update protocol mimics the behavior
of a write-invalidate protocol when the competitive thresh-
old is zero; i.e., the CUp message always causes the cache
copy to be invalidated. The only difference is that the GWr
and CUp messages contain data (the modified word of a
block) in the competitive-update protocol whereas in a
write-invalidate protocol this would not be needed. In our
experimental section we use a write-invalidate protocol as
the basis for comparison. The write-invalidate protocol
used in our experiments in Section 5 has the same coher-
ence actions as a competitive-update protocol with a com-
petitive threshold of zero, but data is not contained in the
GWr and CUp messages.



172

3.3. Extending the Competitive-Update Protocol with
the Migratory Detection Mechanism

In order to identify migratory blocks, our migratory de-
tection mechanism—which is conceptually the same as in
[20]—detects the sequence W; R; W, and classifies a mem-
ory block as migratory when W, occurs. In this section
we identify the hardware mechanisms and the protocol
extensions that incorporate this detection mechanism into
the competitive-update protocol, starting with a high-level
view of the previously published migratory detection mech-
anism [20].

3.3.1. A High-Level View of the Migratory
Detection Mechanism

In [20], Stenstrom et al. distinguish between migratory
blocks and ordinary blocks, i.e., those blocks that do not
exhibit migratory sharing. In their study, cache coherence
for ordinary blocks is maintained by a write-invalidate pro-
tocol.

For migratory blocks, home converts a read-miss request
to a read-exclusive request. This request is then forwarded
to remote, i.e., the cache with an exclusive copy of the
block. Remote sends a copy to local and invalidates its
own copy of the block. Local then loads the exclusive
copy of the block into its cache. As a result, subsequent
processor writes by the requesting processor can be per-
formed locally and all explicit invalidations are eliminated.

If all blocks are classified as ordinary by default, home
must detect when a block starts to be migratory, i.e., when
home sees the following request sequence: R; W; R; W,
By letting home keep track of the processor that most
recently modified the block, i.e., i, the block is classified
as migratory when home receives a global write from pro-
cessor j (W) given that the following two requirements
are fulfilled:

Condition 1 (Migratory Detection for Write-Invalidate
Protocols).

1. j # i; the processor that issues the write request is
not the same as the processor that most recently issued a
write request to the block.

2. The number of block copies is exactly 2.

The hardware requirement is a last-writer pointer (LW)
of size log, N bits, given N caches in the system, to keep
track of the identity of the processor that last modified the
block and a bit denoting whether the memory block is

WrAck/ MOk/
MWrAck MNotOk
4 3
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migratory or not. In addition, for full-map protocols the
number of copies can be derived from the content of the
presence-flag vector.

The detection mechanism described above is not directly
applicable to a competitive-update protocol because in a
competitive-update protocol it is not sufficient to know the
number of block copies; a copy of the block may exist in
a cache, although the local processor has not accessed it
since the last global modification by another processor.
We will therefore reformulate Condition 1 in the next
section to serve as a basis for adjustment of the detection
mechanism to fit the competitive-update protocol.

3.3.2. Adopting the Migratory Detection Mechanism in
the Competitive-Update Protocol

Given sequence (1) from Section 2.1, the migratory de-
tection mechanism classifies the sequence as migratory
when processor j issues the write request (W;). At this
point, there may exist an arbitrary number of copies, but
at least 2. Therefore, as a base for the detection algorithm,
we reformulate requirement 2 in Condition 1:

Condition 2 (Migratory Detection for Competitive-
Update Protocols).

1. j # i; the processor that issues the write request is
not the same as the processor that most recently issued a
write request to the block.

