
n
an
d
d
f
c-

g
t
ads

r-
to

ors
ies
ign-
t

es-
ned
m

es-
e-
of
ly
is

an
s

ads
li-

%.
an
ing

n
r-

-
n
m
ck-
e
i-
d
rk
re

An Allocation Strategy Using Shadow-processors and Simulation Technique

Magnus Broberg, Lars Lundberg, and Håkan Grahn
Department of Computer Science, Blekinge Institute of Technology

P.O. Box 520, S-372 25 Ronneby, Sweden
Abstract

Efficient performance tuning of parallel programs for
multiprocessors is often hard. When it comes to assigning
threads to processors there is not much support from com-
mercial operating systems, like the Solaris operating sys-
tem. The only known value is, in best case, the total
execution time of each thread. The developer is left to the
binpacking algorithm with no knowledge about the inter-
actions and dependencies between the threads. The bin-
packing algorithm assigns, in the worst case, the threads to
the processors such that the program will have the longest
possible execution time. A simple example of such an pro-
gram is shown in the paper. We present here a way of
retrieving more information and a test mechanism that
makes it possible to compare two different assignments of
threads on processors also with regard to the interactions
and dependencies between the threads. Also an algorithm
is proposed that gives the best assignment of threads to
processors in the case above where the binpacking algo-
rithm gave the worst possible assignment. The algorithm
uses shadow-processors and requires more processors than
on the target machine during some allocation steps. Thus,
a simulation tool like the one presented here must be used.

Key words: Thread allocation, simulation technique,
monitoring tool, shadow-processors

1. Introduction

Parallel processing is an important way of increasing
the performance of an application. Applications made for
parallel processing are then likely to have performance
requirements. For instance, a transaction based telecom-
munication billing system have performance requirements.
It also have deadlines. The deadlines are often specified as
the time to complete a transaction. The deadline is not
specified on a thread/process level but on a transaction
level perhaps involving several threads/processes.
Although a missed deadline is not a life threatening event
the company will loose income. Thus, predictability is an
important issue in order to know that deadlines frequently
will be met. By binding the threads/processes statically to
processors we reduce the unpredictability of memory
caches, etc. Selecting which thread should execute on
which processor is vital for the performance. In Solaris
[8], an commercial operating system that support multi-
threading on multiprocessors (SMPs, symmetric multi-

processors), there is little support for the applicatio
developer to make that choice. Basically the developer c
only retrieve information about the number of threads an
their respective execution time with a system tool calle
tha [11]. Based on that information a good selection o
which threads to bind to which processors is hard, in pra
tice the developer is left with the traditional binpackin
algorithm [5]. Although the binpacking algorithm can no
take any interaction and dependencies between the thre
in account it is left as our only choice.

In this paper we present a way of retrieving more info
mation and a test mechanism that makes it possible
compare two different assignment of threads on process
also with regard to the interactions and dependenc
between the threads. We also propose a processor ass
ment algorithm called simple greedy algorithm (SGA) tha
uses the ability of the test. The SGA uses shadow-proc
sors (shadow-processors executes the so-far not assig
threads, see Section 4) which means that the algorith
during search for the best allocation requires more proc
sors than in the target machine. The algorithm is impl
mented in a simulator that can simulate any number
processors. An empirical study with 9,100 automatical
generated applications shows that the new algorithm
gives in average 10% to 40% shorter execution time th
the binpacking algorithm when having at least twice a
many threads as processors. With less number of thre
the SGA is still better but to a less degree. For some app
cations the improvement may be as much as 140
Although the proposed new algorithm performs better th
binpacking in most cases, there are cases when binpack
performs better. By including the binpacking algorithm i
SGA, a combined algorithm called C-SGA, we can gua
antee to never be worse than binpacking.

