
ISSN 1653-2090

ISBN 91-7295-090-0

Software development productivity can be impro-
ved by introducing improvements in many areas. In
this thesis we investigate technology and process
driven productivity improvements, i.e., producti-
vity improvements that have sources in changes
of technologies or in changes in development pro-
cesses. The technology driven productivity impro-
vement discussed in this thesis is the change of
server platform from a standard general purpose
platform to a specialized fault-tolerant platform.
We discuss productivity implications of introdu-
cing such a platform as well as suggest ways of
making the platform introduction process cost
effi cient. The process changes, which we discuss
in this thesis, include improvements of fault de-
tection processes as well as changes of the entire
development process.

We analyze the implications of introducing new
technology by performing case studies, in which
we describe, analyse, and quantify the impact of
the new platform on software development pro-
ductivity. We show that there is a signifi cant pro-
ductivity decrease connected with introducing a
new platform. We also show that the initial low
productivity can be overcome by experience and
maturity. We suggest a number of improvements
for both the platform introduction process and
the mature development on the specialized plat-

form. Since some productivity decrease after
introducing new technology is to a large extent
unavoidable, we look for ways of minimizing it. We
show that it is possible to minimize it by introdu-
cing the specialized platform gradually. We present
an example of a hybrid architecture, which com-
bines the specialized and the standard platforms.
We show that such architecture is able to provide
good technical characteristics for a signifi cantly
lower cost as compared to developing the entire
application on the specialized platform.

As a process improvement suggestion we pro-
pose introducing fault prediction models with the
goal of increasing the effi ciency of fault detection.
We suggest and evaluate several such models
that are available at different stages of a software
development process. The models are evaluated
using data from a number of large software sys-
tems. Their predictions are also compared with
the predictions made by human experts. We show
that introducing our fault prediction models is li-
kely to result in an improvement of fault detection
effi ciency. Another process related productivity
improvement suggestion evaluated by us is the
change of the development process. We present
a case study in which we evaluate a new process
concept. One of the goals of that process is to
improve the company’s productivity.

ABSTRACT

2006:05

Blekinge Institute of Technology
Doctoral Dissertation Series No. 2006:05

School of Engineering

SOFTWARE DEVELOPMENT
PRODUCTIVITY
EVALUATION AND IMPROVEMENT FOR LARGE

INDUSTRIAL PROJECTS

Piotr Tomaszewski

S
O

F
T

W
A

R
E

 D
E

V
E

L
O

P
M

E
N

T
 P

R
O

D
U

C
T

IV
IT

Y
Piotr Tom

aszew
ski

2006:05

Software Development Productivity
Evaluation and Improvement for Large Industrial Projects

Piotr Tomaszewski

Software Development Productivity
Evaluation and Improvement for Large

Industrial Projects

Piotr Tomaszewski

Blekinge Institute of Technology Doctoral Dissertation Series
No 2006:05

ISSN 1653-2090
ISBN 91-7295-090-0

Department of Systems and Software Engineering
School of Engineering

Blekinge Institute of Technology
SWEDEN

© 2006 Piotr Tomaszewski
Department of Systems and Software Engineering
School of Engineering
Publisher: Blekinge Institute of Technology
Printed by Kaserntryckeriet, Karlskrona, Sweden 2006
ISBN 91-7295-090-0

To Gosia

 vi

 vii

Abstract

Software development productivity can be improved by introducing
improvements in many areas. In this thesis we investigate technology and
process driven productivity improvements, i.e., productivity improvements
that have sources in changes of technologies or in changes in development
processes. The technology driven productivity improvement discussed in
this thesis is the change of server platform from a standard general
purpose platform to a specialized fault-tolerant platform. We discuss
productivity implications of introducing such a platform as well as suggest
ways of making the platform introduction process cost efficient. The
process changes, which we discuss in this thesis, include improvements of
fault detection processes as well as changes of the entire development
process.

We analyze the implications of introducing new technology by performing
case studies, in which we describe, analyse, and quantify the impact of the
new platform on software development productivity. We show that there is
a significant productivity decrease connected with introducing a new
platform. We also show that the initial low productivity can be overcome
by experience and maturity. We suggest a number of improvements for
both the platform introduction process and the mature development on the
specialized platform. Since some productivity decrease after introducing
new technology is to a large extent unavoidable, we look for ways of
minimizing it. We show that it is possible to minimize it by introducing
the specialized platform gradually. We present an example of a hybrid
architecture, which combines the specialized and the standard platforms.
We show that such architecture is able to provide good technical
characteristics for a significantly lower cost as compared to developing the
entire application on the specialized platform.

As a process improvement suggestion we propose introducing fault
prediction models with the goal of increasing the efficiency of fault
detection. We suggest and evaluate several such models that are available
at different stages of a software development process. The models are
evaluated using data from a number of large software systems. Their
predictions are also compared with the predictions made by human
experts. We show that introducing our fault prediction models is likely to
result in an improvement of fault detection efficiency. Another process
related productivity improvement suggestion evaluated by us is the change
of the development process. We present a case study in which we evaluate
a new process concept. One of the goals of that process is to improve the
company’s productivity.

 viii

 ix

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my
supervisors, Professor Lars Lundberg and Dr. Håkan Grahn for their
patient guidance, invaluable comments, and support at every stage of my
research education. Without their help and encouragement this thesis
would never have been completed.

All the work presented in this thesis was possible only because of the close
and fruitful co-operation with Ericsson. I would like to take this
opportunity and thank all the members of the Ericsson staff who kindly
took part in my studies and provided me with the input to my work.
Especially, I would like to thank Lars Angelin, Dr. PerOlof Bengtsson,
and Sven Jonasson for their contribution and valuable comments. My great
thanks go to Jim Håkansson, not only for answering tones of my questions
but also for co-authoring some of the papers.

I also would like to thank all my colleagues from Blekinge Institute of
Technology, especially from the PAARTS group and the BESQ project, for
creating a unique, both enjoyable and motivating work environment. In
particular, I would like to thank Dr. Daniel Häggander, Lars-Ola Damm,
and Patrik Berander for many hours of discussions and for joint work on
some of the papers, Dr. Johan Schubert, Dr. Mirosław Staroń, Jeanette
Eriksson, Lawrence Henesey, and Simon Kågström for their valuable
comments on different pieces of the work presented in this thesis, and
Charlie Svahnberg for being my source of advice on teaching.

As always, I am indebt to my family and friends for all the help I got from
them. I am grateful to my parents, Halina and Andrzej, and to my brother
Dominik for their constant support.

Finally, I would like to thank my wife Gosia. It is your never-ending
optimism, determination, enthusiasm, and encouragement that helped me
enormously during my studies and made this thesis possible. Thank you!

This work was partly funded by The Knowledge Foundation in Sweden
under a research grant for the project "Blekinge - Engineering Software
Qualities (BESQ)" (http://www.bth.se/besq).

 x

 xi

List of Papers

Papers included in this thesis:

I. “Software Development Productivity on a New Platform - an Industrial
Case Study”
Piotr Tomaszewski, Lars Lundberg,
Information and Software Technology journal, vol. 47/4, 257-269, 2005

II. “The Increase of Productivity Over Time - an Industrial Case Study”

Piotr Tomaszewski, Lars Lundberg
Information and Software Technology journal, vol. 48/9, 915-927, 2006

III. “Evaluating Real-time Credit-control Server Architectures Implemented

on a Standard Platform”
Piotr Tomaszewski, Lars Lundberg, Jim Håkansson, Daniel Häggander
Proceedings of IADIS International Conference on Applied Computing,
vol. 2, 345-352. Algarve, Portugal, February 2005

IV. “A Cost-efficient Server Architecture for Real-time Credit-control”

Piotr Tomaszewski, Lars Lundberg, Jim Håkansson, Daniel Häggander
Proceedings of the 10th IEEE International Conference on the Engineering
of Complex Computer Systems (ICECCS), pp.166-175, Shanghai, China,
June 2005

V. “Improving Fault Detection in Modified Code - A Study from the
Telecommunication Industry”
Piotr Tomaszewski, Lars Lundberg, Håkan Grahn
To appear in: Journal of Computer Science and Technology, Special Issue
on Advances in Software Metrics and Software Processes, 2006

VI. “A Method for an Accurate Early Prediction of Faults in Modified
Classes”
Piotr Tomaszewski, Håkan Grahn, Lars Lundberg
To appear in: Proceedings of the 22nd IEEE International Conference on
Software Maintenance (ICSM 2006), Philadelphia, USA, September 2006

VII. “Statistical Models vs. Expert Estimation for Fault Prediction in Modified
Code – an Industrial Case Study”
Piotr Tomaszewski, Jim Håkansson, Håkan Grahn, Lars Lundberg
Submitted to a journal. This paper is an extended version of Paper XIII.

 xii

VIII. “Comparing the Fault-Proneness of New and Modified Code – An
Industrial Case Study”
Piotr Tomaszewski, Lars-Ola Damm
To appear in: Proceedings of the 5th ACM-IEEE International Symposium
on Empirical Software Engineering (ISESE 2006), Rio de Janeiro, Brazil,
September 2006

IX. “From Traditional to Streamline Development - Opportunities and
Challenges”
Piotr Tomaszewski, Patrik Berander, Lars-Ola Damm
To be submitted to a journal.

Publications that are related but not included in this thesis:

X. “Evaluating Productivity in Software Development for
Telecommunication Applications”
Piotr Tomaszewski, Lars Lundberg
Proceedings of IASTED International Conference on Software
Engineering, 189-195, Innsbruck, Austria, February 2004

XI. “The Accuracy of Early Fault Prediction in Modified Code”
Piotr Tomaszewski, Lars Lundberg, Håkan Grahn
Proceedings of the 5th Conference on Software Engineering Research and
Practice in Sweden (SERPS), pp.57-63, Västerås, Sweden, October 2005

XII. “Increasing the Efficiency of Fault Detection in Modified Code”
Piotr Tomaszewski, Lars Lundberg, Håkan Grahn
Proceedings of the 12th Asia-Pacific Software Engineering Conference
(APSEC), pp. 421-430, Taipei, Taiwan, December 2005

XIII. “The Accuracy of Fault Prediction in Modified Code –Statistical Model
vs. Expert Estimation”
Piotr Tomaszewski, Jim Håkansson, Lars Lundberg, Håkan Grahn
Proceedings of the 13th Annual IEEE International Conference on the
Engineering of Computer Based Systems (ECBS 2006), pp. 334-343,
Potsdam, Germany, March 2006. The paper was awarded with the Best
Paper Award.

 xiii

Table of Contents

Introduction

1. Background ...3
2. Research questions ..4

2.1 Technology driven productivity improvement ..6
2.2 Process driven productivity improvement...7

3. Related work ...9
3.1 The software development productivity improvement process.....................9
3.2 Technology driven productivity improvement ..13
3.3 Process driven productivity improvement...15

4. Contributions in this thesis ..17
4.1 Technology driven productivity improvement ..17
4.2 Process driven productivity improvement...20

5. Methodology ...22
5.1 Industrial relevance ...22
5.2 Methods...23
5.3 Validity..26

6. Conclusions ...29
7. References ...31

Paper I
Software development productivity on a new platform - an industrial case study

1. Introduction ...43
2. Presentation of the platform ..44
3. Methods...47

3.1 Productivity measurement ...47
3.2 Quality aspects ..49
3.3 Productivity bottlenecks ..50

4. Results ...52
4.1 Productivity measurement ...52
4.2 Quality aspects ..54
4.3 Productivity bottlenecks ..59

5. Discussion ...61
5.1 Related work ...61
5.2 Productivity level ..63
5.3 Productivity improvement ...64

6. Conclusions ...67
7. Acknowledgements ...69
8. References ...69

 xiv

Paper II
The increase of productivity over time - an industrial case study

1. Introduction ...77
2. Related work ...78
3. Platform presentation ..80
4. Productivity in the early software development ..82
5. Method ..83

5.1 Productivity measurement ...83
5.2 Quality aspects ..85
5.3 Explaining productivity differences ..86

6. Results ...88
6.1 Productivity measurements ...88
6.2 Quality aspects ..89
6.3 Explaining productivity differences ..94

7. Discussion ...96
7.1 Difference in productivity ...96
7.2 Productivity improvement ...98
7.3 Lessons learned ...100

8. Conclusions ...101
9. Acknowledgements ...103
10. References ...103

Paper III
Evaluating real-time credit-control server architectures implemented on a standard
platform

1. Introduction ...113
2. Payment System Application ..114
3. Method ..115
4. Architectures ...116
5. Evaluation ...118

5.1 Availability..118
5.2 Reliability ..120
5.3 Performance ..121

6. Related work ...121
7. Conclusions ...122
8. Acknowledgements ...124
9. References ...124

 xv

Paper IV
A cost-efficient server architecture for real-time credit-control

1. Introduction ...131
2. Diameter Credit-Control ...132
3. Related work ...134
4. Method ..135
5. “State-of-the-art” solution ...136

5.1 Presentation ...136
5.2 Evaluation ...139

6. Fault-tolerant platform ..141
7. New architecture ...142

7.1 Basic idea ..142
7.2 Architecture overview ...142
7.3 Implementation variants ..143

8. Evaluation ...145
8.1 Availability and reliability...145
8.2 Performance ..146

9. Cost ...147
10. Discussion ...148
11. Conclusions ...150
12. Acknowledgments...151
13. References: ..151

Paper V
Improving Fault Detection in Modified Code-A Study from the Telecommunication
Industry

1. Introduction ...159
2. Related work ...161
3. Methods...164

3.1 Metrics suite ..164
3.2 Model building ..166
3.3 Model evaluation...168

4. Results ...172
4.1 Model building ..172
4.2 Model evaluation...174

5. Discussion ...181
5.1 Findings...181
5.2 Validity..183

6. Conclusions ...184
7. Acknowledgments...186
8. References ...186

 xvi

Paper VI
A Method for an Accurate Early Prediction of Faults in Modified Classes

1. Introduction ...195
2. Related work ...196
3. Predictor metrics ...198
4. Evaluation method ..200
5. Results ...201
6. Discussion ...205
7. Conclusions ...207
8. Acknowledgments...208
9. References ...208

Paper VII
Statistical Models vs. Expert Estimation for Fault Prediction in Modified Code – an
Industrial Case Study

1. Introduction ...215
2. Related work ...216
3. Study objects ...218

3.1 Systems under study..218
3.2 Participating experts ..219

4. Methods...219
4.1 Building prediction models ...220
4.2 Expert estimation...222
4.3 Evaluation of prediction accuracy ...223

5. Results ...224
5.1 Building prediction models ...224
5.2 Expert estimations ...225
5.3 Evaluation of prediction accuracy ...228

6. Discussion ...232
6.1 Findings...232
6.2 Validity..234

7. Conclusions ...235
8. Acknowledgments...237
9. References ...237

 xvii

Paper VIII
Comparing the Fault-Proneness of New and Modified Code – An Industrial Case
Study

1. Introduction ...245
2. Related work ...247
3. Methods...249

3.1 Data collected..249
3.2 Analysis methods ..250

4. Results ...251
4.1 Question 1: FAULTS ..251
4.2 Question 2: DENSITY ..251
4.3 Question 3: RISK ..252

5. Discussion ...253
6. Conclusions ...256
7. Acknowledgements ...257
8. References ...257

Paper IX
From Traditional to Streamline Development – Opportunities and Challenges

1. Introduction ...265
2. Ericsson AB and their development processes..266

2.1 Traditional development process...266
2.2 Streamline Development Process ..268

3. Related work ...270
4. Method ..272

4.1 Force Field Analysis..272
4.2 Data collection and analysis ..273

5. Results ...276
5.1 Pushing factors ..277
5.2 Resisting factors ..279
5.3 Required changes ..281

6. Discussion ...284
6.1 Discussion regarding the results..284
6.2 Comparison with other studies ..286
6.3 Validity..287

7. Conclusions ...288
8. Acknowledgments...289
9. References ...289

 xviii

Introduction

Paper I

Paper II

Paper III

Paper IV

Paper V

Paper VI

Paper VII

Paper VIII

Paper IX

Introduction

 3

1. Background

In the era of globalisation, outsourcing, and fierce competition between
different companies that produce software, the software development
productivity issues are becoming increasingly important. Robert L.
Glass notices in “The Realities of Software Technology Payoffs” [32],
that productivity, from being a very hot topic in 80’s, lost some of its
momentum in 90’s, when more emphasis was put on software quality.
The IT crisis following Y2K made software developers very cost-aware
and brought some of the attention back to the productivity issues.

Productivity is defined as a ratio of output units produced per unit of
input effort [1]. Software development productivity describes how
efficiently the software is produced. Higher productivity means faster
and/or cheaper software development. Therefore, productivity
improvement is often seen as a way of gaining market competitiveness
by decreasing the cost of developing software, increasing return on
investment, and improving time-to-market. High productivity largely
facilitates, if not makes it possible, to quickly satisfy changing customer
needs and still make money. Such abilities are what nowadays
distinguish successful software companies from the less successful
ones.

The productivity can be increased by improvements in three areas [37]:
people, processes and technology. The people issues concern aptitude,
competence, domain knowledge and experience. Better educated and
experienced developers are able to deliver the software faster. Process
issues concern work organization and work environment. Efficient
work procedures save resources and make the development more
productive. An appropriate technology makes it possible to deliver a
product using less effort. The tools can take part of developer’s
responsibility and automatically generate the code, support testing or
improve the communication between the team members. Off-the-shelf
software components and systems (e.g., database servers) largely
facilitate development of certain kinds of software systems. All this
technology support saves time and thus improves the development
productivity.

The people, process, and technology issues are not independent.
Technology will not improve the productivity if the work processes are
not adapted to it. High skills of the developers do not contribute to the
productivity if they are not provided with the technology they are
skilled in. A technology does not improve the productivity if people do
not know how to use it. Therefore, it is very important to evaluate any

Introduction

 4

change in the development from the productivity perspective. It is
rarely so that a people, process or technology change, is a “silver
bullet” solution from the productivity point of view. It often depends on
numerous circumstances if the overall productivity gains or looses
because of the change. For example, decreasing the number of code
reviews can increase the productivity. Relatively more time is spent on
the code production compared to the other activities. However, the
overall productivity may decrease if because of the decreased number
of the code reviews the developers produce more faults that have to be
removed.

In our studies we evaluate a number of different productivity
improvements. Some of those improvements were suggested by our
industrial partners, some were identified in literature, other ones are our
own suggestions. We focus on the technology and process driven
productivity improvements, i.e., productivity improvements that are
based on changes in technologies used for developing software systems
and changes in software development processes. The technology
change, which we evaluate, is the change of the server platform from a
standard, general purpose one to a specialized fault-tolerant solution.
The process changes suggested and/or evaluated by us include the
improvement of fault detection process efficiency by introducing
statistical fault prediction models as well as productivity improvement
by a change of an entire development process.

The reminder of the Introduction section is structured as follows.
Section 2 presents our specific research questions. In Section 3 we
present related research. In Section 4 we describe the major
contributions from this thesis. Section 5 focuses on research
methodology issues. In Section 6 we present major conclusions from
our work.

2. Research questions

The overall question in our studies concerned the ways productivity can
be improved in software development projects. We were interested in
finding and evaluating productivity improvements in different aspects
of software development. As mentioned in the previous section, the
productivity improvements can be classified as people, processes, and
technology related [37]. The two areas of productivity improvements
that are considered in this thesis are productivity improvements that are
technology driven and productivity improvements that are process
driven (see Figure 1).

Introduction

 5

Figure 1. Thesis outline. Mapping between topics, research questions and papers.

The technology change evaluated in our studies was the change of
server platform from a standard, general purpose UNIX platform to a
specialized fault-tolerant one. The context of the change was software
development of telecommunication applications. The developers of
telecommunication applications face rather stringent requirements
concerning the reliability, performance, and availability of the systems
they develop. A fault-tolerant platform can facilitate the development of
such systems by taking at least partial responsibility for providing the
required characteristics. However, introducing new platforms, as well
any other technology, is likely to result in an initial productivity
decrease due to the need of overcoming the learning curve connected
with gaining competence in the new technology [33]. Therefore, we
looked for some architecture changes that could decrease the negative
impact of introducing new technology on the productivity of software
development in which this new technology is used.

The process changes evaluated in our studies concerned the
improvement of fault detection process efficiency as well as change the
of an entire development process. The process improvement suggested
and evaluated by us was the improvement of the efficiency of the fault
detection process by introducing statistical fault prediction models.
Such models, by predicting the most likely locations of faults, can
potentially indicate where fault detection activities are likely to be most
efficient. Another productivity improvement evaluated was a process
change. It turned out that one of the significant productivity problems

Introduction

 6

of our industrial partner was connected with changing customer
requirements. A new process that is supposed to minimize this problem
was suggested. We performed an early evaluation of this process.

In the reminder of this section we present the concrete research
questions posed in our studies. Section 2.1 presents our research
questions regarding the technology driven productivity improvement.
Section 2.2 presents our research questions regarding the process driven
productivity improvement. The numbering of the research questions
corresponds to the numbering of research questions in Figure 1.

2.1 Technology driven productivity improvement

2.1.1 Platform change

The first productivity improvement evaluated by us was the
introduction of a new technology. The new technology was a
specialized fault-tolerant platform that was meant to make it possible to
meet the high non-functional requirements posed on the
telecommunication applications, like real-time performance, high
availability and reliability. We anticipated that the productivity of
software development for that platform should increase with time, when
a certain experience is gained by the developers. However, the early
software development productivity is also important since it is
important to know what to expect in a short term from introducing a
new platform. Therefore the first specific research question was:

RQ1: How does the introduction of a fault-tolerant platform impact
productivity:

o just after the new technology adoption?
o when a certain maturity is gained?

