
Thread-Level Speculation for Web Applications

Jan Kasper Martinsen and Håkan Grahn
School of Computing

Blekinge Institute of Technology
Ronneby, Sweden
{jkm,hgr}@bth.se

Abstract

Thread Level Speculation (TLS) has been suggested as a
mean to automatically (or semi-automatically) extract par-
allelism from sequential programs. While there have been
multiple attempts both in hardware and software to imple-
ment real time TLS, to the best of our knowledge all attempts
have so far been on a byte code level or with statically typed
languages.

In this study, we examine the potential of TLS for
Web Applications, using the popular scripting language
JavaScript(JS). We have chosen to execute the programs by
traversing their parse trees, taking advantage of informa-
tion from the programming language that are normally lost
when compiled to, e.g., byte code.

We have performed a test where we automatically have
divided the execution of the parsing tree among1, 2, 4, and
8 cores for four benchmark programs. We have found that
this approach has a small number of rollbacks (i.e. er-
ror correction when speculation fails) and significantly in-
creases the performance of our benchmarks.

1. Introduction

Today we are in the middle of a paradigm shift in the
computer industry. Previous processor generations were
based on uni-processor technology. The performance in-
crease came from a steady increase in clock frequency and
architectural inventions [12]. Current and future processor
generations are based on multicore architectures, where the
performance increase are expected to mainly come from an
increasing number of cores on a chip [22]. However, in or-
der to achieve an efficient utilization of an increasing num-
ber of processor cores, the software needs to be parallel as
well as scalable [2, 19, 30].

Another important trend is that more and more applica-
tions are moved to the World Wide Web [31]. There are
several reasons for that, e.g., accessibility and mobility. In

order to develop Web Applications, new programming lan-
guages have emerged. One such language is JavaScript
[15]. JavaScript is a dynamically typed, object-based script-
ing language with run-time evaluation, and application ex-
ecution is done in a JavaScript engine. However, today
no JavaScript engine supports parallel execution of threads.
Although this will propably change in a near future, it is still
the programmer who is responsible of finding and express-
ing the parallelism.

Developing parallel applications is both time consum-
ing and error-prone, and therefore we would like to ease
the burden of the programmers. This can be done by us-
ing static analysis of sequential programs to automatically
identify parallel sections in the code, usually in static loops
[1, 6]. Another approach is to dynamically extract paral-
lelism from a sequential program using speculative meth-
ods, known as Thread-Level Speculation (TLS) or Spec-
ulative Multithreading (SpMT). TLS can be implemented
in both hardware, e.g., [8, 26, 29], and software, e.g.,
[7, 17, 21, 24, 27].

Software TLS approaches usually extract parallelism
from loops in sequential applications. A number of consec-
utive loop iterations are speculatively executed in parallel,
a data dependency check mechanism is used to detect de-
pendecy violations between reads and writes in parallel it-
erations, and finally, a roll-back mechanism is needed when
a dependency violation is detected in order to recover to an
earlier safe point. The performance potential of TLS has
been shown for applications with static loops, e.g., [18], but
there is no study that has evaluated the performance poten-
tial of TLS for dynamically typed, object-based, scripting
languages such as JavaScript.

In this paper we describe an approach to apply TLS to
dynamically typed JavaScript applications, and evaluate the
performance potential of TLS for four different JavaScript
applications. In our study, JavaScripts are executed by an
interpreter, for-loops are distributed speculatively by split-
ting the parse-tree on different interpreter cores, and data
dependency violations are detected and solved during run-



time. Our initial results show that TLS seems to be a viable
approach also for dynamically typed scripting languages.
For the studied applications we achieved both a balanced
load between the processors as well as a low number of roll-
backs.

This paper makes two main contributions:

• This is the first study that addresses how thread-level
speculation can be applied and used for a dynamically
typed scripting language. In our case we have used
JavaScript, but the approach is applicable also to other
scripting languages.

• This is the first study that presents results on perfor-
mance and execution behavior of scripting languages
when TLS methods are used.