The paper is structured in the following way. In Sec
tion 2 a general overview of the tool that is the foundatio
for both the information gathering and the test mechanis
is given. Some worst case discussions about the binpa
ing algorithm is found in Section 3. The description of th
proposed algorithm is found in Section 4 with the empir
cal study in Section 5. Empirical studies for the combine
algorithm are found in Section 6. Related and future wo
are found in Section 7 and in Section 8 the conclusions a
found.

o
of
ing
en
cu-
rst
in
si-
-

-
f

ur
-

.
re

d
ce
e),

ero

re-
.

c-
is

en-

-

i-
o

o

2. Overview of Tool

The tool used for information gathering and test is
called VPPB (Visualization of Parallel Program Behav-
iour) and consists of three major parts, theRecorder, the
Simulator, and theVisualizer [1, 2]. The workflow when
using the VPPB system is shown in Figure 1. The devel-
oper writes the multithreaded program (a) in Figure 1,
compiles it, and an executable binary file is obtained. After
that, the program is executed on a uni-processor.

When starting the monitored execution (b), the
Recorderis automatically placedbetweenthe program and
the standard thread library. Every time the program uses
the routines in the thread library, the call passes through
theRecorder(c) which records information about the call,
i.e., the identity of the calling thread, the name of the
called routine, the time the call was made, and other
parameters. TheRecorderthen calls the original routine in
the thread library. Whenever an LWP’s state change the
operating system informs a program calledprex . Prex
is a standard program on the Solaris platform used to cre-
ate logfiles about various kernel events, such as state
changes, page faults etc. Then the collected information is
stored in a file, therecorded information(d). The record-
ing is done without recompilation or relinking the applica-
tion, making the tool flexible.

The Simulator simulates a multiprocessor execution.
The main input for the simulator is therecorded informa-
tion (d) in Figure 1. The simulator also takes the hardware
configuration and scheduling policies as input (e). The
output from the simulator is information describing the
predicted execution (f). By binding threads differently in
(g) the effects on different bindings can be tested. The
VPPB system is designed to work for C or C++ programs
that uses POSIX threads [3] or the built-in thread package
[12] in the Solaris 2.X operating system.

3. A Worst Case Application for the
Binpacking Algorithm

The binpacking algorithm is based on the only tw
parameters available from Solaris tools; the number
threads and each thread’s execution time. The binpack
algorithm assigns the longest thread that yet has not be
assigned to the processor with lowest aggregated exe
tion time based on the so far assigned threads. In the wo
case the binpacking algorithm will assign the threads
such way that the execution time will be the longest pos
ble. This property is not desirable when having perform
ance requirements.

Below is a simple example of an application that bin
packing will assign in such way that the execution time o
the application will be the longest possible. There are fo
threads; T1, T2, T3, and T4 to be executed on a two proces
sor machine. The threads T3 and T4 are both depending on
the results of both T1 and T2 before they can execute. The
threads T1 and T2 are not depending on any other thread
The execution times for the threads are shown in 1, whe

. The binpacking algorithm will start to assign Threa
T1 (which is the longest thread) to any processor (sin
both processors have zero aggregated execution tim
let’s say processor A. Then thread T4 (which is the second
longest thread) is assigned to processor B, since it has z
aggregated execution time. Thread T3 (the third longest
thread) is assigned processor B, since processor B’s agg
gated time () is smaller than processor A’s ()
Finally, thread T2 (the shortest thread) is assigned to pro
essor A, since processor A’s aggregated time ()
smaller than processor B’s ().
The result is that thread T1 and T2 is assigned to processor
A and thread T3 and T4 is assigned to processor B. This
means that the threads in practice are executed in sequ
tial. This is since while processor A executes T1 and T2,
processor B with T3 and T4 must wait. After time
units both T1 and T2 are finished and processor B can exe
cute T3 and T4 for time units. Total execution time
is then time units, which is also the largest poss
ble execution time for these particular threads on a tw
processor machine.

No of Processors
Binding of threads

C or C++ source code

Compiler

Binary file
Execution

Calls

Calls Returns

Returns
Recorder

(Instrumented

Thread Library)
 Encapsulating

Recorded
information

Simulator

Information describing

Visualizer

b

f

g

d

ea

c

Start

Figure 1: A schematic flowchart of the VPPB system.

Configuration

simulated execution

VPPB

Thread priorities

Thread Library

Table 1: Data about the four threads.