Once we evaluated the productivity we have focused on the
improvements to the technology adoption process as well as on the
improvements of the subsequent, more mature development on the new
platform. We looked for the improvements in the ways the platform is
used (e.g., the platform introduction process, the work organization, the
development of platform related competence) as well as improvements
of the platform deficiencies that impact productivity. To investigate the
productivity improvement possibilities we formulated the second
specific research question:

Introduction

 7

RQ2: How can the productivity be improved in projects in which the
fault –tolerant platform is involved:

o by improving the way the platform is used?
o by improving the platform itself?

2.1.2 Architecture change

As the literature says it is reasonable to expect some productivity
decrease when a new technology is adopted ([24, 29, 33, 38, 41]).
Therefore, it is also reasonable to expect a higher cost of the software
development in the first projects on the new platform. The cost of the
projects can potentially be lowered if we use a hybrid platform that
combines a fault-tolerant and a standard platform, instead of using the
fault-tolerant platform only. The fault-tolerant platform can help
providing good non-functional characteristics, while the standard
platform can reduce the development cost. Therefore, our next specific
research question was:

RQ3: How can the fault-tolerant and the standard platforms be
combined to provide the required non-functional characteristics and
at the same time satisfactory development productivity?

2.2 Process driven productivity improvement

2.2.1 Process improvement

Productivity improvements can also be achieved by introducing
changes to the way the work is performed. It is commonly known that
fault detection and removal activities constitute a significant part of a
software development project [33]. Therefore, we looked for methods
that can improve the efficiency of fault detection. Since faults are rarely
distributed evenly in a system [11], one common idea is to build a fault
prediction model that identifies the most fault-prone code and makes it
possible to direct fault detection activities to where they are likely to be
most efficient, i.e., to the code that is most likely to contain faults. We
evaluated this approach from the perspective of increased fault
detection efficiency. Our specific research question was:

RQ4: What fault detection efficiency improvement can be expected
from applying our fault prediction model?

The prediction of fault proneness of the individual code units is based
on the characteristics of those code units. The most complete and
correct set of characteristics is available after the code units are actually

Introduction

 8

implemented. However, there is an added value of having such fault
predictions earlier in the development process, as that enables an
efficient planning of some preventive measures that can reduce the
number of faults in the code. Therefore, our next specific research
question was

RQ5: How to obtain accurate fault predictions early in the
development process?

Fault prediction models, as those suggested above; seem to be still more
popular in academia than in industry. It also seems that an industrial
standard for performing fault predictions is expert estimation.
Therefore, our next goal was to compare the performance of our models
with the performance of experts predicting fault localisations. For that
reason, our next research question was:

RQ6: Are statistical fault predictions more accurate than estimations
done by experts?

In our fault prediction studies we focused on modified code, mainly
because in the projects we used a majority of faults was found in the
modified code. However, this does not indicate that in a general case
the modified code units are more fault-prone than newly developed
ones. To further investigate this issue we formulated the following
research question:

RQ7: Is modified code more fault-prone than new code?

2.2.2 Process change

Productivity improvement can also be achieved by a more radical
change, e.g., by changing the entire development process. One
commonly suggested process change that, apart from other benefits, is
supposed to improve productivity of software development is the
change from large long-lasting projects to smaller ones. The
productivity improvement in such smaller projects is usually attributed
to the fact that smaller projects are less exposed to the change of market
demands, which is one of the most common sources of rework and
waste in large projects. One project concept of this kind is Streamline
Development, a process concept developed by Ericsson. In our studies,
we evaluated this concept. Our specific research question was:

 RQ8: What are the opportunities and challenges when changing from
traditional software development to Streamline Development?

Introduction

 9

3. Related work

3.1 The software development productivity improvement
process

The productivity improvement process consists of three steps [82]:
measurement, analysis, and improvement. The role of the measurement
is to find what the current productivity level is. Productivity
measurement is also necessary to assess productivity improvements in
the future. The analysis aims at finding factors that affect the
productivity. The role of the improvement is to increase the overall
productivity. The first step, productivity measurement, is considered the
basis for the two remaining steps [82]. We describe the related work
concerning productivity measurement topic in more detail in Section
3.1.1. The related work concerning productivity analysis and
improvement is described in Section 3.1.2.

3.1.1 Productivity measurement

Productivity measurement research accounts for a large part of the
productivity related research [56]. Productivity, apart from being an
interesting metric in itself, is also a factor that must be known to
perform numerous project related estimations, like cost [71] or lead-
time [9, 10, 78] predictions. Since these two metrics are very important
for many crucial decisions in the project, the topic of the productivity
measurement has been in focus for quite a long time.

Despite a relatively simple equation (product size/development effort)
and an easy-to-grasp meaning, the application of the productivity metric
to software development is not straightforward and standardized.
Therefore, as the literature points out [27, 55, 71], we must be very
careful when comparing productivity between different projects. The
important thing is to assure that we compare the same things [55]. For
example, in one project the effort metric may include only the hours
spent by the designers and testers, while in the other one it may contain
the work hours of designers, testers, managers, and technicians.
Comparing the productivity of these two projects using their
understanding of the effort will not give any meaningful results.
Another important thing to remember is that the productivity metric
does not take quality aspects into account [27]. Therefore, when we
compare the productivity, we should always keep the quality in mind,
since the productivity can only be “interpreted in context of overall
quality of the product” [1]. Lower productivity might be the price for a
better, faster, more usable and easier to maintain product [27].

Introduction

 10

The two values that compose the productivity equation are product size
and development effort. As the development effort usually the total
number of person-hours or person-months spent on the project is used
[27, 71]. Another approach could be to use the cost; however such a
metric is often less adequate. The cost of work-hour varies among
companies and changes in time. The product size metrics are usually
divided into two groups [71]:

- size-related metrics – that describe a physical size of the code
delivered. The most typical metrics in this class are the number
of source lines of code (SLOC), the number of delivered
instructions, classes, functions, files, etc.

- functionality-related metrics – that reflect the amount of
functionality delivered. Examples of the metrics used to describe
the functionality are different variations of function points, like
IFPUG, Mark II, Feature Points, or COSMIC [27, 55, 71, 76].

There has been a lot of discussions concerning the ability of size-related
metrics, like SLOC, to capture the project size [27, 56, 71]. Lines of
code have some obvious drawbacks. They are incomparable when
different programming languages are used [27]. It is hard to say in what
way 100 lines of C++ code correspond to 100 lines in Assembler code.
The number of lines of code also depends on the coding style. A more
compact coding style results in smaller projects. Finally, the lines of
code metric does not reflect the complexity and the utility of the
program [27]. 100 lines of C code used for implementing a real-time
system are definitely not the same as 100 lines of code used to
implement some simple searching algorithm with no performance
requirements.

Despite these obvious drawbacks the lines of code are widely used in
practice [9, 10, 56, 70, 82]. According to [27] their biggest advantages
are computational simplicity (values can be obtained automatically) as
well as tangibility – it is very easy to understand and explain what a
single line of code is, even though it is actually not well defined. There
is an on-going discussion concerning the use of SLOC for productivity
measures. Some researchers discard SLOC as an inaccurate metric [51].
There are, however, other opinions as well. In [73] it was observed that
lines of code can be applicable when two projects were written in the
same language. In [56] the authors compared lines of code productivity
with Process Productivity, a complex metric that involved many
aspects like a programming language, experience, management
practices etc. They concluded that SLOC was actually a better metric.

Introduction

 11

The functionality-related metrics overcome the drawbacks of the SLOC
measurement by measuring the size of the software as the amount of
functionality it delivers. Although there exists a number of different
functionality related metrics (see [53] for an overview), according to
[71] the most popular functionality-related metric are function points.
Since the function points measure program utility instead of length they
are not affected by the different expressiveness of languages, which
results in different amount of SLOC necessary to deliver the same
functionality [27]. The function points are calculated as a combination
of the amount of data that is manipulated, the number of interfaces, the
amount of interactions with user as well as external inputs and outputs
[51, 71]. Since, obviously, the complexity of these entities may vary the
function points method introduces a complexity factor to compensate
for this.

The complexity factor is often considered as one of the weaknesses of
this method, since it adds some subjective assessment to the method.
The function points are also considered quite biased towards
applications with extensive data processing [71] and, therefore, not
applicable for systems with a simple data processing but high non-
functional requirements, like real-time systems [76]. There are some
variants of function points that are said to overcome that problem (e.g.,
COSMIC FP [14]). All function point related measures suffer from
computational complexity (counting must be done manually) and lack
of tangibility (what does it mean that the software has the size of 10
function points?) [27, 71]. Because of the complexity, and the need for
making estimations, the results of function point measurements depend
on who performs the measurement and are more accurate and consistent
when the measurement is performed by a trained individual (see [13]
for an overview of function point variability studies).

3.1.2 Productivity analysis and improvement

The second step of the productivity improvement is the identification of
the factors affecting productivity. The identification of the factors
affecting the productivity is actually the second main direction of
software productivity research [56]. As could be expected, the
productivity of software development is affected by almost everything.
It is well illustrated by the research, in which the impact of different
factors on productivity is analysed Factors analyzed in these studies
range from the use of specific tools (e.g., CASE tools in [22]), through
the development practices [52], to the amount of office space available
to the programmer [45]. Some researchers tried to classify issues that
affect the development productivity, e.g., in [37] the productivity
improvements are grouped into people, processes, and technology
issues.

Introduction

 12

In [71], the most important factors affecting the productivity of
individuals working in an organisation are summarized. The first factor
is the application domain experience. Usually the most productive
members of software development teams are those with the best domain
knowledge. The second important factor is the process quality. Certain
process optimizations and improvements, but also inefficiencies, can
affect productivity. Another important factor according to [71] is the
size of a project. The rationale behind this factor is that in bigger
projects relatively less time is spent on development and more time is
spent on communication between team members. This reduces the
productivity of individual software developers. Technology support is
considered as the next important factor. CASE tools and configuration
management tools are presented as examples of tools that improve
productivity. Finally, the impact of working environment is discussed.
According to [71] a more comfortable work place is likely to increase
the individual productivity of a software developer.

In [82], another set of factors affecting productivity was identified.
Additionally, the authors classified each factor according to its “level of
impact” on productivity as High, Medium, or Low. To the issues that
have high impact on productivity the authors classified feature
requirement completeness and stability. Stable and well defined
requirements make it possible to avoid unnecessary rework or waste.
Another factor with high impact on productivity is feature interaction
complexity. The more complex the application is the lower the
productivity is likely to be. The authors also mention staff experience
and feature development environment (tools, etc.) as factors having
large impact on productivity. The impact of these factors has already
been discussed before in this section. As factors having medium impact
on productivity feature hardware application novelty and change, and
software architecture impact were classified. Developers are rarely very
experienced in using new technology so usually some time is needed
for them to master it and become productive (this issue is discussed in
more detailed in Section 3.2). The authors of [82] also believe that
certain architectural solutions can have impact on productivity. Finally,
as issues having low impact on productivity, the following factors were
classified: feature novelty and synergy with other features, feature
program complexity, static and dynamic data impact, feature
performance constraints, and work environment. An interesting factor
in this list is the performance requirement issue, which indicates that
some software quality related requirements can have impact on
productivity.

The productivity improvement is also often discussed in the context of
reducing the development time. Some examples of productivity

Introduction

 13

improvement areas can be found in the work devoted to identification
of lead-time reduction opportunities. For example, in [9] the authors
discuss eleven techniques that result in the reduction of development
time. They suggest using prototyping, improving customer
specifications, using CASE tools, introducing concurrent development,
improving quality of development to reduce rework and recoding,
improving project management, having better testing strategies, reusing
code, standardizing interfaces between modules, improving
communication between team members, and finally hiring better
people. These techniques, by reducing the development time, should
also result in improved productivity.

3.2 Technology driven productivity improvement

Software development productivity is also affected by the kind of
technology that is available to developers [9, 71, 82]. Therefore,
technology change is a valid way of improving productivity.
Technology can improve software development productivity in many
ways. CASE tools can generate code and thus decrease the effort
necessary to develop the software. Database systems can provide
efficient ways of manipulating and storing data and remove the
necessity of implementing these functionalities in an application.
Integrated development environments (IDEs) can make coding and
debugging processes faster and more productive.

In our studies we examine technologies that are meant to improve
productivity in the development of applications with high availability
requirements. In practice, to meet these requirements we must introduce
redundancy to the system both at the hardware and the software level.
Whenever one of the components (hardware of software) fails, the
failover operation is performed and the redundant, backup component
takes over [63]. Ideally, the backup component should have the same
state as the primary one. Therefore, virtually every state updating
operation performed by the primary component must be replicated to
the backup one. This frequent replication creates problems with
extensive communication between the primary and the backup
components which affects the performance negatively [5, 8, 19, 30, 39,
81]. Therefore, implementing efficient replication is a rather complex
task. In [35], the authors found that in one dual-computer cluster system
85% of the code was devoted to providing the availability. This value is
application specific, but it gives an indication of how complex the task
of the synchronization can be. Therefore, a lot of effort has been
devoted to find technical solutions that remove as much of this burden
from the developer as possible. Examples of such a solution is
described in [54], where a CORBA implementation was extended with

Introduction

 14

abilities to perform automatic object replication, migration and restart
of objects that failed. Such a technology is able to take at least partial
responsibility for providing availability. By using it the developers are
able to build their applications using less work and thus improve the
overall productivity in the project.

Unfortunately, even though technology change can bring productivity
improvement, usually it takes time before the improvement is visible
[33]. Normally, in a short term some decrease of productivity can
actually be expected [33]. A part of our studies is devoted to
quantifying the impact of introducing new technology on software
development productivity and identifying the productivity problems in
the situation of new technology adoption. According to [29] there are
two major reasons why companies should be concerned about the
impact of introducing new technology on productivity. Firstly, one of
the major problems in a situation of technology adoption is usually the
lack of knowledge about the technology and the need of overcoming the
learning curve connected with it [33]. Therefore, poor introduction of
new technology can “lead to a longer than anticipated (or budgeted for)
payback time or even loss of investment due to non-use or ineffective
use” [29]. Secondly, long period of decreased productivity can
substantially decrease the competitiveness of the company [29].

Since lack of knowledge about the new technology in the company is
the major problem when introducing new technologies, it is very
important to provide the developers with a good source of information
about the new technology. In [24] the authors stress the need of having
this knowledge codified. Tacit knowledge (not available in written
form) is considered as one of the most important obstacles for seamless
introduction of new technology. Another important aspect is the
motivation of the staff when it comes to accepting the new technology.
In [29], the enthusiasm and willingness to accept a new technology are
described as the key condition for overcoming productivity problems
connected with technology introduction. Lack of experience and
enthusiasm about the new technology are not the only problems that
must be overcome. To other factors that negatively affect the
productivity in the early development using the new technology belong
[38]: lack of flexibility and timeliness, low quality, excessive distance
between management and employees, unreliability of suppliers, poor
labour relations, lack of skill, poor process design, insufficient capacity,
loose capacity management, and poor communication between
departments.

The negative impact of all issues mentioned above can usually be
decreased by taking certain actions. For example the initial lack of
knowledge can be compensated by training. Processes can be adjusted.

Introduction

 15

There are certain ways of increasing motivation as well. On the other
hand, it is also natural to expect a productivity increase when the
organization gets more familiar with the technology. Such a tendency
has been recognized and researched. Examples of terms connected with
increasing productivity over time are “learning curve” [72, 80] and
“experience curve” [16]. Both are based on an observation that the cost
of producing a unit of a product is decreasing with time. In [4] the
possible mechanisms behind this phenomenon are identified. These
include acquiring better, more suitable tools; adjusting production
methods; product design changes; improved and more effective
management; change of product volume and quality; developer
learning; and finally incentive pays [4].

3.3 Process driven productivity improvement

Productivity can be affected by improvements in the development
processes [71]. Therefore, there is an ongoing discussion regarding the
impact of different processes and different software development
practices on the productivity of software development. In [52], the
authors noticed that there are two kinds of improvements in the process
area. Some are complimentary with current development process, i.e.,
various practices are suggested that will make current development
process better. Other approaches focus on finding another process
model, i.e., finding a process model that would be more suitable for the
development at a company than the currently used one. In our studies
we looked at both these kinds of improvements in the process area.

Our process improvement suggestion was the introduction of a fault
prediction model with the goal of making fault detection more efficient.
Fault detection and removal activities account for about 40% of
software development projects’ costs [33] so any improvement in the
area of fault detection is likely to have a significant impact on project
cost and consequently also on productivity. Normally, in software
systems about 60%-80% of the faults can be found in about 20% of the
code modules [11, 60]. At the same time about half of the code modules
are usually defect free [11]. These characteristics indicate that that there
is a potential for savings, if we manage to focus fault handling efforts
on the portion of the code that actually contains faults. In order to
achieve this productivity improvement we must, however, be able to
identify code units that actually contain faults.

A popular method for identifying fault-prone code is by using a
prediction model (e.g., [25, 60, 64-66, 83]). Fault prediction models that
can be found in the literature are based on a great variety of different
predictor variables, e.g., different code metrics (e.g., [46, 65, 83]) or

Introduction

 16

variations of Chidamber and Kemerer (C&K) [21] object oriented
metrics (e.g., [17, 25, 83]). There are also studies that take historical
information about the code fault-proneness into account (e.g., [62, 64,
65]). There is also large variety in the methods that are used for fault
prediction. These methods range from uni- and multivariate linear
regression (e.g., [18, 20, 59, 61, 66, 83]), logistic regression (e.g., [17,
25, 28, 48]) and regression trees (e.g., [46, 47]) through neural networks
(e.g., [49, 74]), and Bayesian Belief Nets [26], to statistical clustering
techniques combined with expert estimations [84, 85].

The most common classification of prediction models is based on their
output. Based on that prediction models can be classified as [49]:
- Classification models – these models classify code units as fault-

prone or not, i.e., they predict if the code unit contains faults.
Examples of such models can be found in [17, 25, 28, 48].

- Quality prediction models - these models attempt to quantify the
quality of the code unit, e.g., by predicting the number of faults or
fault-density of a particular code unit. Examples of such models
can be found in [18, 20, 59, 66, 83].

Even though they predict slightly different things, both kinds of
prediction models were found to be useful from the perspective of
improving fault detection efficiency by focusing fault detection efforts
only on code units that are most likely to contain faults.

Sometimes introducing improvements to currently existing processes
might not be enough. It might be so that it is the process itself that is the
major problem. For example, the traditional Waterfall model is
considered to be ineffective when it comes to coping with rapidly
changing requirements [6, 23, 34, 52, 77]. In the Waterfall model a
change of requirements results in a need of repeating all development
stages from the beginning [71], which is the source of waste and
rework. Waste and rework result in productivity decrease, because they
increase the effort without increasing the product size. Therefore, many
new process models were suggested for markets in which requirements
are changing rapidly. These models usually favour customer
responsiveness over the control provided by the traditional Waterfall
model. In such models the customers are more involved in the
development process, changes are facilitated, and a part of a system or
its prototype is released to the customers at much earlier stage of
development than in the Waterfall model [52]. In this way the risks of
waste or rework are reduced.

There is a lot of research in the area of comparison of the traditional
Waterfall development process with other ways of developing software,
e.g., [6, 23, 34, 43, 58, 77]. These studies largely focus on comparing
the advantages and disadvantages of the Waterfall model compared to a

Introduction

 17

proposed new way of developing software. For example, Dalcher et al.
[23] present an experiment in which a number of teams developed
similar systems using different processes. In this study, the teams used a
traditional approach, incremental development, evolutionary
development, and extreme programming. The results showed that, in
fact, the use of modern approaches (i.e., incremental development,
evolutionary development, and extreme programming) lowered lead-
time and improved productivity.

4. Contributions in this thesis

In this section we present the major contributions in this thesis. We
describe our contributions in the order of the research questions (see
Section 2 for details regarding research questions). In Section 4.1 we
present our results concerning the technology driven productivity
improvement. In Section 4.1.1 we describe our findings regarding the
new server platform introduction (i.e., research questions: RQ1, RQ2).
Section 4.1.2 focuses on the results from our studies that aimed at
finding a cost-efficient architecture by combining standard and fault-
tolerant server platforms into one solution, which correspond to our
research question RQ3. Section 4.2 describes our contributions in the
area of process driven productivity improvement. In Section 4.2.1 we
present our results in improving the efficiency of fault detection, i.e.,
research questions: RQ4-RQ7. In Section 4.2.2 our contributions in the
field of process change evaluation are presented, i.e., research question
RQ8.

4.1 Technology driven productivity improvement

4.1.1 Platform change

Our first research question (RQ1, see Section 2.1.1) concerned the
impact of introducing new platform on productivity of software
development in a short and in a long term perspective. To answer this
question we performed two case studies at Ericsson. They are presented
in Paper I and Paper II. In these studies we measured the impact of a
fault-tolerant platform introduction on software development
productivity.

