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Abstract

With an estimated installation base of around 1 billion units, the
Java J2ME platform is one of the largest development targets avail-
able. For mobile devices, J2ME is often the only available environ-
ment. For the very large body of software written in C other lan-
guages, this means difficult and costly porting to another language
to support J2ME devices.

This paper presents the Cibyl programming environment which
allows existing code written in C and other languages supported by
GCC to be recompiled into Java bytecode and run with close to na-
tive Java performance on J2ME devices. Cibyl translates compiled
MIPS binaries into Java bytecode. In contrast to other approaches,
Cibyl supports the full C language, is based on unmodified stan-
dard tools, and does not rely on source code conversion. To achieve
good performance, Cibyl employs extensions to the MIPS architec-
ture to support low-overhead calls to native Java functionality and
use knowledge of the MIPS ABI to avoid computing unused val-
ues and transfer unnecessary registers. An evaluation on multiple
virtual machines shows that Cibyl achieves performance similar to
native Java, with results ranging from a slowdown of around 2 to a
speedup of over 9 depending on the JVM and the benchmark.

Categories and Subject Descriptors D.2.6 [Programming Envi-
ronments]; D.2.7 [Distribution, Maintenance, and Enhancement):

Portability; D.2.12 [Interoperability]
General Terms Languages, Measurement, Performance

Keywords
translation

J2ME, Portability, Programming environment, binary

1. Introduction

The Java 2 Platform, Microedition (J2ME) [21] has become practi-
cally ubiquitous among mobile phones with an estimated installa-
tion base of around 1 billion units [18]. J2ME provides a royalty-
free development environment where it is possible to extend the
capabilities of mobile phones and other embedded systems through
Java. J2ME is often the only openly available environment for ex-
tending mobile phones, and developers writing software to J2ME-
capable embedded devices are therefore locked to the Java lan-
guage. When porting existing software written in languages such
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as C or C++ to J2ME devices, the development environment can
require a complete rewrite of the software package. Developers are
then faced with either porting their code to another language, or
use automated tools [5, 10, 13, 14] which may generate code which
is difficult to modify, require manual fixes and can sometimes be
inefficient. Even when implementing new projects for J2ME, Java
might not always be the preferred language. For example, devel-
oper language experience, personal preferences, availability of ex-
isting libraries or co-development for other targets might favor new
implementations in other languages.

In this paper, we present the Cibyl programming environment
which allows existing code written in C and other languages to be
recompiled as-is or with small modifications into Java bytecode and
run on J2ME devices. Performance of the recompiled code can be
close to native Java implementations and with modest space over-
head. In contrast to other approaches [3], Cibyl supports the full
C language, and support for C++ and other languages require only
library extensions. Cibyl is not a compiler, but instead relies on the
GCC [20] compiler to produce a MIPS binary. Cibyl does a static
binary translation of a MIPS executable into Java bytecode, and
provides a runtime library to support execution in the Java envi-
ronment. Compared to writing a backend for GCC which directly
generates Java bytecode, the Cibyl approach allows for a lower ini-
tial effort and also removes the burden of long-time maintenance
of the backend. Using unmodified standard tools also means that it
automatically benefits from tool improvements.

The main contributions of the paper are the following. First, we
show how C programs can be recompiled into Java bytecode and
identify problematic areas. Second, we show that knowledge about
the compiled code and the ABI (Application Binary Interface) can
be utilized to generate more efficient bytecode. Third, we illustrate
how extensions to the MIPS architecture can be used to provide
efficient calls to native Java methods.

The rest of the paper is structured as follows. Section 2 describes
the technology used in Cibyl. Section 3 presents an evaluation of
the generated code in terms of performance and size. Thereafter,
Section 4 describes related work, and finally Section 5 presents
conclusions and future research.

2. Technology

Cibyl targets the MIPS I [11], only using instructions available
in user-space. Compared to many other architectures, MIPS pro-
vides a number of advantages for efficient binary translation. First,
regular loads and stores are always done on aligned addresses,
which simplifies memory handling in Java. Second, MIPS uses the
general-purpose register set for almost all operations and does not
have implicitly updated flag registers, which allows a straightfor-
ward translation of most arithmetic instructions. Third, MIPS only
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Figure 1. The compilation process. Gray boxes show third-party tools and white boxes are implemented in Cibyl.

does partial register updates for the seldom used unaligned memory
accesses instructions.