2. Processors i and j are the only ones that may have
read from the block since the write from processor i.

Requirement 1 is the same for competitive-update proto-
cols as for write-invalidate protocols. Therefore, we associ-
ate a last-writer pointer (LW) with each memory block in
this case also. The LW pointer is updated on each global
write request. As for requirement 2, however, the algo-
rithm detects whether processor i and processor j are the
only ones that have read the block since the write from
processor i by letting home ask all caches with a copy
whether their processors have read the block since they
detected the write from processor i. As we show in Fig. 4,
this question round does not generate more network traffic
than the write-invalidate protocol. By checking the counter
associated with the block, each cache locally decides
whether or not the processor has read the block after the
last write by another processor. However, since the counter
is also preset when the local processor writes to the block,
an additional state is needed to determine whether the last

Data/ NoMig/
Q Migratory UMeml
4 3

FIG. 4. Coherence actions for detection of migratory blocks (left) and coherence actions for read misses to migratory blocks (right).
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update came from another processor or not. Home keeps
track of migratory and ordinary memory blocks with a new
stable state for memory blocks and a new transient state.

When a processor, i, writes to a block that no other
processor has updated since the last read by i, the block
is deemed a potentially migratory block. As we see at the
left in Fig. 4, a MigrWr message is sent to home instead
of an ordinary global write. Home checks whether
(LW = i). If (LW = i) the write is treated as an ordinary
write. Otherwise, the memory block in home agrees that
the block is potentially migratory and sends out Migrlnv
messages to those caches sharing the block. A cache &
responds to Migrlnv in two ways: (i) k agrees that the
block is migratory (MOK) if processor k has not read the
block since the last update or if the last global update
originated from k, or (ii) k disagrees (MNotOKk) if the
processor has read but not written to the block since the
last update by another processor. Home classifies the block
as migratory iff all acknowledgments are MOk. Exclusive
ownership is then given to local by MWrAck. In contrast,
if at least one cache responds with MNotOk, the block is
still classified as ordinary and a WrAck is sent to local.
Note that no extra network traffic, in comparison to the
write-invalidate protocol, is needed in order to detect mi-
gratory blocks.

Read-miss requests to migratory blocks are handled ac-
cording to the right part of Fig. 4. Local issues a GRd, as
for ordinary blocks. Home knows that the block is migra-
tory and requests (MRdI) remote to send its exclusive
copy back to home and invalidate its own copy. Remote
responds with UMemlI to home, which forwards an exclu-
sive copy to local by the Migratory message.

As in the protocol in [20], a new cache state called
Migrating is needed to detect when a block ceases to be
migratory. For migratory blocks, home only sees read-miss
requests and no write requests; i.e., home only sees the
reference sequence R; R; Ry. As a result, home cannot
detect whether a processor has modified the block between
two subsequent read-miss requests. To solve this problem,
a migratory block is loaded into the cache in state Migrat-
ing upon a read miss. When the local processor modifies
the block the state changes to Exclusive without any global
actions. Later, when remote receives MRdI from home, it
decides whether the block is still migratory or not. If the
block is in state Exclusive, it remains migratory and
UMeml is sent to home. In contrast, if the block is in state
Migrating, i.e., the processor has not modified it, when
MRdI arrives, the block is no longer migratory. Remote
sends NoMig to home and keeps a shared copy of the
block. Home reclassifies the block as ordinary and Data
is sent to local. Finally, the block is loaded into the cache
as shared.

In summary, the extra hardware needed to detect migra-
tory blocks beyond what is already there to support the
competitive-update protocol is one pointer associated with
each memory block and one extra bit associated with each
cache block. The competitive-update protocol is extended
with two memory states and one local cache state.
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3.3.3. An Enhanced Adaptive Protocol

In applications with false sharing [5] where two proces-
sors are involved, a problem can arise in the adaptive
protocol discussed in Section 3.3.2. Consider the following
reference sequence to a block, where a block is alterna-
tively accessed by processor i and j:

(R (W) (R) (R) (W) (R) (R) (W) (2)

The above sequence is detected as migratory at the time
when processor j issues W;. However, the subsequent read
access by processor i results in a read-exclusive copy of
the block which then leads to a cache miss by processor j
(R;) that would have been avoided under a write-invalidate
protocol. Thus an increased number of misses can occur.
We have observed this anomaly of the migratory detection
mechanism for one of the applications we experimentally
study (Ocean).