In Paper I we investigated the impact that the introduction of a fault-
tolerant platform had on software development productivity in a short
term perspective. We compared early software development
productivity on a fault-tolerant platform with the productivity in a
project in which a standard UNIX platform was used. We discovered

Introduction

 18

that the development was four times as productive on UNIX as on the
new platform when it comes to delivering functionality, i.e., in the
UNIX based project the same amount of work brought four times as
much functionality. This difference was caused by two facts: in UNIX
the code was written twice as fast and, on average, there was twice as
much functionality delivered by a line of code compared to the
development on the fault-tolerant platform.

In Paper II we present a case study performed at the same department
at Ericsson three years later. We compared the productivity in two
projects in which the fault-tolerant platform was used. One of them was
an early project, one of the first projects in which the platform was used
(the same as the one described in Paper I). The other was performed
three years later. We discovered that in the subsequent project the
functionality was delivered four times as fast as in the early one. On
average, in the subsequent project there was almost three times as much
functionality delivered by a single line of code and the code was written
40% faster.

Our second research question (RQ2, see Section 2.1.1) concerned the
development productivity improvement on the specialized fault-tolerant
platform. To address this question we identified issues that affect
productivity negatively and we suggested a number of remedies to these
issues. In Paper I we described reasons for low productivity in early
software development on the fault-tolerant platform. We identified
issues connected with staff competence, work characteristics, and
platform characteristics and we assessed their impact on productivity.
The staff competence level was considered as the one that most affects
the low code delivery rate. Lack of libraries for typical purposes (e.g.,
communication protocols) contributed most to the low amount of
functionality delivered by an average line of code. Therefore, as
remedies to the productivity problems of the early development on the
fault-tolerant platform we mainly suggested a number of competence
development activities. We also recommended some process and
platform improvements.

In Paper II we identified issues that affected productivity increase in
the subsequent, more mature development on the new platform. The
increase of code delivery rate was mostly caused by the increase of
experience and knowledge about platform among the developers. The
factor that contributed most to the large increase of the amount of
functionality delivered by an average line of code was a large dose of
code-reuse. Among the major productivity bottlenecks in the
subsequent development on the new platform we identified certain
platform related shortcomings, e.g., the lack of advanced programming
tools available for it. Therefore, as far as the mature development is

Introduction

 19

concerned, it seems that some platform improvements, mostly in terms
of advanced programming tools, could contribute to further productivity
increase.

4.1.2 Architecture change

As we have discovered before, the cost of development for the new
platform can be significant, especially just after the platform is
introduced (see Section 4.1.1). To minimize the impact of the low
development productivity on the project cost we decided to look for a
hybrid architecture that combines fault-tolerant and standard platforms
in order to provide good non-functional requirements in a cost-efficient
manner (RQ3, see Section 2.1.2). Since it is difficult to suggest and
evaluate such an architecture in a general way, we chose an example
application that is very likely to be implemented on the fault-tolerant
platform. The example we chose was a Diameter Credit-Control Server
[36], an application responsible for rating and accounting in prepaid
services. The technical qualities required from the Credit-Control
Server are availability, reliability and performance. To these qualities
we added the implementation cost.

The study described in Paper III aimed at establishing the current state-
of-the-art when it comes to implementing the Credit-Control Server on
the standard UNIX platform. We performed this study to obtain a point
of reference for the evaluation of our hybrid architecture. In the study
we identified four candidate architectures. All of them presented some
trade-off between availability, reliability and performance. In the study
we also identified certain problems that could not be overcome using
standard platforms. To overcome the limitations of standard platform
implementations we suggested a new architecture of the Credit-Control
Server. Our architecture is described in Paper IV. For the new
architecture we suggested four different variants of the Credit-Control
Server implementation. All variants offer significantly better
availability and reliability compared to the standard platform
implementations. The cost of implementation of our architecture is
about 30% higher compared to the standard platform implementation.
However, it offers the availability and the reliability comparable with
the implementation on the fault-tolerant platform for about one-third of
its price.

Introduction

 20

4.2 Process driven productivity improvement

4.2.1 Process improvement

Our next research question (RQ4, see Section 2.2.1 for details)
concerned the fault detection efficiency improvement that can be
expected from applying a fault prediction model. This question was
addressed in Paper V, where we suggested and evaluated a number of
fault prediction models. The study described in Paper V was based on
data from three releases of two large software systems produced by
Ericsson. Our prediction models were built using data from one release
of one of the systems. They were then evaluated using the data
describing the system on which they were built, the next release of the
system on which they were built, and a completely different system.
The fault prediction models built in this study were based on design and
code metrics and predicted fault densities of individual classes. Their
performance was quantified as the percentage of the theoretical
maximum efficiency improvement over not using any model at all. We
found that our models were able to provide, on average, 38% to 57% of
the maximal theoretical improvement in fault detection efficiency. This
means that using any of our models makes fault detection more efficient
than not using any model at all. The difference in performance of our
models, compared to not using any prediction model at all, was shown
to be statistically significant. Our best prediction model made it
possible to achieve 75% of the maximum possible improvement when
applied to the next release of the system on which it was built. When
applied to a completely different system it achieved 55% of the
maximum improvement.

Fault prediction models described in Paper V, are available only after
the system is implemented, because they are primarily based on code
metrics. Since there is an added value in having these predictions earlier
in the development process, we tried to find a method for early
prediction of faults (RQ5, see Section 2.2.1 for details). In Paper VI,
we suggest and evaluate methods for early fault density prediction in
modified classes. Our predictions are based on information concerning
the number of new and modified methods in the class. We evaluated
our prediction methods on the data from three large telecommunication
systems produced by Ericsson. We compared our predictions with the
state-of-the-art prediction model available after the code is
implemented. We found that our methods provide predictions that are
of similar quality to the best predictions available after the system is
implemented, but are available earlier in the development process.

Introduction

 21

Our next research question concerned the comparison of the accuracy
of fault prediction made by statistical prediction models with fault
prediction made by human experts (RQ6, see Section 2.2.1). In Paper
VII we present a study in which we compared these accuracies
empirically. We asked two groups of experts to perform predictions
concerning two large telecommunication systems developed by
Ericsson. Then we applied a statistical fault prediction model to these
two systems. It turned out that in both systems our statistical fault
prediction outperformed human estimations in two ways. First, it was
more accurate. Second, it accounted for more code (human experts
failed to estimate the fault-proneness of all code units in the system).

In all our studies described in this section we focused on modified code
only. The reason was that in the systems under study a majority of the
faults was usually found in the modified code. This does not imply that,
in general, modified code is more fault-prone. Therefore, in our next
research question we investigated this issue of “fault-proneness” of
modified code (RQ7, see Section 2.2.1). In Paper VIII, we compared
the fault-proneness of new and modified classes in four large
telecommunication systems. We found that there is no statistically
significant difference between new and modified classes when it comes
to either number of faults per class or class fault-density. However, we
found that, on average, the risk of introducing a fault when writing a
line of code in a new class is significantly smaller compared to the risk
connected with writing/modifying a line of code in an already existing
class.

4.2.2 Process change

In our last research question we focused on evaluating the impact of a
process change (RQ8, see Section 2.2.2 for details). In Paper IX we
present a study in which we evaluated a new process called Streamline
Development and its applicability for software development at
Ericsson. The major difference Streamline Development would
introduce, compared to the current development practices at Ericsson,
would be a reduced project scope. By reducing the scope the projects
will be less exposed to the risk of changing market demands. As we
found in Paper I and Paper II changing market demands belong to the
main productivity bottlenecks in software development projects.
Therefore, by reducing the risk of changing market demands,
Streamline Development should lead to improved development
productivity.

In Paper IX we identify opportunities and challenges connected with
changing from traditional software development to Streamline
Development. By performing interviews with persons representing the

Introduction

 22

roles that will be affected by changing the development process, we
collected a number of opinions regarding introducing Streamline
Development at Ericsson. These opinions were classified later using a
modification of Force Field Analysis [44], i.e., they were classified as
Pushing factors, Resisting factors, and Required changes. Pushing
factors are things that would improve if a new process was introduced.
Resisting factors are things that would deteriorate. Required changes
are things that must be taken care of before introducing the new
process. By balancing all those factors it was possible to perform an
early evaluation of Streamline Development. An overall conclusion
from this study was that that Streamline Development seems promising
and that it has potential to achieve its goals.

5. Methodology

5.1 Industrial relevance

The lack of industrial relevance is considered as one of the major
problems of software and computer engineering research. Researchers
tend to study problems irrelevant to the industry, which makes the gap
between the research and practice bigger and bigger [31]. Therefore,
industrial relevance was one of our primary objectives. We tried to
achieve this by looking for research problems and questions in industry,
establishing close co-operation with industry, conducting the research
in an industrial setting as well as discussing and validating the results
and conclusions in discussions with our industrial partners. We used
empirical methods; we observed, analysed and described real-life
situations. We collected our data from real, large projects that ended as
products available on the market. When performing estimations or
interviews we reached people that have experience in professional
software development.

The typical empirical research approaches are experiments, case studies
and surveys [50]. The major difference between them concerns the
scale and the level of formalism. The experiments are usually
performed in a “laboratory” setting in which a controlled environment
can be provided. In the experiments we can analyse the impact of
specified factors on the output since we are able to control and
eliminate the impact of other, possibly confounding factors. Because of
that control, the experiments can be replicated, which is highly
desirable in scientific studies. The laboratory setting, however, limits
the scope of the experiments. The case studies usually lack the
possibility of replication. They aim at “development of detailed,
intensive knowledge about a single case, or a small number of related
cases” [67]. Although sometimes hard to generalize, the case studies are

Introduction

 23

useful as a way of in-depth analysis of some particular real-life
phenomena. Surveys are easier to generalize since they usually involve
very large sample. Their major objective is to detect some general
trends in population. They, however, do not provide the same level of
in-depth analysis as a case study does.

The majority of our studies are case studies. In Paper I and Paper II we
analysed and compared three projects by performing interviews,
sending questionnaires, organizing workshops, studying documentation
and measuring the code characteristics. In Papers V-VIII we collected
code and design measurements from a number of real projects. In Paper
IX we applied our process evaluation method to evaluate a real
development process and Ericsson. In Paper III and Paper IV, we
introduced elements of experimentation. We evaluated a number of
architectures using scenario-based assessment [15], simulation [15] and
expert estimation [15]. The scenarios were created by the experts from
industry. Simulation was done in the industrial setting, involving crucial
elements of the real Credit-Control systems, real workload
characteristics and real hardware. The estimations were performed by
the experts from the industry and were based on analogies with the real
systems that are available in the market.

We believe that by introducing a link to industry in every stage of every
study we managed to assure industrial relevance in our studies.

5.2 Methods

Interviews and workshops. Interview is a very popular research
method that can be used in almost every stage of a study. They can be
used to collect data, they can help in data analysis and validation of the
results [67]. There are three types of interviews possible [67]:

 fully structured interview, in which the questions, their order
and wording are predetermined

 semi-structured interviews, in which the questions are
predetermined, but their order and focus can be modified
depending on the interviewee’s interest

 unstructured interviews, in which only the area of interest is
predetermined

According to [67] the flexibility of semi- and unstructured interviews
makes them a perfect choice for exploratory work.

In Paper I we used interviews for exploratory work. We performed a
number of semi-structured interviews to better understand the

Introduction

 24

characteristics of early development on the fault-tolerant platform and
to collect information about possible productivity bottlenecks. By using
semi-structured interviews we clearly indicated the topic we are
interested in and more or less guided the conversation, but we still left
space for interviewee initiative. It proved to be a good idea – the
interviewees mentioned some issues we did not take into account
earlier. A similar strategy was used in Paper II. However, instead of a
number of separate, semi-structured interviews we organized a
workshop with a number of experts. We pin-pointed the general
direction of the discussion, but we also adjusted the order and focus of
the topics discussed to the interest of the participants. We found the
workshop to be a very good method for conducting exploratory study
because it provoked discussions and brainstorming as well as resulted
in consensus decisions. In Paper IX we used interviews as our main
data collection method. The interviews were also semi-structured. To
each interview we invited a number of experts that shared the same role
in the company. In this way we managed to combine the benefits of
interviews and workshops – our questions provoked discussions, but the
participants focused on representing the same perspective.

Throughout all studies we performed a number of unstructured
interviews. In all our studies they were used in the analysis of the
findings as well as in the validation. We organized meetings in which
we discussed the correctness and the relevance of our findings and
judgements with the industrial experts. In Paper III and Paper IV we
performed unstructured interviews to verify our understanding of the
technology as well as to obtain information for the architecture
evaluation. In Paper IX unstructured interviews were mostly used to
define study scope and to assure a common understanding of study
goals.

Analytic Hierarchy Process (AHP). AHP [68] is “a method that
enables quantification of subjective judgments” [75]. It makes it
possible to assign priorities to the list of alternatives. In AHP pairwise
comparisons are performed. Each two alternatives are compared against
their relative importance. Based on such relative importance a total
priority vector is calculated. In the priority vector, there is a weight
assigned for each alternative. In this way the AHP outcome describes
not only the order but also the distances between the alternatives, i.e.
we can not only say that A is better than B but also that A is 3 times as
good as B. AHP is a well established method for performing
prioritisation in software engineering (see [7, 75] for an overview). We
used AHP in Paper I. As input we had a list of issues that were
identified in interviews as productivity bottlenecks. We asked each
respondent to perform an AHP analysis on those issues to find which of
the issues affect productivity most. AHP could potentially make it

Introduction

 25

possible for us to filter the issues that had large impact on productivity
from those which were (almost) insignificant. Since we had several
respondents we got several subjective priority vectors. To get rid of the
subjectivity and obtain a single priority vector we used an approach
similar to [75] – we took the mean values. AHP is sometimes criticized
as being time-consuming (when there are n alternatives, AHP requires
performing n*(n-1)/2 comparisons). However, since we had only 9
alternatives, which required 36 comparisons, neither we nor our
respondents consider it a major problem. Apart from the priority vector
AHP also provides an inconsistency index – a value from 0 to 1. It
describes to what extent the respondent’s answers were consistent (0 -
fully consistent, 1 - completely inconsistent). The rule is that the index
should have a value below 0.1 to consider the answer consistent [75].
Our respondents had consistency problems. To overcome these
problems we used AHP only as a supporting method. After performing
AHP the respondents got their priority vectors and were asked to
change them if they did not match their opinion. Only a few introduced
some rather insignificant changes.

Expert judgement. Despite its obvious shortcomings, like bias,
subjectivity and difficulty in repeating, expert judgement is an
acceptable and widely practiced way of performing estimations [12, 42,
69]. Expert judgement is used in many software engineering related
areas, from prediction [69] to assessment [15]. One of the major
problems connected with the expert judgement is the lack of precision.
Some researchers report huge discrepancy between the estimations
done by different experts (e.g. [57]). To overcome the problem of
subjectivity some methods that involve a group of experts were
suggested. Example of such a method is Delphi, in which the researcher
asks a number of experts for individual estimation and then iterates
until some kind of consensus is reached [12]. Some promising results
were reported by [57] in situations when group discussions were
performed. We used expert estimations in many of our studies. In the
ones described in Paper I and Paper II expert estimations were used to
assess the difference in amount of functionality delivered by two
products. The experts did this by discussing what kind of functionality
is delivered in each product and comparing the complexity of the
functionalities. In Paper III and Paper IV the experts estimated the
characteristics of good, average and bad quality of the Credit Control
Server implementation. In Paper IV we asked the experts to perform
development cost estimations. In Paper VII the experts were asked to
perform estimations regarding the most probable fault locations.

Architecture assessment methods. According to [15] there are the
following architecture assessment methods: scenario-based, simulation
based, mathematical model-based, and experience-based architecture

Introduction

 26

assessment. In scenario-based assessment the typical scenarios (e.g.
usage, change or hazard scenarios [15]) are defined. They are used for
predicting the quality attributes. We used scenarios in Paper III and
Paper IV to define the frequencies of events that have impact on the
studied qualities. Simulation based assessment involves “high level
implementation of the architecture” [15]. It makes it possible to assess
the performance of an architecture by executing a typical workload and
measuring the response time and the throughput [15]. This is the way in
which we used simulations in the studies described in Paper III and
Paper IV. The architecture assessment performed by us is rather simple.
We did not use any advanced methods for quality attribute prediction.
However, the purpose of our evaluation was to pin-point the strengths
and weaknesses of the architectures discussed and we think the
simplified examples presented it well enough.

Descriptive and inferential statistics. In our studies we use statistics
to both describe and summarize the data (descriptive statistics) and to
reason and draw conclusions about the data (inferential statistics). In
our studies presented in Papers I-VI,VIII we use basic concepts of
descriptive statistics (central tendency and dispersion measures, e.g.,
mean, median, and standard deviation) to summarize our datasets. In
Paper I and in Paper II additionally we present some of our data in
graphic form (histograms). In Papers V and VII we quantify the
strength of relationship between different variables using correlation
coefficient [3, 79]. Our prediction models from Paper V and Paper VII
are built using univariate and multivariate linear regression [79]. In our
studies we also test a number of hypotheses regarding our datasets and
our results. In Paper V we use Wilcoxon Signed-Rank Test [79] to
check if the improvements offered by our prediction models are
statistically significant. In Paper VIII we use Mann-Whitney U test [79]
to compare the fault-proneness of new and modified code units.

5.3 Validity

There are four types of validity: internal, external, construct, and
conclusion validity [79].

The internal validity “concerns the causal effect, if the measured effect
is due to changes caused by the researcher or due to some other
unknown cause” [40]. Generally, we can say that internal validity
threats concern the issues that could have impacted the phenomena we
discuss and which we did not take into account in the study. As we see
it, one issue that should be discussed in the context of internal validity
of our studies is the risk that, in the studies described in Paper I and
Paper II, the productivity could have been impacted by other than

Introduction

 27

platform related issues. To minimize this threat we took a number of
measures. One obvious step was to take quality into account. The
productivity could have been impacted by different quality levels of the
projects. We also deliberately selected projects done in the same
department to assure that the staff involved in those projects was at
least overlapping, which to some extent eliminated the risk of some
external competence input affecting the productivity. Also, when
performing the interviews concerning the productivity bottlenecks we
always had some open questions, in which the interviewees could
mention issues we did not ask about. Unfortunately, in overall it is
much easier to assure the internal validity in controlled experiments
than in case-studies. Therefore, we can not claim that we identified and
that we took all possible threats to internal validity into account, since it
is basically impossible. However, we did our best in identifying and
documenting possible threats to internal validity. Another situation in
which it may be interesting to discuss internal validity issues are our
fault prediction studies (i.e., Paper V-VII). In their case we obviously
neither can nor want to claim the causal relationship between our
predictor variables and faults. The study is based on correlations, so
there is a chance that there is some factor other than those taken into
account in this study that demonstrates itself in both predictor variables
selected by us and in faults. Therefore, it is possible to perform useful
predictions even without the causal relationship between dependant and
independent variables.

The external validity concerns the possibility of generalising the
findings. Certain results of our study are very situation dependant, e.g.,
the values of productivity differences and the quantifications of the
productivity bottlenecks’ impact from Paper I and Paper II. Also our
performance measurements from Paper III and Paper IV are hardware
dependant, e.g. much slower network connection or faster memory
would affect the actual results. Our fault prediction studies (Paper V-
VIII) are all based on data from the same company, so projects could be
considered to some extent, similar, which may explain why prediction
models are transferable between these projects. Also our factors that
impact the decision regarding the process change in Paper IX are very
much dependant on the situation at Ericsson at the time the study was
performed. However, we still believe that many general lessons can be
learned from our studies. For example, when changing to the
specialized technology with the unique programming model, certain
competence related problems are quite probable. Such technologies,
due to the limited number of users, may also suffer from a rather low
support in terms of tools or off-the-shelf, ready to use components.
What we would like to show is that there are certain problems
connected with the introduction of a very specialized technology and
that the total impact of these problems can be significant and should not

Introduction

 28

be underestimated. Also our suggestion of gradual introduction of the
specialized technology (Paper IV) shows that in some cases such a
solution can provide a good trade-off between technical and economical
requirements. In our studies we have also taken a number of measures
to assure the external validity of our results. For example, to assure the
external validity of our prediction models (Paper V-VII) we built and
evaluated those using data from different systems. We tried to select as
different systems as possible within one large company (e.g., systems
developed by different development organizations in different
countries). Finally, some of our major findings seem to be similar to
findings reported by other researchers, e.g., findings concerning
productivity bottlenecks from Paper I and Paper II, findings
concerning fault predictors in Papers V-VII, and findings concerning
the evaluation of Streamline Development in Paper IX. We believe that
these similarities strengthen our results.

The construct validity ”reflects our ability to measure what we are
interested in measuring” [40]. Simply speaking construct validity is
about assuring that what we have measured is actually what we wanted
to measure. It describes to what extent the quantities we have measured
reflect the concepts we wanted to measure. The construct validity might
be a problem in our case, since we try to measure abstract quantities,
like software size, software functionality, or quality. As we have
already discussed in Section 3.1.1 these problems will always occur,
since there are no standardized metrics for many of the concepts we
discuss. We tried to overcome that problem by explicitly describing
what and how we measure. In some cases (e.g., software size
measurement in Papers I and II) we applied multiple metrics (SLOC,
number of classes) and we checked if they correlate. In other cases, we
explicitly made certain assumptions (e.g., in Paper V-VII we assumed
that fault-density is a measure of fault-proneness of code unit).