To achieve good performance of the translated binaries, we
place a number of soft restrictions on the generated code and
add extensions to the architecture. In particular we focus on good
performance of 32-bit memory accesses and operations on signed
32-bit values, which are easier to support efficiently since Java has
no unsigned types. We have also made use of extensions to the
MIPS ISA, which is possible since the generated code targets a
virtual machine and does not need to run on actual hardware.

Cibyl builds on the GNU toolchain [20], which we use to pro-
duce the MIPS binaries in a translation-friendly format. GCC is
used to compile the C source for the MIPS I instruction set, which
is thereafter linked using GNU 1d. We use GCC and 1d options to
simplify certain operations. For example, we turn off the genera-
tion of explicit checks for integer division by zero, which is not
needed in Java bytecode where the instruction throws a divide-by-
zero exception. Further, we always work on static executables and
therefore disable the generation of position-independent code. The
data and read-only data sections from the ELF binary is placed in a
file which the runtime system loads into memory on startup. Cibyl
uses five steps to compile C source code into a J2ME JAR-file, il-
lustrated in Figure 1:

1. The C source is compiled and linked with GCC using the Cibyl
headers and libraries.

2. The API to Java/J2ME (defined in a C header-file) and the
compiled program is passed to another tool that generates a Java
source file containing wrappers for system call stubs. The set of
system calls used by a program is known at compile time by
feeding back the compiled program to the tool and only needed
stubs are generated.

3. The cibyl-mips2java tool recompiles the linked program
from step 2 into Java assembly.

4. The Jasmin [15] assembler compiles the Java assembly into a
class file

5. The regular Java compiler compiles the generated system call
wrappers and runtime support files

6. Finally, the compiled class-files are preverified and combined
by the Java archiver to a downloadable JAR file. The preverifi-
cation step is needed for J2ME programs since the verification
capabilities of the mobile JVM is limited.

21

We use a linker script to link the text segment high up in the mem-
ory and the initialized and uninitialized data starting at address
zero. The translated text segment cannot be addressed, and is there-

Memory Access
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fore not loaded into memory. Figure 2 shows the address space in
Cibyl. During startup, a configurable portion of the Java heap is al-
located to the Cibyl program. The stack pointer is setup to the end
of the address space, and the heap starts after the uninitialized data.
The heap manager is a standard malloc/free implementation written
in C.

We strive to provide efficient 32-bit memory accesses while
accepting a performance cost for 8- and 16-bit accesses. Memory
is therefore represented as an integer-vector, which means that 32-
bit loads and stores can be performed by indexing this vector. As
the mapped data starts at address O and is contiguous from there,
the computed address can be used directly as an index after right-
shifting it by 2. Figure 3 shows translation of memory accesses.

To further improve the performance of 32-bit memory accesses,
we allocate extra registers to optimize multiple memory accesses
where the base address register stays the same. The key is that
since the base address is constant, the right-shift performed to
translate the address into a Java vector index need only be done
once. The analysis is done on basic blocks, and replaces registers
if there are more than two accesses to a constant address (shown
in the right part of Figure 3). With these optimizations, each 32-bit
memory access can be done with between 4 and 8 Java bytecode
instructions.

8- and 16-bit memory loads and stores also operate on the mem-
ory integer-vector, but require more work. For example, a store byte
operation must first load the 32-bit word from the memory vector,
mask out the requested byte, shift the value to be stored to the cor-
rect byte address and perform a bitwise or to update the memory
location. Signed loads (with the MIPS 1b and 1h instructions) also
need sign-extension. 8- and 16-bit accesses generate between 20-
42 bytecode instructions, depending on the sign and size. To save
space, these accesses are performed through functions in the run-
time support.

2.2 Code Generation

The MIPS binaries are translated by the cibyl-mips2java tool to
Java bytecode assembly, which is thereafter assembled into byte-
code by the Jasmin assembler [15]. The tool produces one class,
which is split up in one method per C function for the recompiled
code. During parsing, nop instructions and unused functions are
discarded and instructions in delay slots are appended to the branch
instruction.