The rest of the paper is organized as follows. Section 2
provides some background on thread-level speculation and
JavaScript Then, we present our method in Section 3. Our
experimental setup is presented in Section 4, while the ex-
perimental results are presented in Section 5. The paper
ends with the conclusions in Section 6.

2 Background

In Section 2.1 we will present the general principles of
thread-level speculation and some previous implementation
proposals. We will also discuss the JavaScript language,
that is our target in this study, in Section 2.2.

2.1 Thread-Level Speculation

2.1.1 Thread-Level Speculation Principles

Thread-level speculation (TLS) aims at dynamically ex-
tracting parallelism from a sequential program. This can
be done in many ways: in hardware, e.g., [8, 26, 29], and
software, e.g., [7, 17, 21, 24, 27]. In most cases, the main
target of the techniques is for-loops and the main idea is to
allocate each loop iteration to a thread. Then, ideally, we
can execute as many iterations in parallel as we have pro-
cessors.

There are, however, some limitations. Data dependen-
cies between loop iterations may limit the number of itera-
tions that can be executed in parallel. Further, the memory
requirements and run-time overhead for managing the nec-
essary information for detecting data dependencies can be
considerable.

Between two consecutive loop iterations we can have
three types of data dependencies:Read-After-Write(RAW),
Write-After-Read(WAR), and Write-After-Write (WAW).
Therefore must a TLS implementation be able to detect
these dependecies during run-time using dynamic informa-
tion about read and write addresses from each loop iteration.

A key design parameter here is theprecisionin the detec-
tion mechnism, i.e., at what granularity can a TLS system
detect data dependency violations. High dependence detec-
tion precision usually require high memory overhead in a
TLS implementation.

When a data dependency violation is detected the exe-
cution must be aborted and rolled back to safe point in the
execution. Thus, all TLS systems need a roll-back mecha-
nism. In order to be able to do roll-backs, we need to store
both speculative updates of data as well as the original data
values. As result, this book-keeping results in both memory
overhead as well as run-time overhead. In order for TLS
system to be efficient, the number of roll-backs shall be low.

A key design parameter for a TLS system is the data
structures used to track and detect data dependence viola-
tions. In general, the more precise tracking of data depen-
dencies, the more memory overhead is required. Unfortu-
nately, one effect of imprecise dependence detection is the
risk of false-positive violations. A false-positive violation is
when a dependence violation is detected when no actual de-
pendence violation is present. As a result, unnecessary roll-
backs need to be done, which decreases the performance.

TLS implementations can differ depending on whether
they update data speculatively ’in-place’, i.e., moving the
old value to a buffer and writing the new value directly in
memory, or in a special speculation buffer. Updating data
in-place usually result in higher performance if the number
of roll-backs is low, but lower performane when the number
of roll-backs is high since the cost of doing roll-backs is
high.

2.1.2 Software-Based Thread-Level Speculation

There exists a number of different software-based TLS pro-
posals, and we will review some of the most important ones
here.

Bruening et al. [7] proposed a software-based TLS sys-
tems that targets loops where the memory references are
stride-predictable. Further, it is one of the first techniques
that is applicable to while-loops where the loop exit condi-
tion is unknown until the last iteration. They evaluate their
technique on both dense and sparse matrix applications, as
well as on linked-list traversals. The results show speed-ups
of up to almost five on 8 processors, but also show slow-
downs for some rare cases.

Rundberg and Stenström [27] proposed a TLS imple-
mentation that resembles the behavior of a hardware-based
TLS system. The main advantage with their approach is
that it precisely tracks data dependencies, thereby minimiz-
ing the number of unnecessary roll-backs cased by false-
positive violations. However, the downside of their ap-
proach is high memory overhead. They show a speedup
of up to ten times on 16 processors for three applications

2



written in C from the Perfect Club Benchmarks [4].
Kazi and Lilja developed the course-grained thread

pipelining model [17] for exploiting coarse-grained paral-
lelism. They suggest to pipeline the concurrect execution
of loop iterations speculatively, using run-time dependence
checking. In their evalution they used four C and Fortran
applications (two were from the Perfect Club Benchmarks
[4]). On an 8-processor machine they achieved speed-ups of
between 5 and 7. They later extended their to also support
Java programs [16].