The conclusion validity concerns the correctness of conclusions we
have made. When discussing conclusion validity we want to assess to
what extent the conclusions we made are believable. The difference
between internal and conclusion validity is that conclusion validity is
mostly interested in checking if there is a correct relationship (e.g.
statistically significant) between the input and the output [2]. Internal
validity describes if the relation between input and output was actually
caused by what we claim it caused. One possible threat to conclusion
validity is the reliability of the measures [2]. In our studies we used
estimations (Paper I-IV) extensively, which always can be affected by a
number of issues, like e.g., subjectivity of assessment. However, as we
have described in Section 5.2, we have tried to minimize their impact
by introducing certain precautions, like group consensus or group

Introduction

 29

discussion. Wherever possible, we have also checked the statistical
significance of our findings.

6. Conclusions

Our primary research goal in this thesis is to investigate how the
productivity of software development can be improved. We looked into
technology driven and into process driven productivity improvements.
A technology driven productivity improvement discussed in this thesis
is the introduction of a new specialized technology. Process driven
productivity improvements suggested and evaluated by us include using
fault prediction models for improving fault detection efficiency and the
change of the entire development process.

We investigated the impact of the new technology by performing case
studies in which we measured the productivity in the organization that
introduced the specialized, fault-tolerant platform. The measurement
revealed a significant decrease of productivity when the new
technology was introduced. We identified a factor of four in
productivity decrease compared to development where standard
technology is used. This factor of four was equally affected by low code
delivery rate and high average amount of code necessary to deliver
functionality. We found that both of these tend to improve with
experience and maturity. In mature development on the fault-tolerant
platform the productivity reached the level of the productivity on the
standard platform. It was, however, mostly due to the large code reuse
that reduced the amount of code necessary to deliver functionality.

To suggest improvements to the platform introduction process we
investigated the reasons for the low productivity in the initial
development on the new platform. We found that the main reason was
the competence level when it comes to using the new technology.
Therefore, as improvement methods, we mostly suggested a number of
competence development activities. However, since it seems that some
productivity decrease is unavoidable, we looked for a solution that
could decrease the impact of low initial productivity on project’s cost.
We showed that standard and fault-tolerant platforms can be combined
into a single architecture that provides good technical qualities for a
reasonable price. Such an architecture can be an interesting alternative
when development using the specialized technology is still very
expensive. We also identified productivity bottlenecks in the
subsequent software development. We observed a significant decrease
of the role of competence as a factor that affects productivity
negatively. As the major productivity bottleneck in subsequent
development on the new platform we found the shortage of

Introduction

 30

programming tools available for the specialized platform. Therefore,
our major productivity improvement suggestions for mature software
development concerned introducing tool support for the software
development on the specialized platform.

When looking for process driven productivity improvements we
focused mostly on suggesting and evaluating methods for increasing the
efficiency of fault detection. We suggested and evaluated a number of
statistical fault prediction models. We showed that our models were
able to provide, on average, 38% to 57% of the maximal theoretical
improvement in fault detection efficiency. We also found that in
industry fault predictions are commonly made by human experts.
Therefore, to assess the practical value of our models, we compared
their accuracy with the accuracy of predictions made by human experts.
We found that statistical fault prediction models outperformed human
estimations because they were more accurate and they accounted for
more code. To enable more efficient resource allocation in software
development projects we looked for methods that would enable fault
prediction early in the software development process, i.e., before the
system is implemented. We suggested a new method for such an early
fault prediction. We found that our method provided predictions of
similar quality to the best predictions available after the system is
implemented.

To further investigate the reasons for fault proneness of code units we
compared the fault proneness of new and modified code. We found no
significant difference between new and modified classes when it comes
to number of faults per class or class fault-density. However, we found
that the risk of introducing a fault when writing a line of code in a new
class is significantly smaller compared to the risk connected with
writing/modifying a line of code in an already existing class.

We also looked for improvements that can be achieved by changing the
development process. We performed an early evaluation of Streamline
Development, which is a new process concept developed at Ericsson.
One of the goals of this process is to improve productivity of software
development. To evaluate Streamline Development we identified its
advantages and drawbacks as well as issues that must be addressed
before it can be introduced. Overall, we found that Streamline
Development has potential to achieve its goals.

Introduction

 31

7. References

[1] IEEE standard for software productivity metrics, in IEEE Std 1045-
1992. (1993). 2.

[2] The Web Center for Social Research Methods,
http://www.socialresearchmethods.net/. (2005).

[3] A.D. Aczel and J. Sounderpandian, Complete business statistics,
McGraw-Hill, Boston, Mass., (2006).

[4] P.S. Adler and K.B. Clark, Behind the Learning Curve: A Sketch of the
Learning Process. Management Science, 37 (1991), 267-281.

[5] D. Barbara and H. Garcia-Molina, The case for controlled inconsistency
in replicated data. Proceedings of Workshop on the Management of
Replicated Data, (1990), 35-38.

[6] O. Benediktsson and D. Dalcher, Effort estimation in incremental
software development. Software, IEE Proceedings-, 150 (2003), 351-
358.

[7] P. Berander, Prioritization of Stakeholder Needs in Software
Engineering. Understanding and Evaluation, Licentiate Thesis,
Blekinge Institute of Technology, (2004).

[8] A. Bhide, Experiences with two high availability designs (replication
techniques). Second Workshop on the Management of Replicated Data,
(1992), 51-54.

[9] J.D. Blackburn and G.D. Scudder, Time-based software development.
Integrated Manufacturing Systems, 7 (1996), 60-66.

[10] J.D. Blackburn, G.D. Scudder, and L.N. van Wassenhove, Improving
Speed and Productivity of Software Development: A Global Survey of
Software Developers. IEEE Transactions on Software Engineering, 22
(1996), 875-886.

[11] B. Boehm and V.R. Basili, Software Defect Reduction Top 10 List.
Computer, 34 (2001), 135-137.

[12] B.W. Boehm, Software engineering economics, Prentice-Hall,
Englewood Cliffs, N.J., (1981).

[13] H.S. Bok and Raman, Software engineering productivity measurement
using function points: a case study. Journal of Information Technology,
15 (2000), 79-91.

[14] F. Bootsma, How to obtain accurate estimates in a real-time
environment using full function points. Proceedings of the 3rd IEEE
Symposium on Application-Specific Systems and Software Engineering
Technology, (2000), 105-112.

[15] J. Bosch, Design and use of software architectures: adopting and
evolving a product-line approach, Addison-Wesley, Harlow, (2000).

[16] Boston Consulting Group, Perspectives on Experience, Boston, (1972)
[17] L.C. Briand, J. Wust, J.W. Daly, and D.V. Porter, Exploring the

relationship between design measures and software quality in object-

Introduction

 32

oriented systems. The Journal of Systems and Software, 51 (2000), 245-
273.

[18] M. Cartwright and M. Shepperd, An empirical investigation of an
object-oriented software system. IEEE Transactions on Software
Engineering, 26 (2000), 786-796.

[19] Z. Chi and Z. Zheng, Trading replication consistency for performance
and availability: an adaptive approach. Proceedings of 23rd
International Conference on Distributed Computing Systems, (2003),
687-695.

[20] S.R. Chidamber, D.P. Darcy, and C.F. Kemerer, Managerial use of
metrics for object-oriented software: an exploratory analysis. IEEE
Transactions on Software Engineering, 24 (1998), 629-639.

[21] S.R. Chidamber and C.F. Kemerer, A metrics suite for object oriented
design. IEEE Transactions on Software Engineering, 20 (1994), 476-
494.

[22] R.T. Coupe and N.M. Onodu, An empirical evaluation of the impact of
CASE on developer productivity and software quality. Journal of
Information Technology, 11 (1996), 173-182.

[23] D. Dalcher, O. Benediktsson, and H. Thorbergsson, Development life
cycle management: a multiproject experiment. Fibres and Optical
Passive Components, 2005. Proceedings of 2005 IEEE/LEOS Workshop
on, (2005), 289-296.

[24] A.C. Edmondson, A.B. Winslow, R.M.J. Bohmer, and G.P. Pisano,
Learning How and Learning What: Effects of Tacit and Codified
Knowledge on Performance Improvement Following Technology
Adoption. Decision Sciences, 34 (2003), 197-223.

[25] K. El Emam, W.L. Melo, and J.C. Machado, The prediction of faulty
classes using object-oriented design metrics. The Journal of Systems
and Software, 56 (2001), 63-75.

[26] N. Fenton and M. Neil, A critique of software defect prediction models.
IEEE Transactions on Software Engineering, 25 (1999), 675-689.

[27] N. Fenton and S.L. Pfleeger, Software metrics: a rigorous and practical
approach, PWS, London; Boston, (1997).

[28] F. Fioravanti and P. Nesi, A study on fault-proneness detection of
object-oriented systems. Fifth European Conference on Software
Maintenance and Reengineering, (2001), 121-130.

[29] W. Fisher and S. Wesolkowski, How to determine who is impacted by
the introduction of new technology into an organization. Proceedings of
the 1998 International Symposium on Technology and Society, 1998.
ISTAS 98. Wiring the World: The Impact of Information Technology on
Society., (1998), 116-122.

[30] H. Garcia-Molina and B. Kogan, Achieving High Availability in
Distributed Databases. IEEE Transactions on Software Engineering, 14
(1988), 886-897.

[31] R.L. Glass, The software-research crisis. IEEE Software, 11 (1994), 42-
48.

Introduction

 33

[32] R.L. Glass, The Realities of Software Technology Payoffs.
Communications of the ACM, 42 (1999), 74-80.

[33] R.L. Glass, Frequently Forgotten Fundamental Facts about Software
Engineering. IEEE Software, 18 (2001), 112.

[34] D.R. Graham, Incremental development and delivery for large software
systems. Software Prototyping and Evolutionary Development, IEE
Colloquium on, (1992), 2/1-2/9.

[35] D. Haggander, L. Lundberg, and J. Matton, Quality attribute conflicts -
experiences from a large telecommunication application. Proceedings
of Seventh IEEE International Conference on Engineering of Complex
Computer Systems, (2001), 96-105.

[36] H. Hakala, L. Mattila, J.-P. Koskinen, M. Stura, and J. Loughney,
Diameter Credit-Control Application (internet draft - work in
progress). (2004): http://www.ietf.org/internet-drafts/draft-ietf-aaa-
diameter-cc-06.txt.

[37] P. Hantos and M. Gisbert, Identifying Software Productivity
Improvement Approaches and Risks: Construction Industry Case Study.
IEEE Software, 17 (2000), 48-56.

[38] J. Harvey, L.A. Lefebvre, and E. Lefebvre, Exploring the Relationship
Between Productivity Problems and Technology Adoption in Small
Manufacturing Firms. IEEE Transactions on Engineering Management,
39 (1992), 352-359.

[39] A. Hisgen, A. Birrell, T. Mann, M. Schroeder, and G. Swart,
Availability and consistency tradeoffs in the Echo distributed file
system. Proc. of the Second Workshop on Workstation Operating
Systems, (1989), 49-54.

[40] M. Host, B. Regnell, and C. Wohlin, Using Students as Subjects-A
Comparative Study of Students and Professionals in Lead-Time Impact
Assessment. Empirical Software Engineering, 5 (2000), 201-214.

[41] M. Huggett and S. Ospina, Does productivity growth fall after the
adoption of new technology? Journal of Monetary Economics, 48
(2001), 173-195.

[42] R.T. Hughes, Expert judgement as an estimating method. Information
and Software Technology, 38 (1996), 67-76.

[43] B.D. Jensen, A software reliability engineering success story. AT&T's
Definity PBX. Software Reliability Engineering, 1995. Proceedings.,
Sixth International Symposium on, (1995), 338-343.

[44] G. Johnson, K. Scholes, and R. Whittington, Exploring corporate
strategy, Financial Times Prentice Hall, Harlow, (2005).

[45] C. Jones, How office space affects programming productivity.
Computer, 28 (1995), 76-77.

[46] T.M. Khoshgoftaar, E.B. Allen, and J. Deng, Controlling overfitting in
software quality models: experiments with regression trees and
classification. Proc. of The 17th International Software Metrics
Symposium, (2000), 190-198.

Introduction

 34

[47] T.M. Khoshgoftaar, E.B. Allen, and D. Jianyu, Using regression trees to
classify fault-prone software modules. IEEE Transactions on
Reliability, 51 (2002), 455-462.

[48] T.M. Khoshgoftaar, E.B. Allen, W.D. Jones, and J.P. Hudepohl,
Accuracy of software quality models over multiple releases. Annals of
Software Engineering, 9 (2000), 103-116.

[49] T.M. Khoshgoftaar and N. Seliya, Fault Prediction Modeling for
Software Quality Estimation: Comparing Commonly Used Techniques.
Empirical Software Engineering, 8 (2003), 255-283.

[50] B. Kitchenham, L. Pickard, and S.L. Pfleeger, Case studies for method
and tool evaluation. IEEE Software, 12 (1995), 52-62.

[51] C. Low Graham and D.R. Jeffery, Function Points in the Estimation and
Evaluation of the Software Process. IEEE Transactions on Software
Engineering, 16 (1990), 64.

[52] A. MacCormack, C.F. Kemerer, M. Cusumano, and B. Crandall, Trade-
offs between productivity and quality in selecting software development
practices. IEEE Software, 20 (2003), 78-85.

[53] S.G. MacDonell, Comparative review of functional complexity
assessment methods for effort estimation. Software Engineering
Journal, 9 (1994), 107-116.

[54] S. Maffeis, Piranha: A CORBA tool for high availability. Computer, 30
(1997), 59-67.

[55] K.D. Maxwell, Collecting data for comparability: benchmarking
software development productivity. IEEE Software, 18 (2001), 22-26.

[56] K.D. Maxwell, L. Van Wassenhove, and S. Dutta, Software
development productivity of European space, military, and industrial
applications. IEEE Transactions on Software Engineering, 22 (1996),
706-718.

[57] K.J. Moløkken-Østvold and M. Jørgensen, Software Effort Estimation:
Unstructured Group Discussion as a Method to Reduce Individual
Biases, The 15th Annual Workshop of the Psychology of Programming
Interest Group (PPIG 2003). Keele University, UK, (2003), 285-296.

[58] J.r. Niels, Putting it all in the trunk: incremental software development
in the FreeBSD open source project. Information Systems Journal, 11
(2001), 321-336.

[59] A.P. Nikora and J.C. Munson, Developing fault predictors for evolving
software systems. Proc. of The Ninth International Software Metrics
Symposium, (2003), 338-349.

[60] N. Ohlsson, A.C. Eriksson, and M. Helander, Early Risk-Management
by Identification of Fault-prone Modules. Empirical Software
Engineering, 2 (1997), 166-173.

[61] N. Ohlsson, M. Zhao, and M. Helander, Application of multivariate
analysis for software fault prediction. Software Quality Journal, 7
(1998), 51-66.

Introduction

 35

[62] T.J. Ostrand, E.J. Weyuker, and R.M. Bell, Predicting the Location and
Number of Faults in Large Software Systems. IEEE Transactions on
Software Engineering, 31 (2005), 340-355.

[63] G.F. Pfister, In search of clusters, Prentice Hall, Upper Saddle River,
NJ, (1998).

[64] M. Pighin and A. Marzona, An empirical analysis of fault persistence
through software releases. Proceedings of the International Symposium
on Empirical Software Engineering, (2003), 206-212.

[65] M. Pighin and A. Marzona, Reducing Corrective Maintenance Effort
Considering Module's History. Proc. of Ninth European Conference on
Software Maintenance and Reengineering, (2005), 232-235.

[66] Y. Ping, T. Systa, and H. Muller, Predicting fault-proneness using OO
metrics. An industrial case study. Proc. of The Sixth European
Conference on Software Maintenance and Reengineering, (2002), 99-
107.

[67] C. Robson, Real world research: a resource for social scientists and
practitioner-researchers, Blackwell Publishers, Oxford, UK; Madden,
Mass., (2002).

[68] T.L. Saaty and L.G. Vargas, Models, methods, concepts & applications
of the analytic hierarchy process, Kluwer Academic Publishers, Boston,
(2001).

[69] M. Shepperd and M. Cartwright, Predicting with sparse data. IEEE
Transactions on Software Engineering, 27 (2001), 987-998.

[70] H.M. Sneed, Measuring the performance of a software maintenance
department. 1st Euromicro Conference on Software Maintenance and
Reengineering, (1997), 119-127.

[71] I. Sommerville, Software engineering, Addison-Wesley, Boston, Mass.,
(2004).

[72] G.J. Steven, The learning curve: From aircraft to spacecraft?
Management Accounting, 77 (1999), 64-65.

[73] C. Stevenson, Software engineering productivity: a practical guide,
Chapman & Hall, London, (1995).

[74] H. SungBack and K. Kapsu, Identifying fault-prone function blocks
using the neural networks - an empirical study. IEEE Pacific Rim
Conference on Communications, Computers and Signal Processing, 2
(1997), 790-793.

[75] M. Svahnberg, Supporting software architecture evolution: architecture
selection and variability, Ph.D. Thesis, Blekinge Institute of
Technology, (2003).

[76] C.R. Symons, Software sizing and estimating: Mk II FPA (function
point analysis), Wiley, New York, (1991).

[77] P. Tran and R. Galka, On incremental delivery with functionality.
Computers and Communications, 1991. Conference Proceedings.,
Tenth Annual International Phoenix Conference on, (1991), 369-375.

Introduction

 36

[78] M. van Genuchten, Why Is Software Late? An Empirical Study of
Reasons for Delay in Software Development. IEEE Transactions on
Software Engineering, 17 (1991), 582-591.

[79] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and A.
Wesslen, Experimentation in software engineering: an introduction,
Kluwer, Boston, (2000).

[80] T.P. Wright, Factors affecting the costs of airplanes. Journal of
Aeronautical Sciences, 3 (1936), 122-128.

[81] H. Yu and A. Vahdat, Building replicated Internet services using
TACT: a toolkit for tunable availability and consistency tradeoffs. 2nd
International Workshop on Advanced Issues of E-Commerce and Web-
Based Information Systems, (2000), 75-84.

[82] W.D. Yu, D.P. Smith, and S.T. Huang, Software productivity
measurements. Proceedings of the 15th Annual International Computer
Software and Applications Conference COMPSAC '91., (1991), 558-
564.

[83] M. Zhao, C. Wohlin, N. Ohlsson, and M. Xie, A comparison between
software design and code metrics for the prediction of software fault
content. Information and Software Technology, 40 (1998), 801-809.

[84] S. Zhong, T.M. Khoshgoftaar, and N. Seliya, Analyzing software
measurement data with clustering techniques. IEEE Intelligent Systems,
19 (2004), 20-27.

[85] S. Zhong, T.M. Khoshgoftaar, and N. Seliya, Unsupervised learning for
expert-based software quality estimation. Proceedings of the Eighth
IEEE International Symposium on High Assurance Systems
Engineering, (2004), 149-155.

Introduction

 37

Introduction

Paper I

Paper II

Paper III

Paper IV

Paper V

Paper VI

Paper VII

Paper VIII

Paper IX

Software Development Productivity on
a New Platform - an Industrial Case Study

Piotr Tomaszewski, Lars Lundberg

Information and Software Technology (2005), Vol 47/4 pp. 257-269

Abstract

The high non-functional requirements on mobile telecommunication
applications call for new solutions. An example of such a solution can
be a software platform that provides high performance and availability.
The introduction of such a platform may, however, affect the
development productivity. In this study we present experiences from
research carried out at Ericsson. The purpose of the research was
productivity improvement and assessment when using the new platform.
In this study we quantify and evaluate the current productivity level by
comparing it with UNIX development. The comparison is based on two
large, commercially available systems. We reveal a factor of four
difference in productivity. Later we decompose the problem into two
issues: code writing speed and average amount of code necessary to
deliver a certain functionality. We assess the impact of both these
issues. We describe the nature of the problem by identifying factors that
affect productivity and estimating their importance. To the issues
identified we suggest a number of remedies. The main methods used in
the study are interviews and historical data research.

Paper I

 42

Software Development Productivity on a New Platform
- an Industrial Case Study

 43

1. Introduction

Handling the rapid growth of the number of services and subscribers in
telecommunication networks has become a very challenging
engineering task. Apart from high performance and high capacity the
systems that create the infrastructure for the mobile telecommunication
network must provide high availability. No downtime is accepted since
it results in huge losses. Different telecom system developers deal with
high availability in different ways. There are hardware based solutions,
which main purpose is to avoid a system crash, as well as software
based solutions, that try to handle the situation after a system crash. As
a result of the latter approach, a new server platform was introduced by
Ericsson. The platform has features that facilitate development of
systems with strong high availability requirements. The first
experiences after the change of the platform revealed an increase of
development time and cost. Both of them affect time-to-market, which
is a crucial factor for economically successful software development.

In this paper we look at two large industrial projects at Ericsson. These
projects concern the development of similar products. One project uses
the new server platform and the other one uses a traditional UNIX
development environment. By comparing time reports from the two
projects and conducting interviews we were able to assess and compare
the productivity for the two environments. A well know problem when
dealing with productivity measures is the lack of metrics for measuring
the size of the software. The most commonly used metric is the number
of code lines [3, 4, 21, 30] We will discuss this and alternative metrics
later in the paper. We also consider ways to measure the quality and
complexity of the code, and not only the size. Furthermore, we identify
some productivity bottlenecks; one category of these bottlenecks has to
do with lack of experience. It is well known from many application
domains that tacit knowledge, that has to be acquired by long term use
and experience, is one source of initial productivity problems when
introducing new technology [10] but as people get more used to the
new technology these problems should go away.