Our approach to mitigating the problem is to resort
to competitive-update mode when exactly two processors
share a block. To do this a last-last-writer pointer, referred
to as LLW, is associated with each memory block in addi-
tion to the previous LW pointer. When the LW pointer is
updated with a new value, the old value of LW is moved
to the LLW pointer. In order for a block to be classified
as migratory, the processor that currently modifies the
block, say i, must not be any of the last two ones that
modified the block, i.e., (i # LW) and (i # LLW).

4. SIMULATION METHODOLOGY, ARCHITECTURAL
PARAMETERS, AND BENCHMARKS

In this section, we present the simulation framework in
which we have studied the effectiveness of the adaptive
protocol according to Section 3.3. In Section 4.1 we present
the simulation environment and the detailed architectural
assumptions, and in Section 4.2 we describe the bench-
mark programs.

4.1. Simulation Environment and
Architectural Parameters

The simulation models are built on top of the CacheMire
Test Bench [2]: a program-driven simulator and a program-
ming environment. The simulator consists of two parts: a
functional simulator of multiple SPARC processors and
an architectural simulator. The functional simulator issues
memory references, and the architectural simulator delays
the processors according to its timing model. Thus, the
same interleaving of memory references is obtained as in
the target systems we model.

The organization of the architecture is shown in Fig. 1.
The two-level cache hierarchy we simulate consists of a 2-
Kbyte first-level cache (FLC) and an infinite second-level
cache (SLC), each with a cache-line size of 16 bytes. The
write buffers contain 16 entries each by default. Acquire
and release requests are supported by a queue-based lock
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TABLE I
Latency Numbers for Processor-Read Requests When Data
Is Supplied from Different Levels in the Memory Hierarchy

Latency
Description (1 pclock = 10 ns)
Fill from FLC 1 pclock
Fill from SLC 4 pclocks
Fill from local memory 28 pclocks

Fill from home (2-hop)
Fill from remote (4-hop)

100 pclocks
196 pclocks

mechanism similar to the one implemented in the DASH
multiprocessor [13]. The page size is 4 Kbyte and the pages
are allocated to memory modules in a round-robin fashion;
pages with consecutive page numbers are allocated to
nodes with consecutive node identities.

As for the timing model, we consider SPARC processors
and their FLCs clocked at 100 MHz (1 pclock = 10 ns).
The SLC is assumed to be implemented by static RAM
with an access time of 30 ns. The SLC and its write buffer
are connected to the network interface control (NIC) and
the local memory module by a 128-bit wide split transaction
bus clocked at 33 MHz. Thus, it takes 30 ns to arbitrate
for the bus and 30 ns to transfer a request or a block.
Furthermore, the memory is assumed to be implemented
by dynamic RAM with an access time of 90 ns including
buffering.

We simulate a system containing 16 nodes intercon-
nected by a 4-by-4 wormhole routed synchronous mesh
with a flit size of 64 bits. To look closely at how the adaptive
protocol manages to reduce network contention, we as-
sume a fairly conservative mesh implementation that is
clocked at 33 MHz by default. We correctly model con-
tention for all parts in the system. Table I shows the time
it takes to satisfy a read request when data is fetched from
different levels in the memory hierarchy, assuming a 100-
MHz processor and a contention-free system. (In our simu-
lations, however, requests will normally take a longer time
as a result of contention.)