Bhowmik and Franklin [5] developed a compiler frame-
work for extracting parallel threads from a sequential pro-
gram for execution on a TLS system. They support both
speculative and non-speculative threads, and out-of-order
thread spawning. Further, their work address both loop as
well as as non-loop parallelism. Their results from 12 appli-
cations taken from three benchmark suites (SPEC CPU95,
SPEC CPU2000, and Olden) show speed-ups between 1.64
and 5.77 on 6 processors when using both speculative and
non-speculative threads.

Cintra and Llanos[11] present a software-based TLS sys-
tem that speculatively execute loop iterations in parallel
within a sliding window. As a result, given a window size
of W at mostW loop iterations/threads can execute in par-
allel at the same time. By using optimized data structures,
scheduling mechanisms, and synchronization policies they
manage to reach in average 71% of the performance of
hand-parallelized code for six applications taken from, e.g.,
the SPEC CPU2000 [28] and Perfect Club [4] Benchmark
suites.

Chen and Olukotun present in two studies [9, 10] how
method-level parallelism can be exploited using speculative
techniques. The idea is to speculatively execute method
calls in parallel with code after the method call. Their
techniques are implemented in the Java runtime paralleliz-
ing machine (Jrpm). On four processors, their results show
speed-ups of 3-4, 2-3, and 1.5-2.5 for floating point appli-
cations, multimedia applications, and integer applications,
respectively.

Picket and Verbrugge [23, 24] developed a TLS frame-
work, SableSpMT, for method-level speculation and return
value prediction in Java programs. Their solution is im-
plemented in a Java Virtual Machine, called SableVM, and
thus works mainly at the byte code level. They obtain at
most a two-fold speed-up on a 4-way multi-core processor.

Oancea et al. [21] present a novel software-based TLS
proposal that supports in-place updates. Further, their pro-
posal has a low memory overhead with a constant instruc-
tion overhead, at the price of slighty lower precision in the
dependence violation detection mechanism. However, the
scalability of their approach is superior due to the fact that
they avoid serial commits of speculative values, which in
many other proposals limit the scalability. Oancea et al.

evaluate their approach using seven applications from three
benchmark suites (SciMark2, BYTEmark, and JOlden).
The results show that their TLS approach reaches in average
77% of the speed-up of hand-parallelized, non-speculative
versions of the programs.

Kejariwal et al. [18] evaluated the performance potential
of TLS using the SPEC CPU2000 Benchmarks [28]. SPEC
CPU2000 consists of 26 applications written in C and For-
tran. They found that TLS has a mean speed-up potential of
approximately 40% over the applications in addition to the
true thread-level parallelism exploited.

A succeeding study by Prabhu and Olukotun [25] an-
alyzed what types of thread-level parallelism that can be
exploited in the SPEC CPU2000 Benchmarks. By going
through each of the application, they identified a number
of useful transformations, e.g., speculative pipelining,loop
chunking/slicing, and complex value prediction. They also
identified a number of obstacles that hinder or limit the use-
fulness of TLS parallelization.

One striking observation from all studies presented
above is that they all have worked with applications writ-
ten in C, Fortran, or Java. The Java studies have usually
been done at the bytecode level. No study have been found
that addresses the applicability and performance potential
of TLS in a dynamically-typed scripting language, such as
JavaScript.

2.2 JavaScript

An important trend in application development today is
that more and more applications are moved to the World
Wide Web [31]. There are several reasons for that, e.g.,
accessibility and mobility. Users would like to access infor-
mation located anywhere from locations anywhere. In order
to develop web applications, new programming languages
have emerged. One such language is JavaScript [15], which
has been used especially in client-side applications, i.e., in
web browsers, but are also applicable in the server-side ap-
plications.