This study was planned as one of the activities aiming at understanding
and improving of the development productivity in the new
environment. The initial analysis resulted in formulation of the
following research questions:

- How large is the productivity problem? – when the study was
started there were no hard proofs that productivity has actually

Paper I

 44

decreased when the new platform was introduced. The
knowledge about satisfactory productivity level and productivity
level on the new platform would allow us to quantify the
problem. To achieve that we must measure the productivity of
software development on the introduced platform and, to obtain
a point of reference, compare it with the productivity level in
another project, in which the productivity was perceived as
good. As discussed above, two projects were selected for
comparison:

• Project A representing UNIX development. The
productivity in that project was perceived as
satisfactory. This project resulted in Product A.

• Project B representing the development on the
introduced platform. It resulted in Product B.

Both systems are large (approximately 40 – 60 man years, 100-
200 KSLOC), commercially available, high quality systems that
are part of mobile telephone network.

- Why does the problem occur? – to solve the problem we must
identify the issues that cause it. These issues would indicate
areas in which there are opportunities for improvement.

- What can be done about it? – for the issues identified we
suggested the remedies.

This paper is an improved and extended version of a previous
conference paper [27]. In the current paper we present new and
additional data and expand the discussion concerning quality aspects
and the lessons that can be learned from our case study. We also
include a significantly expanded discussion about related work.

2. Presentation of the platform

The server platform introduced by Ericsson is usually used in real-time
telecommunication applications. This type of applications is
characterized by very strong non-functional requirements, like the need
for scalability, high availability and efficiency. On the other hand
market demand for lowering maintenance costs and the best
price/performance ratio forces the use of standard hardware
components. The new platform meets these requirements. The
hardware platform, presented in Figure 1, comprises:

- A number of traffic processors that process pay-load. These are
Intel Pentium III processors, and each of them has its own
memory

Software Development Productivity on a New Platform
- an Industrial Case Study

 45

- Four I/O processors responsible for the external communication,
maintenance and monitoring of the whole system. These are
standard Sun machines running Solaris

- Two Ethernet switches and two separate interconnections via
Ethernet networks

Figure 1. The hardware configuration of the platform

Although the platform offers standard interfaces (APIs) for Java and
C++, the programming model is unique. The main execution unit is a
process. There are two types of processes, static ones that are always
running and dynamic ones that are created and destroyed on request.
The inter-process communication is done by dialogue objects or
globally accessible database objects. Dialogue objects are used for
message passing communication (Figure 2). In the communicating
processes two corresponding Dialogue type objects have to be created.
They exchange messages using built-in mechanism provided by the
platform.

Figure 2. Inter-process communication using dialogue objects

Paper I

 46

Database objects are the basic units of storage in the internal database.
They can be accessed by any process running on the platform. They can
therefore be used to implement a shared-memory communication model
(Figure 3).

Figure 3. Inter-process communication using database objects

In order to assure an efficient load balance the programmer has a set of
methods for specifying the allocation of database objects and processes
to processor pools, i.e. sets of traffic processors on which database
objects and processes may end up. The load balancing within a pool is
done by the platform itself.

The platform facilitates programming of the highly available systems,
i.e. every process or database object is automatically replicated on
different machines in the cluster – a crash of one of them does not
affect the correct operation of the whole system. Additionally the
platform has built-in features that allow online upgrades of the
applications that operate on the platform.

The two applications examined in our study co-operate within the same
system that works in the service layer of the mobile telephony network.
In each of them the high availability requirement was provided in a
different way. In Product A high availability is assured by a backup
server that takes over the work when the main server fails. Product B
uses the new platform features to provide high availability.

Both applications have similar design structure. The following
subsystems can be identified:

- Platform–software that extends functionalities provided by
platform

- Communication–software responsible for handling of
communication protocols

Software Development Productivity on a New Platform
- an Industrial Case Study

 47

- Functionalities–software that contains actual business logic of
the application

Both systems are written in C++. To minimize the impact of software
reuse on the productivity measurement, only the first versions of both
products were taken into account – both were written “from scratch”.
Additionally it should be noticed that Product B was one of the first
projects done on the new platform by the team of developers examined
in the study. Before taking part in the project the project members
underwent a training program about the new platform. The training
program comprised of a one week long course. Additionally, the
developers were provided with a web based tutorial that covered basic
issues connected with programming on the new platform. They also
produced a number of prototypes to gain practical, “hands-on”
knowledge about the platform. According to the majority of the
developers the quality of the introduction process was not satisfactory.
They suggested that they would benefit significantly from longer and
more advanced training.

3. Methods

In this Section we present methods used in the study. Each subsection
in this Section has a corresponding subsection in Section 4 where the
results are presented.

3.1 Productivity measurement

The first thing that must be done is establishing what productivity is
and how it can be measured. The traditional productivity definition as a
ratio of output units produced per unit of input effort [1] is not easily
applicable to software development. The input effort is usually defined
as the sum of all resources that were used to produce the output. In the
software development the biggest part of whole production cost is the
cost of work. Therefore, in the study, person hours were taken as the
input unit of effort. It is much more difficult to select the metric for the
unit of product. Two perspectives of measuring the size of the system
can be identified:

- Internal viewpoint (developer’s perspective) – describes the
amount of code that must be produced to complete the system

- External viewpoint (customer’s perspective) – refers to the
amount of functionality provided by the system.

Paper I

 48

The internal point of view metrics usually measure the physical
“length” of the code produced. Typical units of the internal size are
number of source lines of code, number of classes or number of
functions. Internal size measurements can be easily obtained by the use
of automatic tools. The often mentioned weakness of measuring the
system size using code lines is that result depends on the coding style -
one programmer can write a statement in one line while other can
consistently spread it among a number of lines. To check if such a
situation took place the ratio of code lines per C++ statement was
calculated for both projects. This metric should, to a certain extend,
assure that coding style was similar in both projects.
The internal perspective may be confusing, since one platform may be
“more productive” when it provides a certain functionality using “less
code”. The measurement from an internal perspective would not reveal
this. However the measurement from external perspective is difficult in
real time systems. This measurement should take into account not only
the “amount” of functionality but also the complexity, which is very
difficult to quantify. Therefore existing functional size metrics, like
Function Points, are not recommended for real-time systems size
measuring [26]. Instead of measuring we decided to estimate the ratio
of functional size of both systems. Since expert judgement is
considered as an acceptable way of performing estimations [6, 19, 24],
we used it for comparing the functionality of both systems.

The following data concerning the sizes of both projects were
collected:

- Number of person hours spent on each project (Hour) – only the
development phase of the project was taken into account
(design, implementation, testing). Person hours contain
designers, testers and managers work hours.

- Number of code lines in each project (SLOC) - we counted only
lines with C++ code, comments and blank lines were not
counted.

- SLOC/C++ statement ratios in both projects
- Number of classes in each project (NoC)
- Ratio of amount of the functionality in both projects (FUNC) –

an expert estimation. A total of 6 experts were interviewed for
the estimation. All of them had knowledge concerning both
projects. The results of the estimation were analysed by three
other experts and a consensus was achieved.

Software Development Productivity on a New Platform
- an Industrial Case Study

 49

3.2 Quality aspects

The main weakness of the size measurement methods is that they do
not take any quality factors into account. The productivity can only be
“interpreted in context of overall quality of the product” [1]. Software
product must meet certain quality requirements (minimum acceptable
requirements) before the productivity metric can be applied. Therefore,
in the study, quality aspects were kept in mind when evaluating
productivity. Big differences in any aspect of quality may possibly
explain the difference in productivity – in that case lower productivity
could be the price for higher quality.

In the study we have considered following quality factors that
according to us can have impact on productivity:

- design quality – quality of application design and quality of
code produced. Better design pays off in testing and
maintenance phases and is more likely to be reused in other
projects in future and therefore can be considered an added
value.

- final product quality – qualities actually achieved in the final
application. Example of such qualities may be non-functional
requirements. High non-functional requirements (security, high
availability) can be the important cost driver and therefore can
explain relatively high development time.

- quality of development process – high quality of development
process does not guarantee high quality of final product but
makes achieving it more probable.

It is obvious that the lines of code are affected by a number of things. It
is more difficult to produce well designed, structured and organized
code. From the software metrics suggested by [9, 11] that are
applicable for object oriented systems we selected those that were
proven to have impact on quality of the system [2, 7, 8, 11]. Therefore,
a number of metrics, describing different aspects of design quality,
were applied:

- McCabe Cyclomatic Complexity (MCC) metric [11]. This metric
measures number of linearly independents paths through the
function. According to [13] “Overly complex modules are more
prone to error, are harder to understand, are harder to test, and
are harder to modify.”

- Lack of Cohesion (LC). It measures “how closely the local
methods are related to the local instance variables in the

Paper I

 50

class” [11]. The idea is to measure to what extent the class is a
single abstraction. In [8] Chidamber, Darcy and Kemerer
proved that the Lack of Cohesion metric has impact on
productivity. According to them the implementation of classes
with high LC was difficult and time consuming. In the study we
counted LC using method suggested by Graham [14, 17] which
gives normalized values of LC (0%-100%). We considered
normalized values more applicable for comparison purposes.

- Coupling (Coup) [9, 11], the metric measuring the number of
classes the class is coupled to. This metric allows assessing the
independence of the class. Coupling is widely recognized as
important factor influencing productivity [8] and fault proneness
[2, 7].

- Depth of Inheritance Tree (DIT) measures how deep in
inheritance hierarchy the class is. According to [9] high DIT
values resulting in higher complexity make prediction of class
behaviour more difficult. In [2] Basili, Briand and Melo proved
that there is relation between DIT and fault proneness of the
class.

- Number of Children (NC) defined as “number of immediate
subclasses subordinated to a class in the class hierarchy” [9]. In
[9] authors claim that classes with huge amount of subclasses
have potentially bigger impact on the whole design and
therefore they require more testing (their errors are propagated).

Other quality aspects, like quality of the final product or quality of the
development process are difficult to quantify. Therefore the opinions
about both of them were collected during interviews. Twenty
developers were interviewed in a semi-formal manner [22]; later an
additional ten informal interviews were performed. When it comes to
the quality of the final product the interviews mainly concerned
comparison of non-functional requirements put on the systems. The
development process quality discussions focused on the amount of
quality assurance activities, like testing, inspections or the level of
detail in project documentation.

3.3 Productivity bottlenecks

The next step after estimating the size of the productivity was the
identification of issues that affect productivity. We were aiming at
localization of productivity problems on the new platform. Therefore
we focused on identifying the productivity bottlenecks only in Project
B. Since productivity can be affected by factors of different nature the
decision was made to take into account all the areas of productivity
bottlenecks localizations, which are [15]:

Software Development Productivity on a New Platform
- an Industrial Case Study

 51

- People–issues connected with competence level of people
involved in the development process

- Processes–issues connected with work organization
characteristics

- Technology–issues connected with technology used, in our case
mainly different platform shortcomings

In order to identify the issues that affect the productivity we performed
interviews with 20 developers directly involved in the development on
the new platform. The interviews were semi-formal [22]. Apart from
reporting productivity bottlenecks, the interviewees were asked for
suggestions of improvements/remedies. Basing on data collected during
the interviews we created a list of productivity bottlenecks.

The additional analysis was performed to estimate to what extend each
of the identified issues affects the productivity. The method selected for
that is called Analytic Hierarchical Process - AHP [23]. Each
respondent did pair-wise comparisons between different issues and
basing on those comparisons the final importance of the different issues
was calculated [23]. The comparison was based on the question “Which
alternative do you feel affects productivity more?”. The AHP
questionnaires were distributed among the same group of people that
took part in the interviews. The AHP method made it possible to build
the hierarchy of the importance for each respondent and assigning
weights of importance to alternatives. An example of importance
vector for 6 issues is presented in Table 1. Such a vector is an outcome
of an AHP analysis performed by a single respondent.

Table 1. Example of the importance vector (N.B. importance figures always sum up
to 100%)

Bottleneck Importance
Issue 1 (e.g. voice conversation) 30%
Issue 2 (e.g. games) 10%
Issue 3 (e.g. SMS) 20%
Issue 4 (e.g. alarm) 15%
Issue 5 (e.g. calculator) 15%
Issue 6 (e.g. tunes) 10%

To ensure that the results really reflect the opinions of the respondents
each of them was presented with an individual importance vector and
was allowed to change/adjust it. The individual importance vectors
were used to create the importance vector of the whole group. It was
created by calculating an average importance weight for each issue.

Paper I

 52

The AHP analysis was performed by the same group of developers that
took part in the interviews during which the productivity bottlenecks
were identified.

4. Results

Each subsection in this Section presents results of application of the
methods described in corresponding subsection in Section 3.

4.1 Productivity measurement

Due to the agreement with the industrial partner all measurement
results will be presented either as [Project A / Project B] ratios or
[Project A - Project B] differences. No results will be presented as
absolute values.

The results of the size and the effort measurements taken on both
projects are summarized in Table 2. The table presents relative values
only.

Table 2. Project size and effort ratios

Metric Project A/Project B
Code lines (SLOC) 1.5
Number of classes (NoC) 1.5
Functional size (FUNC) 3.0
Person hours (Hour) 0.7

To check if similar coding style was used in both projects, the average
number of code lines/C++ statement was calculated for both projects. It
turned out to be similar. In Project A it was 2,22 lines/statement, while
in Project B it was 2,42 lines/statement. Therefore we considered code
lines comparable between both projects.

The significant difference (factor of 2) between the internal viewpoint
measurement (code lines, classes) and the external viewpoint
measurement (functionalities) suggests that UNIX is more successful in
providing functionality – on average half of the code is required to
provide a certain functionality. To explain that phenomena the structure
of both projects was examined. The structure is presented on Figure 4.
There is significant difference in the distribution of code in the
subsystems. The large difference in amount of code in the Platform part
can easily be explained. In Project A the own platform extension was

Software Development Productivity on a New Platform
- an Industrial Case Study

 53

developed on the top of the system, which was not the case in Project
B. The subsystem responsible for the business logic (Functionalities) is
about 3 times bigger in Project A which meets the expectations –
according to the experts there is 3 times more functionality in Project
A. In the unknown part there is a large difference in the amount of
code for communication handling. We performed a number of
interviews to explain the fact that more code is needed per average
functionality. During the interviews we presented the diagram from
Figure 4. Three possible explanations of the phenomena were
mentioned:

Figure 4. Product structure

Project A Project B

Other
Functionalities
Communication
Platform

- In UNIX the support for communication is better – i.e. there are
more third party libraries available or the system itself provides
more

- In general it is more difficult to design systems on the new
platform. The design is more complex, more code has to be
written to complete a certain functionality

- The platform lacks certain tools (for example a good debugger)
and therefore more code must be written to compensate for that
(i.e. debug printouts that help in tracing faults)

From the information about the size and the effort the development
productivity ratios were calculated. The results are presented in
Table 3.

Paper I

 54

Table 3. Productivity ratios

 Project A / Project B
SLOC/PH 2.15
NoC / PH 2.15
FUNC/PH 4.30

4.2 Quality aspects

To compare the design quality in both systems a number of
measurements (described in Section 3.2) were done. Each metric will
be analyzed separately. Since all the metrics are done either on the
function or on the class level (values are obtained either for each
function or for each class) in order to compare two systems we will
examine the distribution of the values in each of them. For each metric
we will present mean, median, standard deviation and minimal and
maximal values obtained. This way of describing measurements was
presented in [2]. We will also present histograms describing in
graphical form how many percent of the entities (classes, functions) in
the system have certain value of the metric. Since it is sometimes
difficult to assess if the obtained values are typical or not, where it is
possible we will add a column where the corresponding values from the
study described in [2] will be presented. Other examples of such values
can be found in [7-9, 20]. We selected values from [2] for comparison
purposes because measurements there were taken on relatively large
amounts of C++ classes, which is similar to our study, and the same
types of data were collected as in our study. Values from other studies
mentioned [7-9, 20] will be used when discussing the findings.

The first metric applied was McCabe Complexity. Results were
obtained on function level and are presented in Table 4.

Table 4. McCabe complexity

 Project A Project B
Mean 3.3 2.5
Median 1 1
Maximum 125 96
Minimum 0 1
Std. deviation 5.8 5.0

Software Development Productivity on a New Platform
- an Industrial Case Study

 55

According to [11] McCabe Complexity of the function should not be
higher then 10, otherwise the function is difficult to test. We examined
the data from that perspective (Figure 5).

Figure 5. McCabe Complexity - distribution

0

20

40

60

80

100

120

0-10 More

McCabe complexity

Pe
rc

en
ta

ge
 o

f t
he

 fu
nc

tio
ns

Project A
Project B

In both projects the vast majority of the functions (95% in Project A
and 97% in Project B) have complexity values within 0-10 range and
therefore we consider both projects similar from that perspective.

The remaining measurements gave the results on the class level.

The second metric applied was the Lack of Cohesion. The results are
summarized in Table 5.

Table 5. Lack of Cohesion

 Project A Project B
Mean 49.9 46.8
Median 57 57
Maximum 100 100
Minimum 0 0
Std. deviation 35.5 37.4

The distribution of LC values between classes of both systems is
presented on Figure 6.

Paper I

 56

We can observe that trends in distribution are similar in both systems.
Mean and median values are also similar. Therefore we consider both
systems similar from a Lack of Cohesion viewpoint.

Figure 6. Lack of Cohesion - distribution

0

5

10

15

20

25

30

35

40

0-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-
100

Lack of Cohesion

Pe
rc

en
ta

ge
 o

f c
la

ss
es

Project A

Project B

The next metric applied was Coupling. The results are summarized in
Table 6.

Table 6. Coupling

 Project A Project B Ref.[2]
Mean 6.0 5.1 6.80
Median 3 3 5
Maximum 82 35 30
Minimum 0 0 0
Std. dev. 8.6 5.7 7.56

In order to compare to what extend coupling values obtained in both
projects are similar we looked for data describing coupling in typical
projects. The mean coupling values reported in [2, 7-9, 20] are usually
between 5 and 7. The distribution of coupling values in the project
classes is presented on Figure 7.

We consider the distribution of coupling values similar for both
projects. The values from Table 5 place both our projects among
typical projects from coupling point of view. Therefore we consider
them similar from that perspective.

Software Development Productivity on a New Platform
- an Industrial Case Study

 57

Figure 7. Coupling – distribution

0

5

10

15

20

25

30

35

40

1 5 9 13 17 21 25 29 More
Coupling

Pe
rc

en
ta

ge
 o

f c
la

ss
es

Project A

Project B

The application of the Depth of Inheritance Tree metric gave results
presented in Table 7.

Table 7. Depth of Inheritance

 Project A Project B Ref.[2]
Mean 0,62 0,78 1.32
Median 0 1 0
Maximum 4 3 9
Minimum 0 0 0
Std. dev. 0.8 0.7 1.99

Comparing to [2, 9] the mean, median and standard deviation values
obtained in the study are much lower. The distribution of DIT values is
presented on Figure 8.

From Figure 8 it can be observed that the difference between projects is
caused by about 20% of the classes that in Project B have depth 1 while
in Project A the depth is 0. We consider that difference rather small
especially because comparing to other studies the average DIT values
in both examined projects are small.

Paper I

 58

Figure 8. Depth of Inheritance - distribution

0

10

20

30

40

50

60

70

0 1 2 3 4

Depth of Inheritance

Pe
rc

en
ta

ge
 o

f c
la

ss
es

Project A
Project B

The last metric applied was Number of Children (NoC). The results are
summarized in Table 8.

Table 8. Number of Children

 Project A Project B Ref.[2]
Mean 0.35 0.19 0.23
Median 0 0 0
Maximum 24 9 13
Minimum 0 0 0
Std. dev. 1.8 0.9 1.54

 Compared to the reference project we can observe that Project A has
similar characteristics, while in Project B mean value is about twice as
small. The median value is in both cases equal 0. The distribution of
NoC values is presented on Figure 9.

As it can be seen on Figure 9 over 90% of classes in both projects has
NoC equal to 0. The difference in mean value is caused mostly by 2%
of classes that in Project A have 1 child while in Project B they have 0.
Since the distribution is almost identical we consider both projects
similar from NoC perspective.

After analyzing all the measurements taken we can not observe any
major difference in design quality between the two projects. Therefore
we consider the design quality similar in both projects.

Software Development Productivity on a New Platform
- an Industrial Case Study

 59

Figure 9. Number of Children – distribution

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 More

Number of Children

Pe
rc

en
ta

ge
 o

f C
la

ss
es

Project A
Project B

The measurements presented above describe only design quality.
Equally important for the productivity assessment are the quality
aspects of the system developed (i.e. non-functional requirements) and
the quality aspects of the development process (i.e. number of the
quality assurance activities). The overall impression was that Project B
was more ambitious in terms of the process quality aspects. Due to the
relative novelty of the platform, and in order to minimize anticipated
influence of the learning effect, much effort was put on quality
assurance (inspections, testing) and documentation activities. The non-
functional requirements put on the systems were similar, but during
interviews the designers mentioned that they believed the non-
functional characteristics achieved in the project were better in the
system developed on the new platform.

Both systems met the requirements that were put on them.

4.3 Productivity bottlenecks

The nature of the productivity problems was identified during
interviews. As a result of them the list of nine issues that negatively
affect the productivity in the Project B was formulated:

- Not enough experience sharing (i.e. seminars, meetings) and
training activities – this problem impacts the productivity in two
ways:

• The skills of the staff are not developed as quickly as
it would be possible.