Thread Depends on Execution time, Assigned t

T1 None Processor A

T2 None Processor A

T3 T1 and T2 Processor B

T4 T1 and T2 Processor B

l ε»

l 2ε+ l 3ε+

l 3ε+
l 2ε+() l ε+()+ 2l 3ε+=

2l 3ε+

2l 3ε+
4l 6ε+

l ε»

l 3ε+

l

l ε+

l 2ε+

n
es-
us
on
sor
ast
ted
e
ce
wn
s-

e
c-

es-
,
T

will
s

a

rst

n

d)

ion

n

n

ent
n-
lt-
4. The Simple Greedy Algorithm

Based on the information recorded by the tool, we are
able to take synchronization behaviour into account when
deciding which thread to bind to which processor. We use
the tool’s simulator in order to test the effect of placing a
thread on a certain processor.

The heuristic we have chosen use a set of shadow proc-
essors that contains the so far unassigned threads. The
threads are placed one by one on the most suitable target
processor. The algorithm works as follows. First all
threads are placed on one shadow-processor each. The
threads are executing on these shadow-processors as long
as they are not placed on a processor. Each thread is then
moved from a shadow-processor to the most suitable proc-
essor, beginning with the longest executing thread. The
thread is then tested on each processor by running the
application in the simulator including the remaining
threads on the shadow-processors. The thread is placed on
the first processor that gave the shortest execution time.
Then the next longest thread is moved from its shadow-
processor and tested on each processor and so on. If we
haveT threads andP processors we will have to perform

tests before all threads are moved from the shadow-
processors.

There is a reason for testing threads on processors that
already are assigned a thread, even when there are proces-
sors that are not already assigned a thread. An example is
found in Figure 2 The three threads in the example will
execute to completion in 16 time units if they are assigned
one processor each. If the first thread is assigned one proc-
essor and the other two executes on one shared processor
the threads will execute to completion in 13 time units.

The number of tests can be reduced according to the
following observation. Every processor is equal, then if
there are several processors that still have not been
assigned a thread, only one of them has to be tested. This

is illustrated in Figure 3 where the first thread is tested o
one processor, the second thread is tested on two proc
sors (the processor which where assigned the previo
thread and a free processor), the third thread is tested
the previously assigned processors and a free proces
and so on until all processors have been assigned at le
one thread each. After that each processor must be tes
for the remaining threads. The first thread can directly b
assigned any of the processors without any test, sin
every processor is free. In Figure 3 the worst case is sho
where theP first threads are assigned an individual proce
sor.

We will now look how SGA handles the worst cas
example for binpacking in Section 3. The threads are spe
ified as previously (see 1) and the machine has two proc
sors. The longest thread (T1) is assigned to any processor
lets say processor A. Then the second longest thread (4)
is tested on processor A while the threads T3 and T4 is
executing on a shadow processor each. The execution
look like in Figure 4(a) and the total execution time i

. Then thread T4 will be
tested on processor B which is shown in Figure 4(b) with
total execution time of .
This means that the execution times are equal and the fi
occurrence will be selected, i.e., thread T4 will be assigned
processor A. The third longest thread (T3) is then tested on
processor A as shown in Figure 4(c) with an executio
time of . Then
thread T3 is tested on processor B as shown in Figure 4(
with a total execution time of

. Thread T3 is assigned to
processor B since it resulted in the shortest total execut
time. Finally, thread T2 (the shortest) is first tested on
processor A as shown in Figure 4(e) with an executio
time of . Then thread
T2 is tested on processor B as shown in Figure 4(f) with a
execution time of . Thread
T2 is assigned to processor B since it was the assignm
with the shortest execution time. There is no other assig
ment that result in a shorter execution time than the resu
ing assignment, T1 and T4 on processor A and T2 and T3
on processor B.

P T⋅

T1 on P1
T2 on P2
T3 on P2

T1 on P1
T2 on P2
T3 on P3

0 100 5 10 15
Time Time

Figure 2: Illustrating the effect of assigning each thread their
own processor. To the upper the three threads are specified.
To the lower left the threads are assigned an own processor.
To the lower right thread 2 and 3 shares processor 2, while

thread 1 is assigned processor 1.