JavaScript is a dynamically typed, object-based scripting
language with run-time evaluation. JavaScript application
execution is done in a JavaScript engine, i.e., an interpreta-
tor/virtual machine that parses and executes the JavaScript
program. Exemples of JavaScript engines are Google’s V8
engine [14], WebKit’s Squirrelfish [32], and Mozilla’s Spi-
derMonkey and TraceMonkey [20]. The performance of
these script engines have increased significantly during the
last years, reaching very high single-thread performance.
However, today no JavaScript engine supports parallel exe-
cution of threads. Although this will propably change in a
near future, it is still the programmer who is responsible of
finding and expressing the parallelism.

3



3 Method

To evaluate the effects of TLS for the JS language, we
have implemented a JS interpreter, written in the Python
programming language. The JS program is first transformed
into a prefix parse treetp, which in turn is evaluted by
traversion. We perform TLS the following way: Since we
have a parse tree structuretp, we can easily identify the
first for-loop, which would be a subtreetf ⊆ tp. Let us
assume thattf iterates from0 . . . 64. Next, we create four
copies fromtf :, t1, t2, t3 andt4 and modify each of them so
they iterate from0 . . . 16, 16 . . .32, 32 . . .48 and48 . . .64
respectively.

“a”

“a” “b”

^

“=”

Figure 1. A parse tree for the expression a =
a ∧ b.

There is obviously a potential for name conflicts when
running this concurrently, so we rename each of the vari-
ables that are declared in the body and in the for-loop (Fig-
ure 2), thereby reducing the chance of such conflicts, which
in turn would require us to do rollbacks.

“a”

“a” “b”

^

“=”

“a0”

“a0” “b0”

^

“=”

“a1”

“a1” “b1”

^

“=”

“a2”

“a2” “b2”

^

“=”

Figure 2. The four subtrees with renamed
nodes.

Python is suitable for rapid prototyping, however it lacks
proper support for threads which is the most common mech-
anism used in TLS. Therefore we simulate concurrency and
we have chosen the following strategy to do so: Let us as-
sume that we want to simulate a system of4 processors.
To be able to trace the interaction between the variables de-
fined in the trees, we use the following technique to extract
the traversion of the parse tree. For instance consider the
tree in Figure 1. From the traversion of this tree we could
generated the following Python program

mem["a"] = mem["a"] ˆ mem["b"]

The generated program can in turn be executed, and will
(in our cases) create indential results as executing the parse
tree by traversion.

Next, assume that the parse tree in Figure 1 is the body
of the for-looptf , that we will divide among4 processors.

We traverse each of the four trees in turn, node by node.
Each time we read from a variable, we first check if the
current processor was the last to write to that variable. We
name this operation memory access. This information is
stored in a hashlistumem that contains the variable name,
and the number of the process that modified the variable
last. If this equals the process that currently tries to read
from the variable, we write the process number toumem,
if not we perform a rollback. This is done inside the method
conflict, that checks if the variables we are about to read
from have been written to by the same process as the pro-
cess that is about to read them. We try to combine the trees,
such that each process is executing in turn, however this
might not always be possible, since the output from the
parse trees might vary in size. If this is the case, where
one tree is larger than the others we do the following: Try
executing the trees in turn, and when one of the other trees
are completed, we continue to execute the remaining trees.

#check for conflict
if(conflict(["a","b"],umem,processor0):

#if a conflict is detected, a rollback performed
rollback()

#perform the actual calculation
mem["a"] = mem["a"] ˆ mem["b"]
#assosiate the variable with the current processor
umem["a"] = processor0
if(conflict(["a0","b0"],umem,processor1):

rollback()
mem["a0"] = mem["a0"] ˆ mem["b0"]
umem["a0"] = processor1
if(conflict(["a1","b1"],umem,processor2):

rollback()
mem["a1"] = mem["a1"] ˆ mem["b1"]
umem["a1"] = processor2
if(conflict(["a2","b2"],umem,processor3):

rollback()
mem["a2"] = mem["a2"] ˆ mem["b2"]
umem["a2"] = processor3

This simulation disregards numerous important factors
in TLS, such as problems related to synchronizations, how-
ever it gives us an indication of the number of rollbacks
required, which is important for the performance when op-
timizing with the TLS.