We use local Java variables to store registers to improve JVM
optimization [6] and produce more compact bytecode. The MIPS
hi and 1o registers, which are used to store results from multipli-
cations and divisions, are stored in static variables since these must
sometimes be performed in the runtime support. Normal arithmetic
instructions require between 2 and 4 bytecode instructions, but we
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Figure 3. Cibyl memory accesses. The left part shows normal memory accesses and the right part shows memory accesses using the special

memory registers.

simplify cases where Java bytecode instructions permit a more ef-
ficient translation (e.g., addi when used to increase a register by a
constant).

We do a number of optimizations on the recompiled code. First,
by retaining the relocation information in the MIPS executable, we
are able to produce a smaller output binary. The relocation informa-
tion allows discarding of unused functions (functions which have
no entries in the relocation tables), which is not done by the GNU
linker. Second, we use architectural extensions to make calls to na-
tive Java functionality efficient, which is described in more detail in
Section 2.5. Third, by employing knowledge of the MIPS ABI [17]
and the program structure, we are able to translate problematic in-
structions more efficiently.

There are four groups of MIPS instructions that are problematic
to translate: instructions for unaligned memory access, instructions
dealing with unsigned values, 8- and 16-bit load/stores, and multi-
plication and division. Unaligned memory access is uncommon in
most programs since it is inefficient also on native hardware. We
therefore handle these instructions by invoking methods in the run-
time environment. Operations on unsigned values are also handled
in the runtime where needed, e.g., for multiplications.

Multiplication is problematic because the MIPS mult instruc-
tion generates a 64-bit result split between the special hi/lo regis-
ters. In Java, translating mult means promotion of the argument to
the type long, performing a 64-bit multiplication, right-shifting the
high part of the result into a temporary and then converting both re-
sults back to integers and storing in hi and 1lo. The runtime support

7

for division and multiplication require 9-38 bytecode instructions.
For the common case of signed operations where only the low 32-
bits are used, we can most of the time perform the operation in the
same way as other arithmetic instructions. We do this by omitting
the computation of the hi value for functions which only read the
1o value. This can be done because the ABI specifies that function
results are never passed in the hi or 1o registers.

A custom peephole optimizer runs on the translated code to
remove optimize some inefficiencies in the generated bytecode.
This primarily helps with removing extra stores to registers (Java
local variables), which are needed in MIPS code but which can be
kept on the Java computation stack in Java bytecode.

2.3 Floating point support

Cibyl supports floating point, but does not implement translation of
the MIPS floating point unit instructions. Compared to the general-
purpose instruction set, the floating point instructions are more dif-
ficult to translate efficiently. Many of the floating point instructions
have side effects on status registers, and while this can often can be
handled lazily as done in FX!32 [9], it complicates the implemen-
tation. A further problem is that double-precision operations use
pairs of single-precision registers, which makes it difficult to store
registers in Java local variables and instead requires expensive con-
version.

Cibyl supports floating point operations through a hybrid ap-
proach where we utilize the GCC software floating point sup-
port, but implement it using Java floating point operations, utiliz-



typedef union {
float f; wuint32_t i;
} float_union_t;
float __addsf3(float _a, float _b) {
float_union_t a, b, res;

public static int
float a

float b

a.f = _a; b.f = _b;
res.i = __addsf3_helper(a.i,b.i);

}

return res.f;

_addsf3_helper(int _a, int _b) {

= Float.intBitsToFloat(_a);
= Float.intBitsToFloat (_b);

return Float.floatToIntBits(a + b);

Figure 4. Cibyl floating point support. The left part of the figure shows the C runtime support, the right part shows the Java implementation

of the operation

ing hardware support where available. Figure 4 illustrates how the
floating point support works in Cibyl. When compiling for soft-
floats, GCC generates calls to runtime support functions for float-
ing point operations, e.g., _adds£3 to add two float’s. The Cibyl
implementation of __addsf3 is shown on the left part of Figure 4,
and is simply a call to a Java helper function which is shown on
the right part of the figure. The Java implementation will parse the
integer pattern as a floating point number (usually just a move to a
floating point register), perform the operation and return the result-
ing integer bit-pattern. This structure requires only runtime support
and no changes to the binary translator.