Paper I

 60

• The “reuse” of ideas is smaller. Better exchange of the
information would prevent the situation when two
people invent a solution to the similar problem
separately.

- Staff competence level – the novelty of the platform causes
overhead connected with learning. This is important because,
according to interviewees, the start up time on the new platform
is relatively long comparing to e.g. UNIX.

- Quality of the new platform’s documentation – Certain problems
connected with the documentation’s quality and availability
were mentioned. According to interviewees a better structured
and updated source of technical information on the new platform
would positively affect the speed and quality of software
development.

- Runtime quality of the new platform – low runtime quality of the
platform makes development and testing more difficult.
Relatively high amount of faults was classified as platform
related, which means that they occurred due to the platform
error. Therefore the scope of potential fault localizations is
bigger compared to more mature platforms, which adds a lot of
complexity to testing.

- The platform interface (API) stability – unexpected changes in
the API in the different platform releases result in the need of
“redoing” parts of the system to meet the new API specification.

- Lack of target platform in the design phase – Designers do not
have access to a real cluster. Instead they are working with an
emulator, which is not 100% compatible with the target
platform. The faults caused by the incompatibility are
discovered later, in testing phase, when the cost of correction is
much higher.

- Too much control in the development process – due to the
novelty of the platform there was a strong pressure on the
quality assurance activities, like large amount of inspections or
detailed documentation produced on quite low level. It resulted
in heavy and costly development processes.

- Unstable requirements – the unstable requirements make it
necessary to redesign parts of the system, sometimes in later
stages of the project, which is extremely costly.

- Too optimistic planning and too big scope of the projects – big
scope of projects combined with the novelty of the platform may
result in long lead-time. Long lead-time projects are much more
prone to change requests due to changes of market demands.

Software Development Productivity on a New Platform
- an Industrial Case Study

 61

It is noticeable that the bottlenecks identified have different nature.
This suggests that the productivity problem is complex and depends on
many factors.

The interviewees were asked to prioritize the issues to show which,
according to them, affects productivity most. Thanks to the use of the
AHP method we were able to create individual importance vectors. For
each interviewee we calculated the weights of importance that the
interviewee assigned to the issues. Weights were normalized, so they
always sum up to 100%. Based on the individual importance vectors
the average vector was calculated (see Section 3.3). Table 9 presents
the final ranking of the issues affecting the productivity of the software
development on the new platform.

Table 9. Productivity bottlenecks prioritization

Bottleneck Importance
Staff competence level 22%
Unstable requirements 16%
Not enough experience sharing and
training activities

13%

Quality of platform’s documentation 10%
Runtime quality of the platform 10%
Too much control in development process 9%
Too optimistic planning, too big scope of
projects

8%

Lack of target platform in the design phase 7%
Platform interface stability (API) 5%

5. Discussion

5.1 Related work

In the literature the software productivity research has gone in two
main directions [21]:

- productivity measurement
- identification of factors that affect productivity

Main point of concern of researchers dealing with measurements is the
lack of a generally accepted metric for measuring software size. Often
the simplest method of measuring the size is used, which is number of
lines of code [3, 4, 21, 30]. Maxwell, Van Wassenhove and Dutta [21]
performed a study that involved an evaluation of the lines-of-code

Paper I

 62

productivity metric. They compared it with Process Productivity, the
complex metric that includes management practices, level of
programming language, skills and experience of the development team
members and the complexity of the application type. After examining
99 projects the authors concluded that the simple lines-of-code metric
was superior to the Process Productivity metric.

The second direction of the productivity research was identification of
factors that affect the productivity. The continuously increasing cost of
software development has made productivity improvement a very
popular topic. It is usually seen as the way to decrease cost and improve
delivery time. The fact that software projects are often late and over
budget [3, 4, 28] makes the problem important. A number of research
studies were done within that domain. Yu, Smith and Huang [30]
created a universal framework for the improvement process. They
identified three steps of the improvement process: measurement,
analysis and improvement. The purpose of the first step was to find out
where the project stands, the second step was devoted to identification
of the factors affecting productivity and the third one was supposed to
minimize their impact. The framework suggested corresponds well with
our strategy. The authors presented the example of the study aiming
into quantification and improvement of the productivity in a project
from AT&T Bell Laboratories. One interesting finding in that project is
that the issues affecting productivity are, to a large extent, similar to the
ones described in our research. Among the issues that were ranked the
highest belong the requirements stability and the staff experience,
which is similar to the results obtained in our research.

Many researchers have observed, documented and tried to solve the
productivity problem when adopting new technology [10, 12, 16, 18,
29]. Ever since the learning effect [25] was described most researchers
agree that some of the initial productivity problems fade away with
time due to growing experience and maturity of the organization. The
question of how to make that time as short as possible remains
unanswered. In [10] Edmondson, Winslow, Bohmer and Pisano stress
the importance of having as much of the knowledge about new
technology codified as possible. The more of the knowledge about new
technology is tacit the bigger problem is to introduce it seamlessly. In
the examined project we have experienced the situation where lack of
easily accessible source of information about the technology affected
the productivity. Fisher and Wesolkowski [12] present another view
of the initial knowledge problem. It might be extremely difficult to
increase the competence level of the staff it the staff does not want it.
According to them one of the key points is the motivation and attitude
issue – they quote the results of the study showing that only 15% of the

Software Development Productivity on a New Platform
- an Industrial Case Study

 63

population is enthusiastic when it comes to new technology adoption,
85% is more or less hesitant to it. Harvey, Lefebvre and Lefebvre [16]
analyzed 100 companies to find out how the companies that
successfully adopted new technologies differed from the others. One of
their findings was the huge role of management in such process. The
importance of management’s role in facilitating the process of new
technology adoption is also stressed by Vaneman and Triantis [29].
Among the bottlenecks we have identified there are issues concerning
project planning and organization which proves that the role of
management was recognized by our interviewees.

Other researchers also put a lot of effort in localizing issues affecting
the productivity. Productivity issues are often referred to when
discussing delays in software deliveries [3, 4, 28]. Although lead-time
and productivity do not always correlate (i.e. adding a new developer
may decrease the productivity but improve lead-time), the improvement
of productivity is usually seen as a way to decrease the development
time. Blackburn and Scudder [3] identified number of factors that
reduce development time. The authors examined the data from 40
different projects. As the most promising technique of development-
time reduction the Reuse of Code was considered. The second most
promising technique was competence development, which is similar to
the results obtained in our study. Moreover in the paper the authors
report that “managers are continually frustrated by changing
requirements” – which directly corresponds to “Unstable
requirements”, the issue which is second on our priority list.

A direct comparison of results obtained in the research studies
presented above with results obtained in our study may seem to be
inappropriate – these were usually surveys in which a large number of
projects were examined, and therefore the results are on higher level of
abstraction and to large extend their generalization would be justified.
However the fact that conclusions concerning productivity bottlenecks
seem to be similar may indicate that the problems identified are rather
common for the situation when new technology is adopted.

5.2 Productivity level

The results obtained in the study describe the current productivity level
in the software development on the new platform. Compared to the
UNIX platform a factor of four in the productivity measured from an
external perspective was identified. It can be later decomposed into two
issues:

Paper I

 64

- code writing speed - on the new platform the code is written
slower, on average it takes twice as much time to deliver 1 line
of code (internal perspective measurement measures the speed
of delivering the code)

- code line/functionality - in the new platform the average number
of code lines per functionality is bigger. Since it holds the
remaining part of responsibility for the productivity level its
impact may be counted as a factor of two. It is supported by
measurements – on average we need twice as much code per
functionality on the new platform.

The issues that affect code writing speed are presented in the Table 9.
The ones that have impact on high SLOC/functionality ratio in the new
platform are lack of third party libraries, missing tools (e.g. debuggers)
and platform complexity. The distribution of responsibility for
productivity level is summarized on Figure 10.

Figure 10. Productivity problem decomposition

5.3 Productivity improvement

The main reason for bottlenecks identification is to find out where the
application of remedies would bring the best results. In our study it
seems obvious, since three highest ranked issues hold over 50% of
responsibility for the productivity level, and two of them are related to
competence. It is not surprising – competence is usually a problem
when new technology is introduced, especially a complex one with
long start up time. The picture changes if localizations of bottlenecks,

Software Development Productivity on a New Platform
- an Industrial Case Study

 65

suggested by Hantos and Gisbert [15], are considered. Table 10
presents this.

A surprising finding is that platform related issues were rated quite low
both individually and as a group. One possible explanation could be
that the respondents focused on issues that are internal to the
organization where the study was performed. Maybe they tried to focus
on issues that directly depend on them. Platform quality issues do not
belong to that group of issues while competence and work organization
issues do. Another explanation would be more straightforward –
platform quality is not the main problem. Additionally it should be
noticed that the competence issues’ importance is most prone to change
over time. It should decrease with time when the developers will gain
experience. However, it is still a valid issue when the platform is being
introduced to a new organization.

Table 10. Bottleneck localizations importance

L
oc

al
iz

at
io

n

Bottlenecks

Im
po

rt
an

ce

Pe
op

le
 Staff competence level

Not enough experience sharing and training
activities

35%

Pr
oc

es
se

s Unstable requirements
Too much control in development process
Too optimistic planning, too big scope of
projects
Lack of target platform in design phase

40%

Te
ch

no
lo

gy

Quality of platform’s documentation
Runtime quality of the platform
Platform interface stability (API)

25%

 Table 10 clearly suggests that each group of the issues holds relatively
large responsibility for current productivity level – no “silver bullet”
solution to the problem can be expected. Therefore, remedies to all the
productivity bottlenecks were presented. It is a subject to further
research to suggest the order in which they should be applied. Their
possible effectiveness, estimated in this study, is only one of the factors
that should be taken into consideration when making that decision –

Paper I

 66

others are the cost of the remedy, risk connected with its introduction or
the time after which the remedy application will pay off.

There are three ways to improve productivity [5]: work faster, work
smarter and work avoidance. Faster work can be obtained by
development of skills. Therefore, the following skill development
activities were suggested:

- Good introduction process - The introduction process would
familiarize the staff with the new technology and minimize the
overhead connected with learning

- Continuous skills development processes, like an advanced
course on programming on the introduced platform, seminars,
meetings and technical discussions would give the developers a
chance to share experiences and spread knowledge among team
members.

- Better management of company knowledge
• Set of patterns - set of easily applicable solutions to the

common problems.
• Better documentation of the problems encountered would

help to avoid making the same mistakes in the future.

The second way of improving productivity, smarter work, suggests
better work organization. The following possible remedies were
suggested to the problems identified:

- Lack of target platform in the design phase
• More automated functional tests run overnight would

provide immediate feedback concerning the application’s
behaviour on the real platform. The faults would be
detected earlier which would save a lot of time connected
with e.g. fault localization.

• Introduction of the target platform in the analysis/design
phase would be an expensive solution, but would provide
designers with immediate and precise feedback.

• More prototyping in the early stages of the project – some
problems that are encountered in the implementation phase
would never occur if the ideas were tested on prototypes
earlier in the design phase.

• Shorter time between functionality development and
testing would result in faster fault detection. It would be
easier for designer to localize the problem in code that was
recently produced than in code produced long time ago.

- Too optimistic planning, too big scope of projects and unstable
requirements - a smaller scope of the projects would result in

Software Development Productivity on a New Platform
- an Industrial Case Study

 67

more stable requirements. The main cause of requirements
change is the change of market demands. If the project had
shorter lead-time the probability of having change requests
would be smaller and their impact would be minimized.

The last way of productivity improvement, namely “work avoidance”,
refers to the idea of acquiring the solution instead of developing it. One
big issue in that topic is the current lack of third party components for
typical purposes, like handling of the standard communication
protocols. Other issues are the platform quality issues. The following
improvements of the platform were suggested to the platform
developer:

- Runtime quality of the platform – the focus should be put on
providing quality to existing functionalities of the platform
instead of developing new features.

- Platform programming interface (API) stability – a “road-map”
describing which parts of the platform are subject to change
would solve the problem. In that case, the designers would not
be surprised by API changes.

- Quality of platform’s documentation – Update documentation –
features that are not documented can not be used, so there is no
point in developing new features if their description is not added
to the documentation.

6. Conclusions

The objective of the study was to examine the impact of the change of
the platform on the software development from the development
productivity point of view. To achieve that we at first quantified the
productivity of the software development on the introduced platform,
then identified the nature of the problems encountered and finally we
suggested some productivity improvement methods. The quantification
was done by comparison with an other project, in which the
productivity was perceived as good.

The measurement from the functional perspective revealed the factor of
four difference between the development productivity in the two
projects. Examination of the product structure and measurement from
the internal perspective allowed us to select two factors that result in
the factor of four difference between productivity. These are the code
writing speed, twice as small in the new platform, and the average
amount of code necessary to provide certain functionality, about twice
as big in the new platform.

Paper I

 68

In order to check to what extend the difference in productivity between
the two projects could have been caused by the difference in quality we
examined different aspects of quality. We found out that in terms of the
design quality both projects are similar but in terms of process quality
the project done on the new platform was more ambitious. In terms of
non-functional requirements there was no significant difference in the
requirements put on the system but the developers believed that the
non-functional characteristics actually achieved in the project done on
the new platform were better.

Later we identified factors that affect productivity and we estimated
their importance. It turned out that the problem is complex - there are
many factors of different origins that affect the current productivity
level. The learning effect, caused by the introduction of the new
platform, had the relatively highest impact on the code writing speed.
However, other factors like the platform quality and the work
organization also have a significant impact. Lack of third party libraries
for the new platform and the platform complexity result in larger
amount of code necessary to deliver functionality, compared to the
Unix environment.

Due to the problem complexity the suggestion of one, “silver bullet”
solution was impossible. Therefore we suggested a number of remedies
to the issues identified. The individual importance of the issue the
remedies address will be one of the factors taken into consideration
when deciding the order in which the remedies will be applied.

We believe that some general lessons can be learned from our study.
Problems, similar to the ones we have described, may be experienced
every time a company decides to change platform or technology. If the
change is from a standard, widely used environment, to one used
mainly in specialized application domains, as in our case, it seems very
likely that the bottlenecks we have identified may appear. The
magnitude of their impact may however differ, due to their dependence
on individual settings like the kind of technology introduced,
experience of the staff, characteristics of projects done in the company
and many others.

One of the main issues identified in our study, namely the learning
effect, is always present when a new platform is introduced. If the
platform has a unique programming model, the learning curve can be
very steep. Appropriate training activities, although expensive, may
bring significant savings on the project cost. This was clearly pointed
by our interviewees who ranked the competence issues highest.

Software Development Productivity on a New Platform
- an Industrial Case Study

 69

Therefore it seems to be extremely important that the developers are
provided with a good source of information about the new platform. It
not only minimizes the learning effort but also affects the coding speed
even after the developers have gained a certain level of experience.

Due to the learning effect projects done using the new technology are
prone to delays. In order to minimize the impact of limited experience
on the quality of the product, often the amount of quality assurance
activities is higher than normally, which makes the project even more
delayed. In the systems like the ones we have examined it immediately
results in unstable requirements, which according to our interviewees
have significant impact on productivity. Therefore the scope of initial
projects should be limited, if possible.

Another issue that may be a consequence of introduction of a very
specialized platform is the lack of convenient add-ons that are available
on standard, widely used platforms. The number of available tools or
third party libraries is likely to be limited since the relatively small
number of potential customers that would buy those makes their
development questionable from economical perspective. Considering
that among those there are debuggers, profilers or CASE tools as well
as software libraries the impact of their absence should not be
underestimated.

7. Acknowledgements

The authors would like to thank all the members of Ericsson’s staff
thanks to whose participation, patience and will to help the whole study
was possible as well as Daniel Häggander and Johan Schubert from
BTH for their help, contribution and valuable comments.

This work was partly funded by The Knowledge Foundation in Sweden
under a research grant for the project "Blekinge - Engineering Software
Qualities (BESQ)" (http://www.ipd.bth.se/besq).

8. References

[1] IEEE standard for software productivity metrics, in IEEE Std 1045-
1992. (1993). 2.

[2] V.R. Basili and L.C. Briand, A validation of object-oriented design
metrics as quality indicators. IEEE Transactions on Software
Engineering, 22 (1996), 751-762.

Paper I

 70

[3] J.D. Blackburn and G.D. Scudder, Time-based software development.
Integrated Manufacturing Systems, 7 (1996), 60-66.

[4] J.D. Blackburn, G.D. Scudder, and L.N. van Wassenhove, Improving
Speed and Productivity of Software Development: A Global Survey of
Software Developers. IEEE Transactions on Software Engineering, 22
(1996), 875-886.

[5] B. Boehm, Managing Software Productivity and Reuse. Computer, 32
(1999), 111-114.

[6] B.W. Boehm, Software engineering economics, Prentice-Hall,
Englewood Cliffs, N.J., (1981).

[7] L.C. Briand, J. Wust, S.V. Ikonomovski, and L. H., Investigating
quality factors in object-oriented designs: an industrial case study.
Proceedings of the 1999 International Conference on Software
Engineering, (1999), 345-354.

[8] S.R. Chidamber, D.P. Darcy, and C.F. Kemerer, Managerial use of
metrics for object-oriented software: an exploratory analysis. IEEE
Transactions on Software Engineering, 24 (1998), 629-639.

[9] S.R. Chidamber and C.F. Kemerer, A metrics suite for object oriented
design. IEEE Transactions on Software Engineering, 20 (1994), 476-
494.

[10] A.C. Edmondson, A.B. Winslow, R.M.J. Bohmer, and G.P. Pisano,
Learning How and Learning What: Effects of Tacit and Codified
Knowledge on Performance Improvement Following Technology
Adoption. Decision Sciences, 34 (2003), 197-223.

[11] N.E. Fenton and S.L. Pfleeger, Software metrics: a rigorous and
practical approach, PWS, London; Boston, (1997).

[12] W. Fisher and S. Wesolkowski, How to determine who is impacted by
the introduction of new technology into an organization. Proceedings of
the 1998 International Symposium on Technology and Society, 1998.
ISTAS 98. Wiring the World: The Impact of Information Technology on
Society., (1998), 116-122.

[13] S. Gascoyne, Productivity improvements in software testing with test
automation. Electronic Engineering, 72 (2000), 65-67.

[14] I. Graham, Migrating to object technology, Addison-Wesley Pub. Co.,
Wokingham, England; Reading, Mass., (1995).

[15] P. Hantos and M. Gisbert, Identifying Software Productivity
Improvement Approaches and Risks: Construction Industry Case Study.
IEEE Software, 17 (2000), 48-56.

[16] J. Harvey, L.A. Lefebvre, and E. Lefebvre, Exploring the Relationship
Between Productivity Problems and Technology Adoption in Small
Manufacturing Firms. IEEE Transactions on Engineering Management,
39 (1992), 352-359.

[17] B. Henderson-Sellers, L.L. Constantine, and I.M. Graham, Coupling
and cohesion (towards a valid metrics suite for object-oriented analysis
and design). Object Oriented Systems, 3 (1996), 143-158.

Software Development Productivity on a New Platform
- an Industrial Case Study

 71

[18] M. Huggett and S. Ospina, Does productivity growth fall after the
adoption of new technology? Journal of Monetary Economics, 48
(2001), 173-195.

[19] R.T. Hughes, Expert judgement as an estimating method. Information
and Software Technology, 38 (1996), 67-76.

[20] X. Li, Z. Liu, B. Pan, and D. Xing, A measurement tool for object
oriented software and measurement experiments with it, 10th
International Workshop New Approaches in Software Measurement,
Springer-Verlag, Berlin, Germany, (2001), 44-54.

[21] K.D. Maxwell, L. Van Wassenhove, and S. Dutta, Software
development productivity of European space, military, and industrial
applications. IEEE Transactions on Software Engineering, 22 (1996),
706-718.

[22] C. Robson, Real world research: a resource for social scientists and
practitioner-researchers, Blackwell Publishers, Oxford, UK; Madden,
Mass., (2002).

[23] T.L. Saaty and L.G. Vargas, Models, methods, concepts & applications
of the analytic hierarchy process, Kluwer Academic Publishers, Boston,
(2001).

[24] M. Shepperd and M. Cartwright, Predicting with sparse data. IEEE
Transactions on Software Engineering, 27 (2001), 987-998.

[25] G.J. Steven, The learning curve: From aircraft to spacecraft?
Management Accounting, 77 (1999), 64-65.

[26] C.R. Symons, Software sizing and estimating: Mk II FPA (function
point analysis), Wiley, New York, (1991).

[27] P. Tomaszewski and L. Lundberg, Evaluating Productivity in Software
Development for Telecommunication Applications, The IASTED
International Conference on Software Engineering, IASTED,
Innsbruck, Austria, (2004), 189-195.

[28] M. van Genuchten, Why Is Software Late? An Empirical Study of
Reasons for Delay in Software Development. IEEE Transactions on
Software Engineering, 17 (1991), 582-591.

[29] W.K. Vaneman and K. Trianfis, Planning for technology
implementation: an SD(DEA) approach, PICMET '01. Portland
International Conference on Management of Engineering and
Technology., PICMET - Portland State Univ, Portland, OR, USA,
(2001), 375-383.

[30] W.D. Yu, D.P. Smith, and S.T. Huang, Software productivity
measurements. Proceedings of the 15th Annual International Computer
Software and Applications Conference COMPSAC '91., (1991), 558-
564.