4 Experimental Setup

To evaluate our TLS for JS, we use the following pro-
grams;8queens, fibonacci, fractal and raytrace.8queens is
a solver for8queens puzzle, fibonacci writes the fibonacci
sequence forn = 100, fractal draws a mandelbrot fractal,

4



and raytrace is a simple Whitted based raytracer that draws
a scene consisting of nine spheres and a plane. Common for
these programs is that they consist of one or more for-loops,
and all of them can be easily paralellized manually.

Table 1. Benchmark programs used in the
study.

Program Description Data set size
Fibonacci Fibonacci sequence n = 100
Fractal Mandelbrot fractal n = 1500
Raytrace Whitted raytracer 9 spheres and a plane
8queen 8-queens puzzle n = 8

We have performed the following experiments: We have
divided the first for-loop into2, 4 and 8 subtrees. This
happens the following way; We generate a program from
the parse tree, where each processor execute in a round-
robin manner. The generated program is measured, and
we measure the number of rollbacks along with the num-
ber of memory accesses required during its execution. In
addition we have looked at how the workload is divided be-
tween the processors, for the various execution scenarios.
We have also defined a potential of speed up by the fol-
lowing formulamemoryaccesses/((memoryaccesses +
rollbacks)/processors)

5 Experimental Results

5.1 Fibbonacci

We start by analyzing the results from Fibbonacci. We
see from Table 2, that the results seem to evenly distributed
among the processors for2 and4 processors, however not
for 8. From the description, we recall thatn was equal to
100, which obviously is divisible by2 and4, however not
by 8. (Which would mean that we would divide the for-
loops ranging from12,13,12,13,12,13,12and13 iterations),
thereby seeing the unevenly distribution in Figure 3.

There is also a quite large number of rollbacks;197 for
1219 memory accesses, as shown in Table 2. We also ob-
serve that the number of rollbacks increases with the num-
ber of processors. We can explain this in the following way:
The number of variable name conflicts increases with the
number of processors. However, the number of rollbacks
does not double with the number of processors (from2 to 4,
the number of rollbacks increases by a factor of0.185, from
4 to 8 the number of rollbacks increases with0.344). The
rollbacks for the Fibonacci case are linked to the construc-
tion of the Fibonacci program, where there are two variables

 0

 50

 100

 150

 200

p0 p1 p2 p3 p4 p5 p6 p7

m
e

m
o

ry
 a

cc
e

ss
e

s

processors

Fibonacci divided on 8 processors

!bonacci

Figure 3. Fibonacci divided on 8 processors.

that are constantly manipulated, but not declared in the for-
loop.

5.2 Fractal

The next application we have studied is Fractal, which
calculates a Mandelbrot Fractal set. We see in Table 2 that
Fractal has a low number of rollbacks, and that the number
of rollbacks increases only by2 from4 to8 processors. This
can be explained in two ways; All the variables manipulated
inside the for-loop is declared inside the for-loop, and with
our renaming routine these variables becomes unique, min-
imizing the chance for name conflicts, which in turn would
require a rollback. The workload of Fractal isn’t evently
distributed among the processors. This can be seen in the
graphs in Figure 4 and Figure 5, where we see that proces-
sor p3, p4 andp5 andp1 andp2 accounts for most of the
work. This can be explained the following way; Large field
of black color indicates areas in the Fractal where the value
converges to infitity. This can be seen in Figure 6 together
with Figure 4, where we see that column assosiated withp2
contains the largest black field in the image, thereby requir-
ing p2 to do most of the work.

To remedee this problem, we have tried the following
strategy: divide the two for-loops for the fractal program re-
cursively. We start by dividing the outer for-loop in4, then
each for-loop in the body of the other for-loop in4. For the
fractal program, this creates16 for-loop subtrees. When we
measure the amount of work performed, it is much more
evently distributed (Figure 8) than by just dividing the outer
for-loop. We can also combine them so it is suitable for a
smaller number of processors, however since we are testing
it on a larger number of processors, tests show that this re-
quires a somewhat larger number of rollbacks. To be able
to compare we recursively divide for-loop in2 (using a to-

5



Table 2. The number of rollbacks and read memory statements for 2, 4 and 8 processors.