Thread 1:
Execute 4 time units
Enter critical section
Execute 2 time units
Exit critical section
Execute 7 time units

Thread 3:
Execute 3 time units

Thread 2:
Execute 2 time units
Enter critical section
Execute 5 time units
Exit critical section
Execute 1 time unit

Legend:
Thread is
executing

Thread enters
critical section
Thread exits
critical section

Thread is
waiting

Tx

Px

Thread x

Processor x5

1 2 ... P P+1 P+2 ... TThread number:

1 2 ... P P P ... PNumber of tests:

P

T

T - P

p

p 2=

P

∑ 
 
 

P T P–()+ P P 1+()
2

--------------------- 1– 
  P T P–()+=

+ + + + + + + =

T P≥ P 1>and

Figure 3: Calculating the maximum number of tests when
having T threads andP processors.

, where

l 3ε+() l 2ε+()+ 2l 5ε+=

l 3ε+() l 2ε+()+ 2l 5ε+=

l 3ε+() l 2ε+() l ε+()+ + 3l 6ε+=

l 3ε+() l 2ε+()+ 2l 5ε+=

l 3ε+() l() l 2ε+()+ + 3l 6ε+=

l 3ε+() l 2ε+()+ 2l 5ε+=

are

,
re

lar
y-

u-
ge
s.
a-

he
are
our

le-
.
to
e
in

ns
-
s-
le

A
ere
d

he
-
e
A
s
d

e is
rs
)
s

er
or
n
0.
g-
f
0

A

5. Empirical study: Simple Greedy Algorithm
vs. Binpacking

In this study we have compared SGA with a binpack-
ing algorithm. 9,100 applications have been generated
with 3 to 37 threads (260 applications for each number of
threads). Each applications contains critical sections pro-
tected by semaphores. The number of critical sections is
between two and three times the number of threads. Each
thread is generated by first executing for 2x time units,
wherex is 0 to 15. Then, either the thread enters (if possi-
ble) a critical section or exits (if possible) a critical sec-
tion. The probability for entering or exiting a critical
section is fifty-fifty. If there is no critical section to enter or
exit only the execution for 2x time units, wherex is 0 to 15,
is generated. In order to avoid deadlock the critical sec-
tions are hierarchically numbered allowing a thread to
enter a critical section only if the thread is not already in a
critical section with a higher logical number. The threads
are divided into one to half of the number of threads
groups. Threads within one group only synchronizes with
each other, thus, two threads in different groups will be
independent. By a probability of 93.75% the thread con-
tinues to execute for 2x time units, wherex is 0 to 15, then
enter or exit a critical section and so on. With a probability
of 6.25% the thread will start terminating, by releasing the
critical sections it has entered. Exiting each critical section
is proceeded with an execution for 2x time units, wherex is
0 to 15. Finally, when all critical section are exited the
thread executes for 2x time units, wherex is 0 to 15. These
test applications are thought to mimic the core of a trans-
action based system, where each thread service a transac-
tion. The transactions needs exclusive access to a number
of resources, e.g., data structures, thus the critical sections.

Some transactions are independent of other and some
not. This is why the threads are divided into groups.

In Figure 5 only the results of the applications with 4
8, 12, 16, 20, 24, 28, and 32 threads respectively a
shown, however, the other number of threads show simi
results. The x-axis is the number of processors while the
axis shows the (execution time for binpacking) / (exec
tion time for SGA). The average curve shows the avera
value for all the applications with that number of thread
The max curve shows the maximum value for any applic
tion in the set, while the min curve shows the minimum
value for any application in the set. As can be seen t
average value is between 1.1 and 1.4 as long as there
twice as many threads as processors which means that
proposed algorithm makes the application run to comp
tion 10% to 40% faster than the binpacking algorithm
There exists applications that can run to completion up
2.4 times faster than the binpacking algorithm. On th
other hand some applications can run to completion
only 71% of the time when using the binpacking algorithm
than using SGA. This means that there are applicatio
that the binpacking algorithm will handle better. Deter
mine the assignment of an test application for multiproce
sor with a given number of processors takes only a coup
of minutes.