Introduction

Paper I

Paper II

Paper III

Paper IV

Paper V

Paper VI

Paper VII

Paper VIII

Paper IX

The Increase of Productivity over Time –
an Industrial Case Study

Piotr Tomaszewski, Lars Lundberg

Information and Software Technology (2006), vol 48/9, pp. 915-927

Abstract

Introducing new and specialized technology is often seen as a way of
meeting increasing non-functional requirements. An example of such a
technology is a software platform that provides high performance and
availability. The novelty of such a platform and lack of related
experience and competence among the staff may affect initial
development productivity. The competence problems should disappear
with time. In this paper we present a study, which we conducted at
Ericsson. The purpose of the study was to assess the impact of
experience and maturity on productivity in software development on the
specialized platform. We quantify the impact by comparing productivity
of two projects. One represents an initial development stage while the
other represents a subsequent and thus more matured development
stage. Both projects resulted in large commercial products. We reveal
a factor of four difference in productivity. The difference was caused by
a higher code delivery rate and a lower number of code lines per
functionality in the latter project. We assess the impact of both these
issues on productivity and explain their nature. Based on our findings,
we suggest a number of improvement suggestions and guidelines for
the process of introducing a new technology.

Paper II

76

The Increase of Productivity over Time - an Industrial Case Study

 77

1. Introduction

The increasing expectations concerning software systems require
solutions that make it possible to deliver more and more sophisticated
products. A well established way of overcoming technical limitations is
to introduce new technology. An area in which a rapid increase of
requirements can be observed is telecommunication. The increasing
number of services and subscribers puts high quality requirements on
the systems that provide the infrastructure for the mobile telephony
network. A requirement that recently has become very important is
high availability. The service should be available all the time – service
outages result in significant financial losses of the network operator.
One way to facilitate development of highly available systems is to
introduce a specialized software platform. Such a platform can help
achieving the desired availability level by using sophisticated built-in
mechanisms for efficient data replication, failure recovery, and online
updates.

Introducing a specialized platform, as any technology adoption process,
is always connected with some cost. In the beginning, the new platform
is unknown to the developers. Current development processes may not
be well suited to the new way of developing software. Specialized
platforms may also not offer as wide range of tools that support
software development as standard platforms do. These issues may
result in low productivity for initial software development on such a
platform. In Paper I we have described such a situation. We have
identified a factor of four difference between productivity on a standard
(Unix) and specialized platform. Our study was performed just after the
new technology was introduced. We identified a staff competence
level, as well as organization and platform immaturity to be the main
reasons for low productivity. In this paper, we present a follow-up
study to the work presented in Paper I. In this study we analyze and
quantify the change over time of the software development productivity
on the specialized platform. The main methods used are historical data
research and interviews with experts.

Our case study is based on two large industrial projects at Ericsson, in
which the new specialized platform was used. From now on we call
them Project A and Project B. To observe the impact of time on the
development productivity we selected the projects such that there is a
difference of approximately three years between the start of Project A
and Project B. Project A was the first project, in which the new
platform was introduced. Project B is a project that has recently been

Paper II

 78

finished. Therefore, it represents the most recent development stage.
Both projects are large (over 100 KSLOC, 20-50 person years) and
both resulted in commercially available systems. The systems examined
in our study co-operate within the same solution that operates in the
service layer of the mobile telephony network. In Project A the entire
development was done in C++; in Project B 75% of the code was
written in Java, and 25% in C++. Analysis and design of both systems
was performed using similar methods, which were typical methods for
the organization, in which the system was developed.

The goal of this study is to investigate which initial problems
experienced by the developers have been overcome and which remain.
Such an analysis can not only help in better productivity predictions
when a new technology is introduced, but also makes it possible to
suggest improvements to the technology adoption process. When
planning the study we formulated the following research questions:

- What is the difference in productivity between the initial and the
subsequent development? To answer this question we compare
the productivity on Project A and Project B.

- What caused the difference? We identify the factors that
affected productivity in Project B and compare them with the
factors that influenced productivity in Project A. We analyse
which productivity bottlenecks disappeared in Project B and
identify the underlying reasons. We also investigate what issues
are currently hindering productivity of software development.

- How can the productivity improvement be accelerated? By
analysing the problems that have disappeared with time we
suggest improvements to the process of introducing a new
technology.

2. Related work

The change of productivity, or more generally, the change of cost with
time, is a well recognized and described economical phenomenon. In
the literature it is presented under numerous terms, e.g.:

- “economies of scale”, which states that the more units that are
produced the lower is the cost of a single unit. This can be
partially attributed to better experience and learning process of
the producer

- “learning curve” – described by Wright [38]. It states that the
unitary cost of production decreases with time

The Increase of Productivity over Time - an Industrial Case Study

 79

- “experience curve” – described by Henderson [9]. According to
the experience curve theory the production cost is decreasing
when experience is gained

A lot of work has been done on building models for predicting the
productivity or cost changes with time. A good overview of the work
related to the learning curve can be found in [2, 37, 40]. In this study
we are, however, more interested in understanding why the effect
presumably takes place and not in building a prediction model. In [2,
15] a list of possible sources of the learning/experience effect can be
found. These are [2]: tools, methods, product design changes,
management, volume change, quality, incentive pay and operator
learning. Even though this list was not defined for software
development it seems obvious that the issues presented there also affect
software development productivity.

Many researchers have observed, documented and tried to solve the
productivity problem when adopting a new technology [16, 18, 23, 25,
28, 36]. Most researchers agree that some of the initial productivity
problems fade away with time due to growing experience and maturity
of the organization. The question of how to make that time as short as
possible remains unanswered. In [16] Edmondson et al. stress the
importance of having the knowledge about the new technology
codified. The more the knowledge about the new technology is tacit,
the bigger the problem is to introduce it seamlessly. Fisher and
Wesolkowski [18] present another view of the initial knowledge
problem. It might be extremely difficult to increase the competence
level of the staff if the staff does not want it. Harvey et al. [23]
analysed 100 companies to find out how the companies that
successfully adopted new technologies differed from the others. One of
their findings was the important role of management. The importance
of management’s role in facilitating the process of new technology
adoption is also stressed by Vaneman and Triantis [36].

The topic of productivity has also been discussed specifically in the
context of software development. Productivity issues are often referred
to when discussing delays in software deliveries [6, 7, 35]. Blackburn
and Scudder [6] identified a number of factors that reduce the
development time. Improvement of productivity is a way to decrease
the development time. The authors examined data from 40 different
projects. Reuse of code was the most promising technique for
development-time reduction. The authors also discuss prototyping, the
quality of requirement specification, the use of modern tools and
management role as factors that directly impact development
productivity.

Paper II

 80

3. Platform presentation

The specialized platform, which we evaluate in this study is used in
real-time, high availability telecommunication applications. Developing
such applications requires meeting a number of contradicting
requirements. Achieving high availability is always connected with
introducing redundancy into a system. Each vital piece of hardware or
data must be replicated to assure a continuous operation of the system
in case of failure. To ensure consistency between different data replicas
an extensive updating communication is often required. This
communication, however, usually affects the performance of the entire
system negatively. This is a problem, because real-time systems used in
telecommunications often face strict performance requirements.
Therefore, a lot of work has been put into constructing platforms that
make it easier to develop efficient high availability telecommunication
systems.

Typically, such platforms are either hardware or software based.
Hardware based solutions, e.g., [4, 27] usually involve proprietary
hardware (e.g., triplicated processors [27]) which makes them very
expensive. Software based solutions overcome this problem by
operating on standard or existing hardware. The platform we discuss in
this study is an example of a software based solution.

A hardware configuration of the platform comprises (See figure 1)

- Up to 40 traffic processors that process pay-load
- Two I/O processors responsible for the external communication

and maintenance
- Two Ethernet switches and two separate interconnections via

Ethernet networks

The platform offers standard interfaces (APIs) for Java and C++ but the
programming model is unique. The main execution unit is a process.
There are two types of processes, static ones that are always running
and dynamic ones that are created and destroyed on demand. The
platform provides an in-memory database. The basic units of storage
are database objects. The inter-process communication is done by
dialogue objects or globally accessible database objects. Dialogue
objects are used for message passing communication (Figure 2). In the
communicating processes two corresponding Dialogue type objects
have to be created. They exchange messages using a built-in
mechanism provided by the platform.

The Increase of Productivity over Time - an Industrial Case Study

 81

Figure 1. Specialized platform

Database objects can be accessed by any process running on the
platform. Therefore, they can be used to implement a shared-memory
communication model (see Figure 3).

Figure 2. Inter-process communication using dialogue objects

To assure an efficient load balance, the programmer has a set of
methods for allocating database objects and processes to processor
pools, i.e. sets of traffic processors on which database objects and
processes may operate. The load balancing within a pool is done by the
platform itself.

To facilitate the programming of the highly available systems, every
process or database object is automatically replicated on two different
machines in the cluster – a failure of one of them does not affect the
correct operation of the entire system. The platform also has built-in
features that allow for online upgrades of the applications.

Paper II

 82

Figure 3. Inter-process communication using database objects.

4. Productivity in the early software development

In the previous study (see Paper I), we have identified and analyzed the
issues that affect the initial productivity of software development on the
specialized platform. We have found that delivering equivalent
functionality on the specialized platform takes four times longer
compared to a standard Unix platform, i.e., the functionality
development rate was four times as high on Unix as it was on the new
platform. We have decomposed this factor of four into two factors (see
Figure 4):

- the code was written twice as slow
- on average there was twice as much code per functionality.

Figure 4. Decomposition of productivity problem in early software development on
the new platform

To explain the difference in code delivery rate we performed interviews
with 20 designers. The interviews resulted in a list of productivity
bottlenecks that affect code delivery rate. The importance of each
individual issue was later quantified by the interviewees using the AHP
[33] method. The final list is presented in Table 1.

The Increase of Productivity over Time - an Industrial Case Study

 83

Table 1. Issues affecting coding speed in early software development on the new
platform – prioritization

Bottleneck Importance
Staff competence level 22%
Unstable requirements 16%
Not enough experience sharing and training
activities

13%

Quality of platform’s documentation 10%
Runtime quality of the platform 10%
Too much control in development process 9%
Too optimistic planning, too big scope of projects 8%
Lack of target platform in the design phase 7%
Platform interface stability (API) 5%

Surprisingly for us, the platform quality issues were not ranked as the
most important. The respondents generally rated issues connected with
the individual competence level as affecting productivity the most. The
project also suffered from the problem of unstable requirements, which,
however, happened partially due to low productivity. The low
productivity resulted in longer lead-time. Projects with long lead-time
are usually more prone to change of market demands.

The second issue affecting low functionality development rate, the high
amount of code per functionality, was explained by analyzing the
project structure. We found that the issue affecting it most was the lack
of libraries or components for typical purposes, like communication
protocols. Such libraries are available for standard platforms but were
not available for the specialized one.

5. Method

In this section we present the methods used in the study. Each
subsection of this section has a corresponding subsection in Section 0,
where the results are presented.

5.1 Productivity measurement

Traditionally, the productivity is defined as a ratio of output units
produced per unit of input effort [1]. The input effort is usually defined
as the sum of all resources that were used to produce the output. In
software development, the biggest part of the production cost is the cost
of work. Therefore, we selected person hours as the input effort metric.

Paper II

 84

Two perspectives of measuring the output product by system size can
be identified:

- Internal viewpoint (developer’s perspective) – describes the
amount of code that must be produced to complete the system.

- External viewpoint (customer’s perspective) – refers to the
amount of functionality provided by the system.

The internal point of view metrics measure the actual length of the
code. A typical unit of the internal size is number of source lines of
code (SLOC) - e.g., [6, 7, 30, 39]. Therefore, the measurement of
productivity from an internal point of view describes the code delivery
rate.

An often mentioned weakness of measuring system size using SLOC is
that the result depends on coding style - one programmer can write a
statement in one line while another can spread it across a number of
lines. To check this, the ratio of code lines per statement was calculated
for both projects. This metric should, to a certain extent, assure that the
coding style was similar in both projects.

The external viewpoint metrics measure the functionality. The
measurement of productivity from an external perspective describes the
rate of functionality development. In the study, instead of measuring,
we decided to estimate the ratio of functional sizes of both systems.
Since expert judgement is considered as an acceptable way of
performing estimations [8, 26, 34], we used it for comparing the
functionality of systems. Due to the fact that both systems under study
co-operate within the same larger system and that they provide
complementary functionality of similar complexity, it turned out to be
very easy for our experts to reach consensus when it comes to
comparison of amount of functionality provided by both systems.

The following data concerning the size of projects were collected:

- Number of person hours spent on each project (Hour) – only the
development phase of the project was taken into account
(design, implementation, testing). Person hours include
designers, testers and managers work hours.

- Number of code lines in each project (SLOC) - we counted only
lines with code, comments and blank lines were not counted.

- SLOC/ statement ratios in both projects
- The amount of functionality in Project B divided by the amount

of functionality in Project A (FUNC) – an expert estimation.
The estimation was made by six experts during a consensus
meeting.

The Increase of Productivity over Time - an Industrial Case Study

 85

5.2 Quality aspects

In [12], Chambers noticed that a new technology is introduced to either
improve product quality or manufacturing efficiency (productivity).
Therefore, the productivity can only be “interpreted in context of
overall quality of the product” [1]. Two products may deliver the same
functionality but capabilities other than functional (e.g., performance,
reliability, availability, modifiability, usability, etc.) can make one
product better from some perspective. Such characteristics do not come
for free and therefore differences in any aspect of quality may possibly
explain the difference in productivity. Lower development productivity
can be the price for higher product quality. Therefore, in this study,
quality aspects were kept in mind when evaluating productivity.

We considered the following factors that may impact productivity:

- design quality – the quality of application design and the quality
of code produced. Different aspects of design may have impact
on the fault-proneness of the code [3, 10, 11], or the
modifiability [22] of the system, or even the productivity [13].

- final product quality – the quality actually achieved in the final
application. An example of such qualities may be non-functional
requirements. Strict non-functional requirements (e.g., security,
high availability, performance) can be the important cost driver
and can therefore account for a high development cost.

- quality of development process – different quality assurance
activities often account for a large part of the project budget
(e.g., [11]). They are usually seen as an effective but expensive
way of improving quality (e.g., [5, 32]). Therefore, we consider
it important to capture the differences between processes in both
projects; as such differences may explain the differences in
productivity.

Our assessment of the design quality was based on metrics, for which
there are indications (e.g., [3, 10, 13, 17]) that they may have impact on
quality:

- McCabe Cyclomatic Complexity (MCC) [31]. This metric
measures the number of linearly independents paths through the
function. According to [19] “Overly complex modules are more
prone to error, are harder to understand, are harder to test, and
are harder to modify.”

- Lack of Cohesion (LC) [14]. It measures “how closely the local
methods are related to the local instance variables in the class”
[17]. The idea is to measure to what extent the class is a single
abstraction. In [13] Chidamber et al. showed that high values of
the Lack of Cohesion metric have negative impact on

Paper II

 86

productivity. In this study we counted LC using a method
suggested by Graham [20, 24] which gives normalized values of
LC (0%-100%). We considered normalized values more
applicable for comparison purposes.

- Coupling (Coup) [14], the metric measures the number of
classes the class is coupled to. This metric makes it possible to
assess the independence of the class. High levels of coupling are
recognized as a factor negatively influencing productivity [13]
and fault proneness [3, 10].

- Depth of Inheritance Tree (DIT) [14], measures how deep in the
inheritance hierarchy the class is. According to [14] high DIT
values result in higher complexity and make prediction of class
behaviour more difficult. In [22] Harrison at al. found that
systems with inheritance are more difficult to modify. In [3]
Basili at al. showed that there is a relation between DIT and the
fault proneness of the class. The same conclusion was reached
by Cartwright and Shepperd in [11].

- Number of Children (NC) [14] is defined as “the number of
immediate subclasses subordinated to a class in the class
hierarchy” [14]. In [14], the authors claim that classes with a
huge number of subclasses have potentially bigger impact on the
whole design and therefore they require more testing (since their
errors are propagated). In [11], Cartwright and Shepperd showed
that there is a relation between inheritance and fault proneness –
classes that were involved in inheritance had higher fault
densities.

Other quality aspects, like the quality of the final product or the quality
of the development process are difficult to quantify. Therefore, the
opinions about both of them were collected during the workshop in
which developers involved in both projects took part. The quality of the
final product was assessed mainly by comparing the non-functional
requirements put on the systems. The development process quality
discussions focused on the amount of quality assurance activities, like
testing, inspections, or the level of detail in project documentation.

5.3 Explaining productivity differences

To identify and explain the issues that could affect the change of
productivity we organized a workshop to which we invited six experts
from the organization where both systems were developed. Before the
discussion we created a list of possible factors that could affect
productivity. The list was created based on literature review ([2, 6, 7,
15] – see the “Related work” section) and our experiences from the
previous study (see Paper I). We have identified the following factors:

The Increase of Productivity over Time - an Industrial Case Study

 87

- Competence level – this factor corresponds directly to the
“operator learning” factor from [2]. The increase of competence
due to experience or additional training could affect the
productivity change. It can also be so that only the more
experienced developers were involved in one of the projects.

- Methods and tools – these factors are taken directly from [2].
The introduction of new technologies, development methods, or
tools can affect productivity.

- Volume change – a factor that also comes from [2]. The project
complexity grows with size but, on the other hand, in big
projects we can experience an “effect-of-scale” (see Section 0).
An inappropriate scope of the project and size of the staff can
affect the productivity negatively.

- Quality – a factor mentioned in [2]. As we have discussed in the
“Quality aspects” section (see Section 5.2) different quality
aspects can impact productivity. Heavy quality assurance or
strong non-functional requirements are examples of quality
issues affecting productivity.

- Design – a factor from [2]. Some fundamental differences in the
system architecture can impact productivity.

- Management – the impact of management on productivity is a
widely recognized issue [2, 36]

- Chain effects – as chain effects we understand issues that,
although external to an organization, have an impact on its
productivity. The project can benefit from improvements outside
the project, e.g., the platform may improve or the input to the
project (requirements) may be better defined and more stable.

- Code reuse – Reuse is considered an important factor
influencing productivity [6].

Based on the factors presented above, the experts discussed the issues
that affected productivity in Project B. By combining the new findings
with the list of productivity bottlenecks from Project A (see Section 0)
we created a list of issues that had impact on productivity in the
software development on the specialized platform. We asked the
experts to compare the impact on productivity of each issue in Project
B with its impact on productivity in Project A. In this way we analysed
the importance of the productivity bottlenecks in initial and subsequent
software development.

Apart from explaining the productivity difference we were also
interested in the experts’ opinions concerning the methods of
overcoming both the initial and current productivity problems.

Paper II

 88

6. Results

Due to the agreement with our industrial partner the measurement
results are presented as [Project B / Project A] ratios. No results
concerning size or effort have been presented as absolute values.

6.1 Productivity measurements

The results of the size and the effort measurements taken on both
projects are summarized in Table 2. The table presents relative values
only.

Table 2. Project size and effort ratios

Metric Project B/Project A
Code lines (SLOC) 0.34
Functional size (FUNC) 1
Person hours (Hour) 0.24

The measurements show that there is approximately 3 times as much
code in Project A as in Project B. The experts estimated that both
projects provide approximately the same amount of functionality. This
means that in Project B the same amount of functionality was delivered
using only 34% of the code. The development effort in Project A was
about four times as high as in Project B.

To check if a similar coding style was used in both projects, the
average number of code lines/language statement was calculated for
both projects. It turned out to be similar. For Project A it was 2,42
lines/statement, while for Project B it was 2,46 lines/statement.
Therefore, we considered code lines comparable between both projects.

From the information about size and effort the development
productivity ratios were calculated. The results are presented in Table
3.

Table 3. Productivity ratios

Metric Project B / Project A
SLOC/Hour 1.41
FUNC/Hour 4.16

The Increase of Productivity over Time - an Industrial Case Study

 89

The code delivery rate has increased by about 41% from Project A to
Project B. In Project B, the functionality was delivered over four times
as fast as in Project A.

6.2 Quality aspects

To compare the design quality in both systems a number of
measurements (described in Section 0) were done. Each metric was
analyzed separately. All the measurements were done either at the
function or at the class level. For each metric we present mean, median,
standard deviation and minimal and maximal values obtained. This way
of describing measurements was used in [3]. We also present
histograms describing the percentage of the entities (classes, functions)
in the system that have a certain value of the metric. Since it is
sometimes difficult to assess if the obtained values are typical or not,
wherever possible we add a column of corresponding values from the
study described in [3]. Other examples of such values can be found in
[10, 13, 14, 29]. We selected values from [3] for comparison purposes
because the measurements there were taken on a relatively large
project, which is similar to our study.

The first metric applied was McCabe Complexity. The results were
obtained on the function level and are presented in Table 4.

Table 4. McCabe complexity

 Project A Project B
Mean 2.5 2.45
Median 1 1
Maximum 96 73
Minimum 1 1
Std. deviation 5.0 4.4

According to [31], the McCabe Complexity of the function should not
be higher then 10, otherwise the function is difficult to test. We
examined the data from that perspective (see Table 4).

In both projects the vast majority of the functions (97% in Project A
and 97% in Project B) have complexity below 10 and therefore we
consider both projects similar from that perspective. The remaining
measurements gave results on the class level

Paper II

 90

Figure 5. McCabe Complexity - distribution

0

20

40

60

80

100

120

0-10 11-100
McCabe complexity

Pe
rc

en
ta

ge
 o

f f
un

ct
io

ns

Project A
Project B

The second metric applied was Lack of Cohesion. The results are
summarized in Table 5.