2 processors 4 processors 8 processors
Program rollbacks mem.access speed-uprollbacks mem.access speed-uprollbacks mem.access speed-up
Fibonacci 197 1219 1.72 242 1223 3.33 369 1231 6.15

Fractal 7 209944 1.99 46 209944 3.99 48 209944 7.99
Raytrace 7124 593927 1.97 18921 593927 3.87 33123 593927 7.57
8queen 0 8053522 2 0 8053522 4 0 8053522 8

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

p0 p1 p2 p3

m
e

m
o

ry
 a

cc
e

ss
e

s

processors

Fractal divided on 4 processors

fractal

Figure 4. Fractal divided on 4 processors.

tal of 4 processors). Evaluating the program required57
rollbacks, which is11 more than in Table 2. However, if
we view how the work is distributed among the processors,
with a standard deviation, we find that the standard devia-
tion for the processors in Figure 4 is74127.3 against407.4
for Figure 7.

5.3 Raytrace

The Raytrace application performs Whitted-based ray-
tracing of scene with 9 spheres and one plane. We see in
Figure 9 that the work distribution of2 processors for the
raytracer program is quite even. We suspect that this is due
to that the raytraced image is almost symmetrical. The ray-
tracer has a quite large number of rollbacks, which we sus-
pect could be caused by the recursive calls to simulate re-
flection. There is also a larger number of writes to global
variables inside the for-loop. This symmetry does however
not apply when we increase the number of processors to4
and8. From Figure 10, we see that there is a larger number
of reflections (indicated by the arrow) for processorp1 and
p2, which again requiresp1 andp2 to do a larger number of
recursive calls thanp1 andp2.

 0

 20000

 40000

 60000

 80000

 100000

 120000

p0 p1 p2 p3 p4 p5 p6 p7

m
e

m
o

ry
 a

cc
e

ss
e

s

processors

Fractal divided on 8 processors

fractal

Figure 5. Fractal divided on 8 processors.

5.4 8queens

The final application that we have studied is8queen,
which solves the problem of putting8 queens on an8 × 8
chess board such that none of them is able to capture any
other queen. We see from Table 2 that dividing the outer
loop in 2, 4 and8 creates no rollbacks for the8queen pro-
gram. We suspect that this is because there is no outer vari-
ables defined, and there is no dependency between the vari-
ables in various for-loops. (The program is constructed as a
total of eight nested for-loops).

6 Conclusions

Web Applications are an emerging application domain,
enabling information and services to be accessible from
everywhere. New languages, e.g., JavaScript [15], have
emerged to support this development. Although a number
of high-performing JavaScript engines exist, e.g., V8 [14],
Squirrelfish [32], and SpiderMonkey [20], none of them ex-
ploit parallelism in order to enhance the performance.

In this paper we have simulated how thread-level specu-
lation (TLS) might be used to increase the performance of a

6



Figure 6. Graphical image for Fractal divided
on 4 processors.

dynamically typed, scripting language, i.e., JavaScript.To
the best of our knowledge, this is the first study of using
TLS for this type of languages. Our approach is based on
an interpreter that speculatively split up the parse tree into
several parallel entities that can be executed in parallel.

This study gave some hints of the potential of TLS in
a Web Application context. We will continue our work by
adding TLS functionality into a more established javascript
interpretator.

Acknowledgement

This work was partly funded by the Industrial Excellence
Center EASE - Embedded Applications Software Engineer-
ing, (http://ease.cs.lth.se).

References

[1] V. Adve, J. Mellor-Crummey, M. Anderson, K. Kennedy,
J. Wang, and D. Reed. An integrated compilation and per-
formance analysis environment for data parallel programs.
In Proceedings of Supercomputing ’95, pages 1370–1404,
November 1995.