6. Combining the two algorithms: C-SGA

In Section 5 we showed that although in average SG
worked better than binpacking, there were cases wh
binpacking worked better. However, the tool that we use
to implement the SGA can also be used to evaluate t
binpacking algorithm. By also testing the binpacking algo
rithm, which requires only one more test in Figure 3, w
can individually for each application choose between SG
or the binpacking algorithm. The resulting algorithm i
called combined simple greedy algorithm (C-SGA) an
the empirical result using the same applications as abov
shown in Figure 6. The x-axis is the number of processo
while the y-axis shows the (execution time for binpacking
/ (execution time for C-SGA). The average curve show
the average value for all the applications with that numb
of thread. The max curve shows the maximum value f
any application in the set. The min curve is not show
since it almost always (99.9% of the cases) will be 1.
The average curve increased slightly (actually quite insi
nificantly), thus the number of applications with a value o
less than 1.0 was very small in Figure 5. Out of the 9,10
test applications only 2.6% performed worse with SG
than with binpacking.

T1Proc. A
T4

T2

T3

S-Proc.

S-Proc.

Time

(a)

Figure 4: The different steps in the SGA algorithm for
assigning the four threads in Section 3. A shadow processor

is named S-Proc. The synchronization is the vertical bar,
analogous to a barrier. The final assignment is the one in (f).

T1Proc. A
T4

T2

T3

S-Proc.

S-Proc.
Time

(b)
Proc. B

T1Proc. A
T4

T2S-Proc.

Time

(c)
T3

T1Proc. A
T4

T2S-Proc.

Time

(d)
T3Proc. B

T1Proc. A
T2

T3Proc. B

Time

(e)
T4

T1Proc. A
T4

T2

Time

(f) T3Proc. B

Figure 5: Simulation results for SGA. The Y-axis shows (Binpack execution time)/(SGA execution time).

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1 2 3 4

max
average

min

4 threads

8 threads

12 threads

16 threads

20 threads

24 threads

28 threads

32 threads

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5 6 7 8

max

min
average

0.8

1

1.2

1.4

1.6

1.8

2

0 2 4 6 8 10 12

max
average

min

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0 2 4 6 8 10 12 14 16

max
average

min

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0 2 4 6 8 10 12 14 16 18 20

max
average

min

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 5 10 15 20 25

max
average

min

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 5 10 15 20 25 30

max
average

min

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 5 10 15 20 25 30 35

max
average

min

Number of processors

Number of processors

Number of processors

Number of processors Number of processors

Number of processors

Number of processors

Number of processors

Figure 6: Simulation results for C-SGA. The Y-axis shows (execution time for binpacking) / (execution time for C-SGA).

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1 2 3 4

max
average

4 threads

8 threads

12 threads

16 threads

20 threads

24 threads

28 threads

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

1 2 3 4 5 6 7 8

max
average

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

0 2 4 6 8 10 12

max
average

1

1.2

1.4

1.6

1.8

2

2.2

0 2 4 6 8 10 12 14 16

max
average

1

1.2

1.4

1.6

1.8

2

2.2

0 2 4 6 8 10 12 14 16 18 20

max
average

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 5 10 15 20 25

max
average

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 5 10 15 20 25 30

max
average

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 5 10 15 20 25 30 35

max
average

32 threads

Number of processors

Number of processors

Number of processors

Number of processors Number of processors

Number of processors

Number of processors

Number of processors

s
ect
t-

der
ose
ed
s
he
h-
al
s
e-

ce
ves
lly
st
-
-
is
er-

d
c.
,

r
l

l.

d

,”

,

.

.
d
,

In the case that we want an application assigned by
binpacking to execute as fast as assigned by the C-SGA
we would need in average up to 40% faster processors. If
we on the other hand wants to be sure that binpacking will
execute as fast as C-SGA we will, in worst case, need 2.4
times faster processors, based on the max curve in Figure
6. Another way of looking at the difference between bin-
packing and C-SGA is the number of additional proces-
sors that is needed when we use binpacking for the same
performance as C-SGA. If we look at a four processors
machine that run an application assigned by C-SGA, we
would need seven processors in the machine to reach the
same performance with binpacking. This result is fairly
constant (+/-1 processor) for all applications in this study
with eight threads or more. For the applications with less
than eight threads, the number of threads sets the limit on
the number of processors needed.