4.2. Benchmark Programs

In order to understand the relative performance of the
adaptive protocol, we use five scientific and engineering
applications, all taken from the SPLASH suite [16] except
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for Ocean, which was provided to us by Stanford Univer-
sity. The main characteristics of the five benchmark pro-
grams, together with the size of the data set used, are
summarized in Table II. All programs are written in C
using the PARMACS macros from Argonne National Lab-
oratory [1] and compiled with gcc version 2.1 with optimi-
zation level -O2. Previous studies [10, 20] have shown that
MP3D, Cholesky, and Water have a high number of migra-
tory objects, while PTHOR and Ocean have many pro-
ducer—consumer objects.

5. EXPERIMENTAL RESULTS

In this section we present our experimental results, start-
ing in Section 5.1 by pointing out the performance limita-
tions of competitive-update protocols for applications with
a significant amount of migratory sharing. In Section 5.2
we present the performance of the enhanced adaptive pro-
tocol according to Section 3.3.3, and finally in Section 5.3,
we evaluate the relative merits of the basic and enhanced
adaptive protocols according to Sections 3.3.2 and 3.3.3, re-
spectively.

5.1. Performance Limitations of
Competitive-Update Protocols

From a previous study [9] it is known that a competitive-
update protocol reduces both the read penalty and the
execution time compared to a write-invalidate protocol for
a wide range of applications given a sufficient network
bandwidth. In that study, a 100-MHz mesh was assumed
and we will first study the relative performance of competi-
tive-update and write-invalidate protocols assuming the
same experimental setup.

In Fig. 5 the normalized execution times of the write-
invalidate (WI) and the competitive-update (CU) proto-
cols are presented for the five applications under study.
Two bars are associated with each application and corre-
spond to WI and CU, respectively. Each vertical bar is
divided into four sections that correspond to (from the
bottom to the top) the busy time (or processor utilization),
the processor stall time due to read misses, the processor
stall time to perform acquire requests, and the processor
stall time due to a full first-level write buffer. Note that
there is no write stall time since we use Release Consis-
tency, which has been shown to be able to hide all write
latency [7, 9]. In our measurements, we have assumed a

TABLE II
Benchmark Programs

Benchmark Description Data sets/input

MP3D Particle-based wind-tunnel simulator 10,000 particles, 10 time steps
Cholesky Cholesky factorization of a sparse matrix besstk14 matrix

Water Water molecular dynamics simulation 288 molecules, 4 time steps
PTHOR Simulation of a digital circuit at the logic level RISC circuit, 1000 time steps
Ocean Simulate eddy currents in an ocean basin 128-by-128 grid, tolerance 1077
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competitive threshold of 4. Wl is implemented as described
in the last paragraph of Section 3.2.

In Fig. 5 we see that CU reduces the execution time for
all five applications by between 1 and 13% compared to
WI. The reason for the reduced execution time is that the
read penalty is cut by up to 46% (PTHOR) as a result of
fewer coherence misses. Because of the large amount of
migratory sharing, MP3D and Cholesky show the lowest
read penalty reduction.

If a network with less bandwidth is considered, we expect
the benefits of CU to be reduced compared to WI for
applications with a significant amount of migratory sharing
as a result of the unnecessary write traffic. To study this,
we henceforth assume the default mesh implementation
that is clocked at 33 MHz. The normalized execution times
for the applications in this case are found in Fig. 6. We
observe that both MP3D and Cholesky now have longer
read stall times under CU than under WI. The read penalty
reduction under CU that we observed in Fig. 5 is now
reversed to an increase in the read penalty.

In Fig. 7, the bandwidth requirement for each application
is shown. The bandwidth requirement is the amount of
network traffic generated by an application divided by the
execution time of the application. The whole bar corres-
ponds to the bandwidth requirement of CU whereas the
black section corresponds to the bandwidth requirement
of WI; WI requires less bandwidth than CU for all applica-
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Normalized execution times for the applications running on an architecture with a 100-MHz mesh.

tions. As expected, MP3D and Cholesky have bandwidth
requirements more than twice as high as those for the other
applications under CU. The large number of unnecessary
updates of migratory objects causes this dramatic differ-
ence in bandwidth requirements. In addition, for MP3D
we see that CU requires 51% more bandwidth than WI,
and even worse for Cholesky, for which CU requires 86%
more bandwidth than WI.