[2] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Hus-
bands, K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf,
S. W. Williams, and K. A. Yelick. The landscape of parallel
computing research: A view from berkeley. Technical Re-
port UCB/EECS-2006-183, EECS Department, University
of California, Berkeley, Dec 2006.

[3] I. M. Author. Some related article I wrote.Some Fine Jour-
nal, 99(7):1–100, January 1999.

 0

 500

 1000

 1500

 2000

 2500

 3000

p0 p1 p2 p3

m
e

m
o

ry
 a

cc
e

ss
e

s

processors

Fractal recursively divided, mapped onto 4 processors

fractal

Figure 7. Fractal where we divide the for-
loops recursively on 4 processors.

[4] M. Berry, D. Chen, P. Koss, D. Kuck, S. lo, Y. Pang,
R. Roloff, A. Sameh, E. Clementi, S. Chin, D. Schneider,
G. Fox, P. Messina, D. Walker, C. Hsiung, J. S. adn K. Lue,
S. Orzag, F. Seidl, O. Johnson, G. Swanson, R. Goodrun,
and J. Martin. The PERFECT Club Benchmarks: Effective
performance evaluation of supercomputers. Technical Re-
port CSRD-827, Center for Supercomputing Research and
Development, Univ. of Illinois, Urbana-Champaign, May
1989.

[5] A. Bhowmik and M. Franklin. A general compiler frame-
work for speculative multithreading. InSPAA ’02: Proceed-
ings of the fourteenth annual ACM Symposium on Paral-
lel Algorithms and Architectures, pages 99–108, New York,
NY, USA, 2002. ACM.

[6] W. Blume, R. Doallo, R. Eigenmann, J. Grout, J. Hoe-
flinger, T. Lawrence, J. Lee, D. Padua, Y. Paek, B. Pottenger,
L. Rauchwerger, and P. Tu. Parallel programming with po-
laris. Computer, 29(12):78–82, 1996.

[7] D. Bruening, S. Devabhaktuni, and S. Amarasinghe. Soft-
spec: Software-based speculative parallelism. InFDDO-
3: Proceedings of the 3rd ACM Workshop on Feedback-
Directed and Dynamic Optimization, 2000.

[8] S. Chaudhry, R. Cypher, M. Ekman, M. Karlsson,
A. Landin, S. Yip, H. Zeffer, and M. Tremblay. Rock:
A High-Performance Sparc CMT Processor.IEEE Micro,
29(2):6–16, 2009.

[9] M. K. Chen and K. Olukotun. Exploiting method-level par-
allelism in single-threaded java programs. InPACT ’98:
Proceedings of the 1998 International Conference on Par-
allel Architectures and Compilation Techniques, page 176,
Washington, DC, USA, 1998. IEEE Computer Society.

[10] M. K. Chen and K. Olukotun. The Jrpm system for dynami-
cally parallelizing Java programs. InISCA ’03: Proceedings
of the 30th Annual International Symposium on Computer
Architecture, pages 434–446, New York, NY, USA, 2003.
ACM.

7



 0

 100

 200

 300

 400

 500

 600

 700

 800

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10p11p12p13p14p15

m
e

m
o

ry
 a

cc
e

ss
e

s

processors

Fractal recursively divided, mapped onto 16 processors

fractal

Figure 8. Fractal where we divide the for-
loops recursively on 16 processors.

[11] M. Cintra and D. R. Llanos. Toward efficient and robust
software speculative parallelization on multiprocessors. In
PPoPP ’03: Proceedings of the ninth ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Program-
ming, pages 13–24, New York, NY, USA, 2003. ACM.

[12] J. Emer, M. D. Hill, Y. N. Patt, J. J. Yi, D. Chiou, and
R. Sendag. Single-threaded vs. multithreaded: Where
should we focus?IEEE Micro, 27(6):14–24, Nov/Dec 2007.

[13] A. N. Expert. A Book He Wrote. His Publisher, Erewhon,
NC, 1999.