7. Related and Future Work

In the real-time community different assignment strat-
egies for placing threads (or processes) on processors have
been used for a long time [5]. Most of those strategies uses
a test, called feasibility test, that determine if the current
assignment will fulfil the given constraints. When it comes
to multithreaded applications the goal is to make the appli-
cation to run as fast as possible. Then we do not have any
explicit deadlines specified for each thread. However, on a
system level there might very well be specified deadlines,
such as deadlines for processing an incoming event. This
processing may include several threads performing a lot of
work. Also these deadlines is not that hard, in other words
nothing dramatic, like risk for human life, will occur if the
deadline is occasionally not met. This leads us to make
another kind of test that evaluates the assignment in such a
way that we can say if assignment A isbetterthan assign-
ment B. To the best of our knowledge, simulation tools has
not been used in this area before for processor assignment,
although simulation tools like the one described in this
paper previously exist, mainly for message passing sys-
tems [6, 7, 9, 10, 13]. The test mechanism can be used
with other algorithms than SGA and C-SGA, for instance,
simulated annealing [4] with probably even better result.
This, however, is considered to be future work.

8. Conclusion

Placing threads on processors is not a trivial task.
Actually, the problem is NP-complete [5]. This leaves us
with heuristics. The more information we have about the
application the better are our chances to achieve a good
assignment. In Solaris, a multithreaded commercial oper-
ating system for multiprocessors, the support for the appli-
cation developer to make an adequate assignment is
limited. The operating system can provide the number of
threads and their respective execution time.

However, binpacking does not deal with interaction
between the threads. In this paper we use a tool to coll
more information about an application and a tool for tes
ing different assignments of threads on processors in or
to determine the best of the assignments. We also prop
an algorithm that uses test above, the algorithm is call
SGA (simple greedy algorithm). The algorithm use
shadow-processors that makes it impossible to run t
algorithm on the target machine, thus a simulation tec
nique like the one in this paper must be used. An empiric
study with 9,100 automatically generated application
shows that SGA in average gives 10% to 40% shorter ex
cution time than binpacking when there are at least twi
as many threads as processors, otherwise SGA gi
shorter execution time but to a less degree. Occasiona
SGA behaves worse than binpacking. However, the te
can also cope with the binpacking algorithm. By combin
ing the two algorithms, resulting in an algorithm called C
SGA (combined simple greedy algorithm), the result
guaranteed to be at least as good as binpacking and p
forms even slightly better in average than SGA.

References

[1] M. Broberg, L. Lundberg, and H. Grahn, “Visualiza-
tion and Performance Prediction of Multithreade
Solaris Programs by Tracing Kernel Threads,” Pro
13th Int’l Parallel Processing Symp., pp. 407-413
1999.

[2] M. Broberg, L. Lundberg, and H. Grahn, “VPPB - A
Visualization and Performance Prediction Tool fo
Multithreaded Solaris Programs,” Proc. 12th Int’
Parallel Processing Symp., pp. 770-776, 1998.

[3] D. Butenhof, “Programming with POSIX Threads,”
Addison-Wesley, 1997, ISBN 0-20-163392-2.

[4] S. Kirkpatrick, “Optimization by Simulated Anneal-
ing: Quantitative Studies,” J.Statistical Physics, Vo
34 no. 5-6, pp. 975-986, 1984.

[5] C. M. Krishna and K. G. Shin, “Real-Time Sys-
tems,” The McGraw-Hill Companies, Inc., 1997.

[6] E. Papaefstathiou, D. J. Kerbyson, G. R. Nudd, an
T. J. Atherton, “An Overview of the CHIP3S Per-
formance Prediction Toolset for Parallel Systems
Proc. 8th ISCA Int’l Conf. on Parallel and Distrib-
uted Computing Systems, pp. 527-533, 1995.