2.4 Function calls

MIPS has two instructions for making procedure calls, jal which
calls a statically known target address, and jalr which makes a
register-indirect call. Both these instructions store the return ad-
dress in the ra register. Cibyl maps C functions to static Java meth-
ods and makes use of the MIPS ABI [17] to provide better perfor-
mance and smaller size of the generated code. We disable the GCC
optimization of tail calls so that all calls are either done through
jal or jalr instructions. For statically known call targets, Cibyl
will then generate a normal Java call to a static method. As an op-
timization, we only pass registers which are actually used by the
function and likewise only return values from functions that mod-
ify return registers in the ABI.

Keeping the register state in local variables and a one-to-one
mapping of C functions to Java methods provides some benefits.
Of the 32 general-purpose MIPS registers, only at most seven are
transfer state between functions with the MIPS ABI. These are the
stack pointer sp, the four argument registers a0—a3 and the two
registers for return values. Other registers are either free to use by
the target function or must be preserved. The storing and restoring
of the preserved registers in the function prologue and epilogue
can be optimized away since each Java method has a private local
variable scope.

Since Java bytecode does not allow calls to computed targets,
we handle the jalr instruction differently. The register-indirect
calls are handled through passing the address to a generated static
method which looks up the target function address in a lookup ta-
ble and invokes the corresponding function. While MIPS branch in-
structions with statically known addresses have corresponding Java
bytecode instructions, register-indirect branches (used by GCC for
example to optimize switch-statements) pose the same problem as
the jalr instruction. We also solve this problem in the same way,
by a method-local lookup table with possible branch targets in the
function. The binary translator use the relocation information and
scans the data segment for possible branch targets within the func-
tion.
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Figure 5 illustrates how indirect function calls work in Cibyl.
The code involves two functions, main and printf where main
calls printf through the register-indirect jalr instruction. The in-
direction is handled via the special globaltab method for indirect
calls.

2.5 Calls to Native Java Methods

Using extensions to the MIPS architecture, Cibyl allows for effi-
cient invocation of system calls. In most operating systems, system
calls are invoked through a register-indexed table and uses fixed
registers for arguments. This approach is suboptimal for two rea-
sons. First, the compiler cannot freely schedule registers around
the system calls. Second, the invocation is done through a lookup-
table, which takes space in the executable and is slower than calling
statically known addresses. This effect is aggravated in Java since
indirect function calls are not allowed.

We have implemented an efficient scheme to allow native Java
functionality to be invoked with close to zero overhead. We achieve
this by using special instruction encodings for passing system call
arguments and invoking Java methods, which is possible since
we are not bound by the restrictions imposed by the pure MIPS
instruction set. Technically, the implementation uses the ability of
GCC inline assembly to emit register numbers into the generated
code.

Figure 6 show the extended MIPS instructions generated for a
sequence of instructions which use native Java functionality. Only
the return value is fixed to a register (v0), otherwise the compiler
is able to schedule registers freely. The get_image method call
uses a constant argument, which is assigned to a temporary register.
Since the registers can be chosen freely, the return value of the first
method call (in v0) is directly used as an argument to the second
call (new_sprite). The system call invocations are translated into
calls of static Java methods in the generated system call wrappers.

2.6 Runtime Support

To support integration with native Java, Cibyl allows passing Java
objects to and from C code via integer handles. The runtime envi-
ronment keeps a registry with mappings between Java objects and
handles. Objects are always accessed through the registry.

The C API to access native Java classes is semi-generated,
with only the C function prototype being added manually. The C
API is structured so that the Java class name and method name
can be extracted from the name of the prototype and the Cibyl
tools generate accesses to Java objects through the object registry.
There are a few cases where the automatic generation of system
call wrappers doesn’t work, e.g., when passing Java arrays or Java
implementations of ANSI C functionality. For these, the Cibyl tools
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Figure 5. Handling of indirect function calls in Cibyl

la t0, string_address

syscall_argument t0

syscall_invoke 35 (get_image)

syscall_argument vO0 # p—>sprite =
syscall_invoke 20 (new_sprite)

sw v0,12(a0)

# image = get_image("/test.png")

new_sprite(image) ;

Figure 6. System call handling in Cibyl

also support inserting manual implementations of the system call
wrappers.