In Fig. 6, we also observe that the acquire stall time
has increased significantly for PTHOR. This effect arises
because PTHOR exhibits contention for critical sections;
i.e., at the time a lock is released there is already another
processor waiting to get the lock. The higher rate of global
write actions under CU than under WI delays the issue of
arelease, which as a secondary effect delays the processors
waiting for the lock. The adaptive protocol we propose
can reduce both these problems, as we will show in the
next section.

5.2. Relative Performance of the Enhanced
Adaptive Protocol

In this section we will analyze the performance of the
enhanced adaptive protocol described in Section 3.3.3,
henceforth referred to as AD+, relative to WI and CU.
In Fig. 8 the execution times of CU and AD+ are shown.
The execution times are normalized to the execution time
of WI (=100) for each application.

Buffer Stall
Acquire Stall
Read Stall
- Busy Time
wi CU Wl CU
PTHOR Ocean

FIG. 6. Normalized execution times for the applications running on an architecture with a 33-MHz mesh.
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FIG. 7. Bandwidth requirements under WI and CU for each application running on an architecture with a 33-MHz mesh.

Opverall, despite the low-bandwidth network, AD+ man-
ages to perform better than WI for all applications but
one (PTHOR). The execution times have decreased under
AD+ by between 1 and 20% from those for WI. Simula-
tions show that for MP3D and Cholesky the main reason
is that the read penalty has been reduced by 11 and 4%,
respectively, as a result of lower contention in the network
(not shown in the diagrams). Our results also show that
the read penalty is reduced by 22% for PTHOR under
AD+ from that for WI. However, the acquire stall time
under AD+ is 21% longer than that under WI. The larger
number of global write actions for ordinary blocks impacts
the time to issue a release adversely, and since PTHOR
exhibits contention for critical sections this impacts the
acquire stall time. This observation is consistent with the
results in [9]. The highest read penalty reduction is
achieved for Ocean, where AD+ cuts 42% of the read
penalty compared to WI. For Ocean, AD+ also reduces
the acquire stall time by 22% compared to CU. In Ocean,
the counters in the barriers exhibit migratory sharing. The
fewer global write actions under AD+ result in a shorter
release issuance time. As a result, the acquire stall time is
reduced if another processor waits for the lock. Remark-

Normalized Execution Time

CU AD+
MP3D

CU AD+
Cholesky

CU AD+
Water

ably, although Water exhibits substantial migratory shar-
ing, there is virtually no difference in performance between
WI and AD+. The reason is that the bandwidth require-
ment for Water is very low (see Fig. 7), which means that
the read penalty is not increased due to network contention
under WI.

In Fig. 9, we show the miss rates for each application.
Two bars are associated with each application: one for CU
and one for AD+. Each bar is divided into two parts: the
number of cold misses (the lower part) and the number
of coherence misses (the upper part). The miss rates are
normalized to the total miss rate under WI (=100) for
each application. As expected, for MP3D and Cholesky
the miss rates of AD+ are almost the same as under WI.
Surprisingly, the miss rate for Water is 14% lower under
AD+ than under WI, even though most data objects are
migratory. In AD+ three different processors must modify
a memory block, one after the other with no intervening
access by any other processor, in order to classify the block
as migratory. If only one other processor modifies the block
before the same processor accesses the block again, the
block will resort to competitive-update. Thus a lower co-
herence miss rate is encountered even though the block is

108 405

Buffer Stall
Acquire Stall
Read Stall
JBusy Time
CU AD+ CU AD+
PTHOR Ocean

FIG. 8. Execution times for CU and AD+ normalized to the execution time for WI.
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FIG. 9. Normalized miss rates for CU and AD+ compared to those for WI.

migratory. For applications with marginal migratory shar-
ing (PTHOR and Ocean) the miss rates are reduced under
AD+ by 28 and 71%, respectively, compared to WI. Hence,
AD+ has preserved the low miss rates of CU for applica-
tions with little or no migratory sharing.