[7] V. Pillet, J. Laboarta, T. Cortes, and S. Girona
“PARAVER: A Tool to visualize and Analyse Paral-
lel Code,” University of Politencia, Catalonia,
CEPBA/UPC Report No. RR-95/03, February 1995

[8] M. L. Powell, S. R. Kleiman, S. Barton, D. Shah, D
Stein, and M. Weeks, “SunOS 5.0 Multithreade
Architecture,” Sun Soft, Sun Microsystems Inc.
September 1991.

[9] S. R. Sarukkai and D. Gannon, “SIEVE: A Perform-
ance Debugging Environment for Parallel Pro-
grams,” J. Parallel and Distributed Computing, Vol.
18, pp. 147-168, 1993

[10] Z. Segall and L. Rudolph, “PIE: A Programming
and Instrumentation Environment for Parallel
Processing,” IEEE Software, 2(6):22-37, November
1985.

[11] Sun Man Pages, tha, Sun Microsystems Inc., 1996.

[12] Sun Soft, “Solaris Multithreaded Programming
Guide,” Prentice Hall, 1995

[13] S. Toledo, “PERFSIM: A Tool for Automatic Per-
formance Analysis of Data-Parallel Fortran Pro-
grams,” Proc. 5th Symp. on the Frontiers of
Massively Parallel Computation, IEEE Computer
Society Press, February 1995.

	An Allocation Strategy Using Shadow-processors and Simulation Technique
	Magnus Broberg, Lars Lundberg, and Håkan Grahn
	Abstract
	1. Introduction
	2. Overview of Tool
	Figure 1: A schematic flowchart of the VPPB system.

	3. A Worst Case Application for the Binpacking Algorithm
	Table 1: Data about the four threads.

	4. The Simple Greedy Algorithm
	Figure 2: Illustrating the effect of assigning each thread their own processor. To the upper the ...
	Figure 3: Calculating the maximum number of tests when having T threads and P processors.

	5. Empirical study: Simple Greedy Algorithm vs. Binpacking
	Figure 4: The different steps in the SGA algorithm for assigning the four threads in Section 3. A...

	6. Combining the two algorithms: C-SGA
	Figure 5: Simulation results for SGA. The Y-axis shows (Binpack execution time)/(SGA execution ti...
	Figure 6: Simulation results for C-SGA. The Y-axis shows (execution time for binpacking) / (execu...

	7. Related and Future Work
	8. Conclusion
	References
	[1] M. Broberg, L. Lundberg, and H. Grahn, “Visualization and Performance Prediction of Multithre...
	[2] M. Broberg, L. Lundberg, and H. Grahn, “VPPB - A Visualization and Performance Prediction Too...
	[3] D. Butenhof, “Programming with POSIX Threads,” Addison-Wesley, 1997, ISBN 0-20-163392-2.
	[4] S. Kirkpatrick, “Optimization by Simulated Annealing: Quantitative Studies,” J.Statistical Ph...
	[5] C. M. Krishna and K. G. Shin, “Real-Time Systems,” The McGraw-Hill Companies, Inc., 1997.
	[6] E. Papaefstathiou, D. J. Kerbyson, G. R. Nudd, and T. J. Atherton, “An Overview of the CHIP3S...
	[7] V. Pillet, J. Laboarta, T. Cortes, and S. Girona, “PARAVER: A Tool to visualize and Analyse P...
	[8] M. L. Powell, S. R. Kleiman, S. Barton, D. Shah, D. Stein, and M. Weeks, “SunOS 5.0 Multithre...
	[9] S. R. Sarukkai and D. Gannon, “SIEVE: A Performance Debugging Environment for Parallel Progra...
	[10] Z. Segall and L. Rudolph, “PIE: A Programming and Instrumentation Environment for Parallel P...
	[11] Sun Man Pages, tha, Sun Microsystems Inc., 1996.
	[12] Sun Soft, “Solaris Multithreaded Programming Guide,” Prentice Hall, 1995
	[13] S. Toledo, “PERFSIM: A Tool for Automatic Performance Analysis of Data-Parallel Fortran Prog...