We also implemented a subset of the ANSI C environment with
file operations, heap management, most string operations and float-
ing point functions for trigonometry etc. Most of this is imple-
mented in plain C, with helper functions in Java. This is provided
as a libc.a library file, but since unused functions are pruned it
does not add more to the binary size than needed.

3. Evaluation

The Cibyl tools are written in Python, with support libraries for
the compiled programs written in C, and the runtime environment
in Java. Since we have utilized standard tools whenever possible
(e.g., to read and parse ELF files and compile Java assembly to
bytecode), the Cibyl tools themselves are fairly small. The tools
totally comprise around 3200 lines of code including comments,
of which 2600 lines implements the binary translator and the rest
implements the generation of system call wrappers and C headers
for the system calls.

The runtime support consists of 357 lines of Java code (includ-
ing comments) and less than 100 lines of C and assembly code
(which sets up the environment and calls global constructors). Most
of the runtime code implements support for byte and short-sized
memory access and the object registry. In addition, the ANSI C en-
vironment is currently 1297 lines of C code 368 lines of Java and
the soft-float implementation consists of 357 lines of C code and
372 lines of Java.

We have so far ported a number of applications to Cibyl, in-
cluding several games. For some of these, we have ported the ap-
plications to the J2ME C API, and the porting effort then varies
depending on how well the API maps to the J2ME API. For oth-
ers, we have instead left the applications completely untouched and
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instead implemented the API in Java as a system call set or in C,
using the J2ME API. In most cases, the porting process has been
straightforward, mostly consisting of adapting the build system to
Cibyl and reimplementing the API-dependent parts for graphics,
sound and keyboard input.

The largest Cibyl application we know of is RoadMap [19], a
GPS navigation software which was previously available for UNIX
and PocketPC platforms. RoadMap uses the Cibyl syscall facilities
quite extensively, since the bluetooth GPS support uses an external
Java library, and also employs a lot of floating point operations.
The RoadMap implementation consists of around 40000 lines of C
code and 1300 lines of Java and was completely implemented by
an external developer.

3.1 Benchmarks

To see the performance and code size impact compared to native
Java we have implemented a number of benchmarks both in Java
and in C. The benchmarks are implementations of the Game of
Life and the A* algorithms. Both benchmarks are implemented in
a Cibyl-friendly way, i.e., using 32-bit values for data accessed in
the critical path. We measure the time it takes to run the actual algo-
rithm, disregarding startup time. The benchmarks were executed on
a 600MHz Intel Pentium M processor running Debian GNU/Linux.
The time is the average of 10 runs.

We also ran two of the benchmarks from the Mediabench bench-
mark suite [12], ADPCM and PEGWIT. ADPCM is a speech com-
pression benchmark and PEGWIT performs public key encryption
and authentication. We limited the selection to these two since
many of the benchmarks in the suite uses floating point operations,
which is currently stabilizing in Cibyl. These benchmarks compare
the native C implementation to the recompiled Cibyl version and
we measure only the execution of the actual algorithm (startup time
is disregarded).



Cibyl bytes
Benchmark Lines of code  (program/syscalls/C runtime) | Java bytes | MIPS bytes
Life 115 7882 /3806 /5394 1853 5204
A* 879 13205 /3619 /5394 21897 6836
ADPCM 788 11029 / 4486 /5394 5572
PEGWIT 7175 83858 /5313 /5394 54004

Table 1. The size of compiled classes for Cibyl and native Java, in bytes. The MIPS size is the size of the code segment only. Cibyl size is
split in three categories: the program itself, system call wrappers and the C runtime.