[14] Google. V8 javascript engine, 2009.
http://code.google.com/p/v8/.

[15] JavaScript, 2009. http://en.wikipedia.org/wiki/JavaScript.
[16] I. H. Kazi and D. J. Lilja. Javaspmt: A speculative thread

pipelining parallelization model for java programs. In
IPDPS’00: Proceedings of the 14th International Paral-
lel and Distributed Processing Symposium, page 559, Los
Alamitos, CA, USA, May 2000. IEEE Computer Society.

[17] I. H. Kazi and D. J. Lilja. Coarse-grained thread pipelining:
A speculative parallel execution model for shared-memory
multiprocessors. IEEE Transactions on Parallel and Dis-
tributed Systems, 12(9):952–966, 2001.

[18] A. Kejariwal, X. Tian, W. Li, M. Girkar, S. Kozhukhov,
H. Saito, U. Banerjee, A. Nicolau, A. V. Veidenbaum, and
C. D. Polychronopoulos. On the performance potential of
different types of speculative thread-level parallelism.In
ICS ’06: Proceedings of the 20th Annual International Con-
ference on Supercomputing, page 24, New York, NY, USA,
2006. ACM.

[19] R. McDougall. Extreme software scaling.Queue, 3(7):36–
46, 2005.

[20] Mozilla. What is spidermonkey?, 2009.
http://www.mozilla.org/js/spidermonkey/.

[21] C. E. Oancea, A. Mycroft, and T. Harris. A lightweight in-
place implementation for software thread-level speculation.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

p0 p1

m
e

m
o

ry
 a

cc
e

ss
e

s

processors

Raytracer divided on two processors

raytracer

Figure 9. Raytrace divided on 2 processors.

In SPAA ’09: Proceedings of the twenty-first annual sympo-
sium on Parallelism in algorithms and architectures, pages
223–232, New York, NY, USA, August 2009. ACM.

[22] K. Olukotun and L. Hammond. The future of microproces-
sors.Queue, 3(7):26–29, 2005.

[23] C. J. F. Pickett and C. Verbrugge. SableSpMT: a software
framework for analysing speculative multithreading in java.
In PASTE ’05: Proceedings of the 6th ACM SIGPLAN-
SIGSOFT workshop on Program analysis for software tools
and engineering, pages 59–66, New York, NY, USA, 2005.
ACM.

[24] C. J. F. Pickett and C. Verbrugge. Software thread levelspec-
ulation for the java language and virtual machine environ-
ment. InLCPC ’05: Proceedings of the 18th International
Workshop on Languages and Compilers for Parallel Com-
puting, pages 304–318, Berlin / Heidelberg, October 2005.
Springer. LNCS 4339.

[25] M. K. Prabhu and K. Olukotun. Exposing speculative thread
parallelism in SPEC2000. InPPoPP ’05: Proceedings of the
tenth ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, pages 142–152, New York,
NY, USA, 2005. ACM.

[26] J. Renau, K. Strauss, L. Ceze, W. Liu, S. R. Sarangi, J. Tuck,
and J. Torrellas. Energy-efficient thread-level speculation.
IEEE Micro, 26(1):80–91, 2006.

[27] P. Rundberg and P. Stenström. An all-software thread-
level data dependence speculation system for multiproces-
sors. Journal of Instruction-Level Parallelism, pages 1–28,
2001.

[28] Standard Performance Evaluation Corporation. SPEC
CPU2000 v1.3, 2000. http://www.spec.org/cpu2000/.

[29] J. G. Steffan, C. Colohan, A. Zhai, and T. C. Mowry. The
STAMPede approach to thread-level speculation.ACM
Transactions on Computer Systems, 23(3):253–300, 2005.

[30] H. Sutter and J. Larus. Software and the concurrency revo-
lution. Queue, 3(7):54–62, 2005.

[31] W3C. World wide web consortium, 2009.
http://www.w3c.org/.

8



Figure 10. Raytrace divided on 4 processors.

[32] WebKit. The webkit open source project, 2009.
http://www.webkit.org/.

9