As for the traffic reduction by AD+, we see in Fig. 10
that the bandwidth requirements for AD+ are significantly
reduced compared to those for WI, and even more com-
pared to those for CU, for MP3D, Cholesky, and Water.
For these applications the bandwidth requirements are
reduced by between 10 and 26% compared to those for
WI. Comparing AD+ and CU we find that the bandwidth
requirements are reduced by between 51 and 62%. As
expected, the bandwidth requirements are virtually the
same under AD+ and CU for applications with little or
no migratory sharing (PTHOR and Ocean).

To summarize, AD+ appears to be a better default
policy than WI and CU because, like WI, it handles migra-
tory blocks according to the read-exclusive strategy pro-
vided by the migratory detection mechanism, which helps
to reduce traffic. Like competitive-update protocols, AD+
handles producer—consumer sharing (such as in Ocean and
PTHOR) in competitive-update mode and helps to reduce
the coherence miss rate for such blocks. Finally, we have
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also varied the competitive threshold in AD+ and did not
find any significant performance variations.

5.3. Comparing the Basic and the Enhanced
Adaptive Protocol

In Section 3.3.2, we described an adaptive protocol,
henceforth referred to as AD, which uses a single last-
writer pointer per memory block. In AD, a LW pointer is
used to keep track of the processor that most recently
modified a memory block. The enhanced adaptive protocol
we described in Section 3.3.3, referred to as AD+, is AD
extended with a second pointer, a LLW pointer, to keep
track of the last two processors that modified a memory
block. If exactly two processors alternately modity a block,
the block is classified as migratory in AD but not in AD+.
We use Ocean as a case study because it exhibits a nonneg-
ligible degree of false sharing. Although false sharing
should be avoided, it has shown to be a good trade-off in
this application because the SOR algorithm used in this
application converges faster.

In Fig. 11, we present the normalized execution times
(the diagram to the left) and the miss rates (the diagram
to the right) for Ocean under four coherence protocols:

CU AD+
PTHOR

CU AD+
Ocean

FIG. 10. Normalized bandwidth requirements for CU and AD+ compared to those for WI.
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WI, CU, AD+, and AD. In the diagram over the miss
rates in Fig. 11 there is a section called classification misses.
Classification misses constitute a new type of cache misses
that arise as a result of memory blocks that are erroneously
classified as migratory. A block is detected as migratory
in AD both for the reference sequence (1) in Section 2.1
and for sequence (2) in Section 3.3.3. As a result, blocks
that suffer from false sharing between two processors can
be classified as migratory in AD even though it is prefera-
ble to resort to competitive-update mode. From Fig. 11,
we see that the miss rate for AD is more than twice the
miss rate for AD+, which clearly shows the usefulness of
the LLW pointer.

As the diagram to the left in Fig. 11 shows, the high
miss rate for AD compared to that for AD+ increases the
execution time for AD compared to that for AD+. The
read penalty for AD has increased by 38% compared to
that for AD+. The acquire stall time under AD has also
increased by 16% as a result of the higher network traffic
due to the read misses. In total, the execution time is 15%
longer under AD than under AD+, which removes most
of the advantages of competitive-update protocols. We did
not see any significant difference in performance between
AD and AD+ for any of the other applications because
they exhibit very little false sharing.

6. DISCUSSION AND RELATED WORK

We have shown that for competitive-update protocols
itis possible to reduce the bandwidth requirements by up to
26% compared to a write-invalidate protocol by detecting
migratory data objects. Although the architecture assumed
in this study is a CC-NUMA with a mesh network, the
detection mechanism is also applicable to bus-based sys-
tems where a low traffic rate is more important than in
CC-NUMA architectures with mesh networks.