Cibyl Native Java Cibyl Native Java
JVM (Life) (seconds) (seconds) ‘ Slowdown ‘ JVM (A*)  (seconds) (seconds) | Slowdown
Gijj 25.6131 28.5493 0.90 || Gij 1.2268 0.6238 1.97
SableVM 20.0237 18.9271 1.06 || SableVM 0.9560 0.5320 1.80
Kaffe 2.3426 2.3020 1.02 || Kaffe 0.1089 1.0649 0.10
Sun JDK 1.1712 1.3431 0.87 || SunJDK 0.1390 0.1002 1.39

Table 2. Performance results for the A* and game of life benchmarks.

The Game of Life benchmark primarily stresses the memory
system with loops of matrix updates. The Java implementation is
a straight port from the C implementation, using static methods
and static variables for global C variables. We ran the benchmark
for 1000 iterations on a 100x100 field. The logic and structure for
both A* implementations is the same, but the Java implementation
uses multiple classes in the way a native implementation would.
The graph search visits 8494 nodes. The A* benchmark stresses
function calls, memory allocation and dereferencing of pointers and
references.

‘We have executed the benchmarks with the Sun JDK 1.5.0 [22],
the Kaffe JVM [26], the SableVM [8] interpreter and the GNU Java
bytecode interpreter (gij) [25]. Gij and SableVM are bytecode in-
terpreters, and therefore similar to the K Virtual Machine [23] com-
mon in low-end and older J2ME devices. Kaffe uses a fairly sim-
ple Just-in-Time compiler, and is similar to the more recent CLDC
HotSpot virtual machine [24]. The Sun JDK has the most advanced
virtual machine, which will not be available in J2ME devices in the
near future. The C code was compiled with GCC 4.1.2 and opti-
mizes for size with the -0s switch. Cibyl optimization was turned
on, and the Cibyl peephole optimizer was used to post-process the
Java bytecode assembly file.

3.2 Code Size

Table 1 shows the size of the benchmarks for both Cibyl and
native Java. The size of the compiled Cibyl programs can be split
in three parts: the size of the recompiled program itself, the size
of the generated Java wrappers including support classes and the
size of the runtime environment. The runtime environment size
is constant for all programs, whereas the size of the system call
wrappers will depend on the number of system calls referenced by
the program. The C library support consumes a significant part of
the code for smaller programs, e.g., the printf implementation
alone consumes 2.5KB in the compiled Cibyl class.

For the A* and game of life benchmarks, we can see that the
size of the actual program is within a factor of two of the Java
implementation (and for the A* benchmark lower than the Java
implementation). Compared to the MIPS code, the size overhead
is between 2 and 4 (including the runtime support) for all the
benchmarks. For larger programs, we expect the size overhead
compared to Java will be small.

3.3 Performance

Table 2 shows the performance results for the A* and game of life
benchmarks. The first thing that can be noted is the large perfor-
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mance difference between the JVMs, with a 10-30 times perfor-
mance difference within the same language in the most extreme
cases. Secondly, we can see that the performance of Cibyl is within
a factor of 2 of the native Java implementation, and in one case
clearly outperforms Java.

For the game of life benchmark, GCC was able to optimize the
main part of the code very well and this leads to less overhead for
Cibyl, which is within 27% of the native Java implementation. A
number of interesting properties are shown in the A* benchmark.
For all JVMs except Kaffe, this benchmark shows worse results for
Cibyl. As with game of life, the two JIT compilers fares better on
Cibyl than the pure interpreters. Interesting to note is the extremely
good results for Kaffe, which is the fastest result on Cibyl and
almost 10 times faster than Java on the same virtual machine, much
because of the bad results of the Java implementation.

We believe this is caused by the differences in the generated
bytecode. The Java version uses invocations of virtual methods and
accesses object fields, whereas Cibyl uses static methods similar
to C code. The Kaffe JVM clearly has difficulties with invoking
virtual methods and interfaces in the Java implementation, while
it optimizes well for the simpler bytecode (static methods) which
Cibyl generates.

When comparing recompiled Cibyl code with native C code,
there is a large slowdown as shown in Table 3. However, this
is mostly because of the current inefficient implementation file
operations. For ADPCM, input read with fread is the culprit and
for PEGWIT, producing the output with fwrite causes most of the
degradation. By making fwrite a no-op, PEGWIT finishes in less
than 0.3 seconds, which suggests that improving the performance
of file operations should be a future priority.

4. Related Work

NestedVM [1] also performs a binary translation of MIPS binaries
to Java bytecode and therefore has many similarities with Cibyl.
However, NestedVM has different goals than Cibyl. The main
focus of NestedVM is to recompile and run insecure native binaries
in a secure VM. In contrast, Cibyl offers an alternative environment
on Java-based platforms. NestedVM has a UNIX-compatibility
layer to support recompilation and execution of existing UNIX
tools, and consequently requires a larger runtime environment.
Technically, NestedVM and Cibyl are also different. To sup-
port sparse memory, NestedVM uses a matrix memory represen-
tation whereas Cibyl uses a vector. For the embedded applications
Cibyl target, the improved performance of the vector representa-



Cibyl Cibyl no file ops  Native java
Benchmark  (seconds) (seconds) (seconds) | Slowdown Slowdown no file ops.
ADPCM 0.821 N/A 0.031 26.0 N/A
PEGWIT 1.307 0.288 0.051 ‘ 25.62 5.64

Table 3. Performance results in seconds for the mediabench benchmarks. The Cibyl results were obtained with the Sun JVM.

tion is more important than the ability to support large memories
effectively. NestedVM also uses class-variables as register repre-
sentation whereas Cibyl uses local variables, which gives more ef-
ficient and compact bytecode. The use of architectural extensions
also separates Cibyl from NestedVM, and Cibyl uses a hybrid soft-
ware floating point implementation while NestedVM implements
the MIPS FPU instructions.

There are also a few compilers which generate Java bytecode
directly. Axiomatic solutions [3] has a compiler for a subset of C
which generates Java bytecode, and the University of Queensland
Binary Translator project has developed a Java bytecode backend
for GCC [7]. Compared to the Axiomatic solutions compiler, Cibyl
provides full support for the C language can leverage the GCC
optimization framework. The Java bytecode backend is not part of
GCC and therefore requires a significant effort to track mainline
development. In contrast, maintenance of Cibyl is independent of
GCC and benefits automatically from GCC updates and Cibyl also
provides a complete development environment for J2ME devices.

The area of binary translation can roughly be separated into two
areas: static and dynamic binary translators, with Cibyl being a
static binary translator. A cited problem with static translators is
separating code from data [2] but being a development environ-
ment, Cibyl does not have these problems. By retaining relocation
and symbol information from the compiler and using static linking,
Cibyl cleanly separates code from data and can prune unused func-
tions and executing data or rewriting code is not possible in Java.
Dynamic binary translators, performing the translation during run-
time, avoid problems with static binary translation, but typically
targets other problems than Cibyl such as translating unmodified
binaries from one architecture to another [9], performing otherwise
difficult optimizations [4] or implementing debug and inspection
support [16]. Since Cibyl targets memory-constrained embedded
systems, the large runtime support system needed for a dynamic
translator would be a disadvantage.

5. Conclusions

In this paper, we have presented the Cibyl binary translation en-
vironment. We have described how extensions to the MIPS archi-
tecture and use of the ABI can help bring the performance close
to that of native Java implementations. We have further described
how Java functionality can be integrated into C programs in the
Cibyl environment efficiently and with small effort. The approach
taken by Cibyl should be comparable in performance to a dedicated
compiler backend for Java bytecode, with much less effort. We be-
lieve that Cibyl can fill an important niche for porting of existing
programs in C and other languages to the J2ME platform, but also
for development of new projects where Java might not be the ideal
language. We also expect that the small size of the Cibyl tools make
it easy to maintain in the long run. Since we use unmodified stan-
dard tools, Cibyl benefits from improvements and new tool versions
without the need to continuously track development.

There are multiple possible directions for future research on
Cibyl. First, to reduce the overhead of function calls, functions
which are called in a chain (determined through profiling) can be
colocated to one Java method with a common entry point. Second,
to further improve performance and reduce size, we are planning an
implementation of register value tracking. Third, to better support
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debugging, we are investigating an implementation of GDB support
for Cibyl. Fourth, runtime libraries for C++ and other languages
would further increase the applicability of Cibyl.
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