In [4], Cox and Fowler studied the migratory detection
mechanisms needed both in directory-based protocols and
in snoopy cache protocols. The migratory detection mecha-
nism they propose for the directory-based protocol is very
similar to the one Stenstrom et al. propose in [20] which
our adaptive protocol relies on. Therefore, we believe that
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our proposed adaptive competitive-update protocol could
be incorporated fairly easily into bus-based systems.

In this study we simulated a system with only 16 proces-
sors. As we scale the system to a larger number of proces-
sors, we expect the latencies to be longer and it will be more
important to keep the network bandwidth requirements at
a low level. Therefore we believe that the benefits of our
adaptive protocol increase with the system size, especially
for applications that exhibit migratory sharing. The study
of cache invalidation patterns by Gupta and Weber [10]
shows that migratory sharing is independent of system size,
at least in the range from 8 to 32 processors which they
use in their study.

In the scalable coherent interface (SCI, IEEE standard
P1596) [11] pairwise sharing is discussed. Pairwise sharing
occurs when exactly two processors share the same mem-
ory block. In the SCI there is an optimization in the coher-
ence protocol for this case which allows the two processors
to pass the block between them without interaction with
the home memory module. This mechanism is similar to the
approach taken by our last-last-writer pointer. However, it
does not use the mechanism to resort to competitive-up-
date mode. Further, the SCI optimization works only when
the same two processors pass a block between them, not
when a block migrates among three or more processors.

7. CONCLUSION

The focus of this study has been to reduce the coherence
miss rate and the network traffic caused by the cache coher-
ence protocol for shared-memory multiprocessors. In this
paper we propose an adaptive competitive-update cache
coherence protocol that dynamically switches between two
modes on a per-block basis: competitive-update mode and
migratory-mode, i.e., the read-exclusive optimization ac-
cording to [20]. This study investigates the performance
of this adaptive protocol and suggests that it performs
better than a write-invalidate protocol due to reduced traf-
fic and miss rates.

A previous study has shown that competitive-update
protocols [9]—a hybrid between write-invalidate and
write-update protocols—outperform write-invalidate pro-
tocols for a wide range of applications under relaxed mem-
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ory consistency models. However, for applications that
exhibit migratory sharing [10], competitive-update proto-
cols may generate unnecessary traffic that can increase the
read penalty, especially for networks with a low bandwidth.

To improve the performance of competitive-update pro-
tocols, we propose in this study to extend them with a
migratory detection mechanism, previously published for
write-invalidate protocols [20], that dynamically detects
migratory blocks and handles them with read-exclusive
requests. As a result, all global write actions for migratory
blocks are eliminated. In addition, in this study the migra-
tory detection mechanism is extended to detect when ex-
actly two processors modify the same memory block alter-
nately, e.g., as a result of false sharing. By detecting this
sharing behavior, the adaptive protocol resorts to competi-
tive-update mode and reduces the coherence miss rate
accordingly. We have also shown that the migratory detec-
tion mechanism adds only a small amount of extra com-
plexity to the competitive-update protocol.

Based on program-driven simulations of a detailed
multiprocessor architectural model, we find that the miss
rates are reduced by up to 71% under the adaptive protocol
as compared to those under a write-invalidate protocol.
For applications with a high degree of migratory sharing
the network traffic is reduced by up to 26% under the
adaptive protocol compared to that under a write-invali-
date protocol and by up to 62% compared to that under
a competitive-update protocol. For applications with little
or no migratory sharing, the adaptive protocol preserves
almost the same low miss rates as the competitive-up-
date protocol.

This study shows that addition of a simple mechanism
for detection of migratory sharing significantly reduces the
network traffic under competitive-update protocols, and
as a result, competitive-update protocols are shown to out-
perform write-invalidate protocols for networks with low
bandwidths.
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