Table 5. Lack of Cohesion

 Project A Project B
Mean 46.8 50.2
Median 57 56
Maximum 100 100
Minimum 0 0
Std. deviation 37.4 31.97

The distribution of LC values between classes of both systems is
presented in Figure 6. We can observe that trends in distribution are
similar in both systems. Mean and median values are also similar.
Therefore we consider both systems similar from a Lack of Cohesion
viewpoint.

Figure 6. Lack of Cohesion - distribution

0
5

10
15
20
25
30
35
40

0-10 11-
20

21-
30

31-
40

41-
50

51-
60

61-
70

71-
80

81-
90

91-
100

Lack of Cohesion

P
er

ce
nt

ag
e

of
 c

la
ss

es

Project A
Project B

The Increase of Productivity over Time - an Industrial Case Study

 91

The next metric applied was Coupling. The results are summarized in
Table 6.

Table 6. Coupling

 Project A Project B Ref.[3]
Mean 5.1 4.6 6.80
Median 3 5 5
Maximum 35 37 30
Minimum 0 0 0
Std. dev. 5.7 4.4 7.56

The distribution of Coupling values in the project classes is presented
in Figure 7.

Figure 7. Coupling – distribution

0
5

10
15
20
25
30
35

1 3 5 7 9 11 13 15 17 19
M

or
e

Coupling

P
er

ce
nt

ag
e

of
 c

la
ss

es

Project A
Project B

We consider the distribution of coupling values similar for both
projects.

The application of the Depth of Inheritance Tree metric gave results
presented in Table 7.

Table 7. Depth of Inheritance

 Project A Project B Ref.[3]
Mean 0,78 1.85 1.32
Median 1 1 0
Maximum 3 4 9
Minimum 0 0 0
Std. dev. 0.7 1 1.99

Paper II

 92

The distribution of DIT values is presented in Figure 8.

Figure 8. Depth of Inheritance - distribution

0
10
20
30
40
50
60
70

0 1 2 3 4
Depth of Inheritance

P
er

ce
nt

ag
e

of
 c

la
ss

es
Project A
Project B

The mean values of DIT (see Table 7) indicate that in Project B there
are more classes involved in inheritance structures than in Project A.
From Figure 8 we can see that the percentages of classes with depth of
inheritance equal 1 or 2 are similar in both projects. The difference in
mean value is caused by about 30% of the classes that in Project B have
inheritance depth equal 3, while in Project A their depth of inheritance
is equal to 0. According to some studies ([3, 11, 22]) inheritance
increases fault-proneness of the classes and makes the classes more
difficult to modify (see Section 5.2 for details concerning these
studies). Therefore, we further investigated the issue of higher average
inheritance in Project B. According to our experts, the higher mean
value of DIT in Project B can be explained by the use of Java for a
large part of implementation in Project B. The experts say that it is
more typical in Java than in C++ to inherit from some predefined
classes. We investigated this and we found that in Project B all classes
with DIT higher than 1 are indeed Java classes.

The last metric applied was Number of Children (NoC). The results are
summarized in Table 8.

Table 8. Number of Children

 Project
A

Project B Ref.[3]

Mean 0.19 0.014 0.23
Median 0 0 0
Maximum 9 2 13
Minimum 0 0 0
Std. dev. 0.9 0.15 1.54

The Increase of Productivity over Time - an Industrial Case Study

 93

The distribution of NoC values is presented in Figure 9.

Figure 9. Number of Children – distribution

0

20

40

60

80

100

120

0 1 2 More
Number of Children

P
er

ce
nt

ag
e

of
 c

la
ss

es
Project A
Project B

As can be seen in Figure 9 over 90% of classes in both projects have
NoC equal to 0. Since the distribution is almost identical we consider
both projects similar from NoC perspective.

After analyzing all the measurements we can not observe any major
differences in design quality metrics between the two projects.
Therefore, we consider the design quality similar in both projects.

The remaining two quality aspects, the product and the process quality,
were assessed during the workshop with experts. According to them,
the non-functional requirements put on both projects were rather
similar. There was a difference, however, when it comes to the
processes, especially the quality assurance processes. The experts
shared the opinion that in Project B the processes were not as heavy as
in Project A. The heavy processes in Project A were seen as a way to
assure quality in the initial development on the new platform. In Project
B, due to more experience with the platform, the amount of time spent
on, e.g., inspections could be reduced to a more appropriate level. The
experts agreed that lighter quality assurance processes contributed
positively to productivity without affecting quality negatively. It can be
considered an argument for a higher competence level of the staff in
Project B – even though the quality assurance was not as extensive as
in Project A, due to higher competence the quality achieved was
similar.

Paper II

 94

6.3 Explaining productivity differences

To explain the difference in productivity we organized a workshop with
experts. The experts discussed the issues that affected (both positively
and negatively) the productivity in Project B. The discussion was based
on the list of factors that influence productivity in software projects
(see Section 0 for details regarding these factors). The findings are
presented below:

- Competence – the competence level was perceived as a factor
that contributed positively to productivity in Project B.
According to experts, the experience and knowledge of the
platform was significantly higher in Project B compared to
Project A.

- Design – the design of both projects was similar.
- Tools and methods – one difference between both projects was

that in Project B a large part of the code (approximately 75%)
was developed in Java. According to the experts this should
affect productivity positively. The reasons were:

• more libraries and components were available for Java
than for C++ in their application domain

• Java designers used a modern Integrated Development
Environment (IDE) that offered better tool support
compared to the C++ environment used

- Volume – the scope of Project B was more appropriate and
manageable but could have been better defined in the beginning

- Quality – the quality was discussed thoroughly in Section 0. The
main difference between the projects was a more appropriate
level of quality assurance activities in Project B, which should
contribute positively to productivity.

- Value chain effects – here the experts focused mostly on two
issues: the stability of the requirements and the platform quality.
According to them the requirements were equally unstable in
both projects, which affected productivity negatively. As far as
platform quality was concerned, the experts agreed that it had
improved significantly from the time when Project B was
developed. However, they missed tools like debuggers and
profilers. They would also appreciate more advanced database
support.

- Management – the experts agree that the management work was
more flexible in Project B, which contributed positively to
productivity.

- Code reuse – in Project B there were components that were
taken directly from one of the previous projects. We have

The Increase of Productivity over Time - an Industrial Case Study

 95

investigated that issue and we have measured the amount of
code in the reused components. We found out that for each line
of code written in Project B there was one line reused. The
reused lines were not calculated in our measurements presented
in Table 2 and therefore did not affect our code delivery rate
measurement in Project B. They contributed only to the high
Functionality/SLOC in Project B.

Further during the workshop, we presented the experts with the ranking
of the issues that were identified as productivity bottlenecks in Project
A. The identification and prioritization of issues that affected
productivity in Project A was presented by us in Paper I (for a summary
of findings from this study, including the list of identified productivity
bottlenecks, see Section 0). We asked the experts to compare the
impact of those issues on productivity in the initial and in the
subsequent software development. We also asked them to assess the
impact of the productivity bottlenecks that were identified in Project B.
The results of the assessment are presented in Table 9.

Table 9. Impact of the bottlenecks on productivity in initial and subsequent
development – a comparison

Productivity bottleneck Impact in
initial

development

Impact in
subsequent

development
Staff competence level large not a

bottleneck
Unstable requirements large large
Not enough experience sharing
and training activities

large not a
bottleneck

Quality of platform’s
documentation

average average

Runtime quality of the platform average not a
bottleneck

Too much control in
development process

average not a
bottleneck

Too optimistic planning, too
big scope of projects

average average

Lack of target platform in the
design phase

small not a
bottleneck

Platform interface stability
(API)

small not a
bottleneck

Lack of programming tools for
the specialized platform

not a
bottleneck

large

Paper II

 96

By comparing the impact in the initial and in the subsequent
development we can see that from the issues that had high negative
impact on productivity in the initial development only “Unstable
requirements” is ranked equally high. The issues connected with the
competence level and the platform shortcomings that were ranked high
as bottlenecks in Project A received much less attention in Project B.
However, there is a new issue, “Lack of tools”, which was not
recognized as a problem in initial development but has a significant
impact on the productivity in the subsequent one. The experts shared
the opinion that the productivity would be higher if they had more
advanced programming tools, like Integrated Development
Environment (IDE) for C++, better debuggers, profilers, and more
advanced database support.

7. Discussion

7.1 Difference in productivity

By measuring productivity we have established the current level of the
software development productivity on the new platform. We have
identified a factor of four difference in the productivity measured from
an external perspective between the initial and the subsequent software
development on the new platform. This means that currently the
organization is four times as efficient, when it comes to delivering
functionality. We have decomposed this as a result of two factors (see
Figure 10):

- Code delivery rate. In Project B there was approximately 41%
more code delivered per unit of time.

- Functionality/SLOC. In Project A the average number of code
lines per functionality was almost three times as high as in
Project B.

Figure 10. Productivity difference – decomposition

The Increase of Productivity over Time - an Industrial Case Study

 97

The reasons for higher code delivery rate were investigated during the
workshop. According to the experts, the increase in code delivery rate
was an effect of (see Section 0):

- Higher competence level – better knowledge of the platform,
and much more experience of the staff

- Better tools – the development environment (IDE for Java) used
in a large part of the project, the improved stability of the
platform

- Better work organization - lighter processes (partially due to
higher competence), better and more flexible management

However, the largest part of the productivity improvement can be
attributed to the high Functionality/SLOC value in Project B (almost a
factor of three difference – see Figure 10). According to the experts,
there were two major reasons for having so high Functionality/SLOC
value in Project B:

- Code reuse. For each line written there was one line reused in
Project B.

- The use of Java as programming language. Compared to C++,
Java offered better support for the developers in terms of
available libraries for typical functionalities (e.g., for graphical
user interface implementation).

According to the experts, the use of Java was one of the factors that
affected the high Functionality/SLOC value. We have quantified the
impact of Java by performing an exercise in which we excluded the
impact of code reuse on Functionality/SLOC value. We assumed that
the remaining gain is attributed to the use of Java.

We know that in Project A there were 2.95 times as many lines to
provide the same functionality as in Project B (see Figure 10). We also
know that for each line written there was one line reused in Project B.
The reused lines were not counted when measuring the project size. If
we include the reused code in Project B, it would double its size and
thus would decrease the difference in Functionality/SLOC between
both projects by half – from 2.95 to 1.475. The experts think that this
1.475 overall increase was gained due to the use of Java. Java code
accounted for only 75% of the code in Project B. The productivity gain,
with respect to different programming languages, can be calculated by
solving following equation (1):

0.25·ProdC++ + 0.75·ProdJava = 1.475 (1)

We assume the same C++ productivity (in terms of
Functionality/SLOC) in both projects, which means that ProdC++ = 1 (as

Paper II

 98

it was in Project A). Therefore, ProdJava = 1.63. This means that on
average Java was able to deliver approximately 63% more functionality
from a line of code. This is of course a very rough estimation, but it
seems to support the opinions of our experts.

7.2 Productivity improvement

In the study, we investigated which of the initial productivity
bottlenecks disappeared with time, as well as what issues are hindering
productivity in current software development on the specialized
platform. By analysing which of the issues tend to disappear with time
we can suggest improvements to the process of introducing a platform
that would make the learning time as short as possible. Identification of
current productivity bottlenecks can help improving the productivity of
mature software development, e.g., by suggesting certain platform
improvements.

To find out the differences between initial and subsequent development
we look at the bottlenecks identified in both projects through the
general classification of productivity bottlenecks presented in [21]. In
[21], Hantos and Gisbert divide productivity bottleneck origins into:

- People – issues connected with the competence level of people
involved in the development process

- Processes – issues connected with the work organization
characteristics

- Technology – issues connected with the technology used

In the initial development on the specialized platform the competence
issues were ranked as the ones most affecting productivity. The
platform issues that were mentioned mostly concerned the platform’s
quality and the API stability issues. The functionality of the platform
and the tool support it offers were not questioned at that time.

Currently, it seems as if the focus has changed. The designers are much
more confident since they managed to overcome the initial learning
threshold. They can see certain shortcomings of the platform and they
start to express their expectations concerning the platform. According
to them, to improve their current productivity they need better, more
modern tools.

Ironically, even though the platform is now seen as the major
productivity bottleneck, it seems that it has improved significantly.
According to our experts most of the issues reported as platform-related
productivity bottlenecks in Project A are fixed now. The API is stable,
there are no complaints regarding the runtime quality. Apparently, the

The Increase of Productivity over Time - an Industrial Case Study

 99

platform producer focused on solving the problems instead of
developing new features, which sounds like a reasonable thing to do.
Currently, however, the focus should be put on making the platform
more usable by providing better and more modern tools, like a modern
Integrated Development Environment (IDE) with a debugger and a
profiler. Also the platform documentation should be improved.

We can also notice that different work organization- and management-
related productivity bottlenecks were ranked as less important now than
before. Apparently, the organization adapted work processes to the new
platform. For example, the level of quality assurance activities was
adjusted - now it is as effective as before but less time consuming. It
was possible due to higher staff competence –extensive quality
assurance was not as necessary as in the beginning.

As we see it now, the quality shortcomings of the platform could have
contributed to long initial learning of the developers. Even though the
platform quality problems seem to have been overcome now, the
specific programming model and problems with documentation can still
make the learning process time consuming. Therefore, in order to make
it shorter, the competence development activities, which we suggested
in Paper I seem to be valid :

- Good introduction process - The introduction process would
familiarize the staff with the new technology and minimize the
overhead connected with learning.

- Continuous skills development processes – e.g., an advanced
course on programming for the platform, seminars, meetings and
technical discussions would give the developers a chance to
share experiences and spread knowledge among team members.
It is especially important now, because there are a number of
experienced developers that can share their knowledge and
expertise with the new team members.

- Better management of company knowledge
• Set of patterns - set of easily applicable solutions to

the common problems.
• Better documentation of the problems encountered

would help to avoid making the same mistakes in the
future.

The organization, in which we conducted the study, has learned a lot
about introducing new platforms from Project A. They have adopted
guidelines that suggest a limited scope and a limited number of staff
when first projects on such new platforms are conducted. When a core
group of specialists gain experience, projects can become bigger and

Paper II

 100

new development team members can be added. In such a way, it is
possible to build competence with a minimal impact on productivity.

Even though it may seem that the productivity has reached the level of
Unix productivity (see Section 0) it is not entirely true. In Project B the
productivity was gained mostly because of code reuse. If, instead of
reusing, the code had to be developed, the productivity would decrease
by half. That would make the Unix platform still twice as productive
when it comes to delivering functionality. One problem is that code
delivery rate is still 30% lower compared to the Unix platform.
Therefore, we believe it is very important to focus on code delivery rate
related improvements now, like the adaptation of modern programming
tools (e.g., IDE) for the platform. Another issue is lack of libraries for
typical functionalities (e.g., communication protocols), which are
available for standard platforms (like Unix).

7.3 Lessons learned

We believe that some general lessons can be learned from our study. It
seems very likely that any organization that decides to change a
technology from a standard and well-known one to a very specialized
one will face similar problems to those that we have identified in our
study. The impact of individual issues may differ because they largely
depend on the characteristics of the organization and the products that
are developed. Also the degree of productivity decrease when a new
technology is introduced depends very much on the individual settings.
However, it seems reasonable to assume that some initial productivity
decrease is difficult to avoid.

As a major issue impacting initial productivity we found the
competence level among the staff. This issue is probably the most
important when the introduced technology is very specialized. Such
technologies, as opposed to standard ones, are usually not well-known
and therefore require some time to be explored and mastered. If, like in
our case, the technology has some unique characteristics (e.g.,
programming model), the learning curve can be very steep. Therefore,
it is very important to provide good training opportunities, as well as
good sources of information regarding the new technology to the staff.
Such investments are likely to pay back in faster productivity increase.

Another issue that should be considered is the scope of initial projects
done using the new technology. Initial projects are prone to delays,
mostly because of low competence of the staff. Moreover, to
compensate for low experience, the number of quality assurance
activities is often increased, which makes projects even longer. In case

The Increase of Productivity over Time - an Industrial Case Study

 101

of telecommunication systems, long projects are very prone to change
requests, caused by changing market demands. This may delay projects
even more. Therefore, the scope of initial projects, in which the new
technology is used, should be small.

The new technology related competence of the staff will increase with
experience. This is the time when the staff is most likely to start
discovering different shortcomings of the new technology. If the
technology is very specialized it might share many of the problems we
have identified in this study. As such technologies are usually
addressed to a limited number of customers; they may miss many add-
ons typically available for standard, widely used platforms. Such add-
ons may include debuggers, profilers, CASE tools, and other tools that
largely facilitate software development. Therefore, before a new
technology is introduced, it is recommended to investigate the need for
such tools and their availability. This issue may not appear as a
problem in the initial development but may become a serious
productivity bottleneck when developers become more experienced.

8. Conclusions

The purpose of this study was to assess the impact of experience and
maturity on the productivity in software development on a specialized,
high availability platform. To achieve that, we have quantified the
productivity and identified the productivity bottlenecks in initial and
subsequent development on the platform. By analyzing the differences
between them we have quantified the productivity change and
described its sources. Finally, we have suggested improvement methods
both for the process of introducing a platform and for the mature
software development on the specialized platform.

The measurement of productivity from a functional perspective
revealed a factor of four difference between initial and subsequent
software development. We explain this by two factors. Firstly, in the
subsequent development the code was delivered 41% faster. Secondly,
in the initial project there was on average almost three times as much
code per functionality as in the subsequent one.

The higher code delivery rate was achieved mostly because of a higher
competence level, better tools and better work organization in the later
project. The smaller amount of code necessary to deliver a functionality
was a result of code reuse and the use of Java as a programming
language. The code reuse increased the productivity in the project

Paper II

 102

representing subsequent development by the factor of two. Java
provided about 63% more functionality per code line compared to C++.

For both projects we investigated how the productivity was affected by
different quality aspects. As far as design quality or non-functional
requirements are concerned, we did not detect any major differences
between the projects. The only difference concerned the quality of the
software development process. In the initial development the quality
assurance processes were rather heavy. Because of higher competence
of the staff in the subsequent development they could be lighter and
still equally effective.

The findings show that in initial development, the competence is the
biggest problem. Therefore, we have suggested a number of
competence development activities that can be applied when a new
technology is introduced. These activities should accelerate the learning
process and allow significant savings due to increased productivity.
They are especially important in case of very specialized technologies
with a steep learning curve, like the platform presented in this study.

When certain experience is gained, issues other than staff competence
come into play. In the case presented, we found that additional
improvements of the platform are necessary to further improve
productivity of software development. The improvement suggestions
mostly concern programming tools that should be available to the
developers.

The lack of convenient tools can be seen as a consequence of
introducing a very specialized platform. Such platforms, due to the
limited number of potential users, are likely to lack tools that are
available for standard, widely used platforms. Considering that among
those there are debuggers, profilers or CASE tools the impact of their
absence can be substantial.

The large role (a factor of two) of code reuse in productivity
improvement proves that it is a very efficient way of decreasing a
project’s cost. Therefore, developing code with its possible reuse in
mind is a good investment that can bring significant savings in future
projects.

As a concluding remark, we would like to point out certain limitations
connected with productivity evaluations. A precise software
development productivity assessment is a difficult, if not impossible
task. As the main reason for this we see the lack of common
understanding of what the actual product of the development is. It is

The Increase of Productivity over Time - an Industrial Case Study

 103

difficult to quantify and compare the functionality of two software
systems, but it is even more difficult to compare their quality. The
number of different aspects of software quality mentioned in literature
is large and still increasing. Not all quality aspects have assigned
metrics, which enable their quantification. Many of the quality aspects
are very subjective. Therefore, any case study, in which productivity is
evaluated, must to a certain extent be based on qualitative descriptions
and approximations. However, despite all these limitations, we can see
a clear benefit from performing and reporting productivity evaluations.
They increase our awareness of productivity as a factor that impacts the
cost of project. They contribute to a general understanding of issues
that influence software development productivity. They also let us learn
from the experiences of others.

9. Acknowledgements

The authors would like to thank Ericsson staff whose active
participation made this case study possible.

This work was partly funded by The Knowledge Foundation in Sweden
under a research grant for the project "Blekinge - Engineering Software
Qualities (BESQ)" (http://www.bth.se/besq).

10. References

[1] IEEE standard for software productivity metrics, in IEEE Std 1045-
1992. (1993). 2.

[2] P.S. Adler and K.B. Clark, Behind the Learning Curve: A Sketch of the
Learning Process. Management Science, 37 (1991), 267-281.

[3] V.R. Basili and L.C. Briand, A validation of object-oriented design
metrics as quality indicators. IEEE Transactions on Software
Engineering, 22 (1996), 751-762.

[4] K.H. Benton B., Yamada H., A fault-tolerant implementation of the
CTRON basic operating system. Proceedings of the 11th TRON Project
International Symposium, (1994), 65-74.

[5] S. Biffl and M. Halling, Investigating the defect detection effectiveness
and cost benefit of nominal inspection teams. Software Engineering,
IEEE Transactions on, 29 (2003), 385-397.

[6] J.D. Blackburn and G.D. Scudder, Time-based software development.
Integrated Manufacturing Systems, 7 (1996), 60-66.

[7] J.D. Blackburn, G.D. Scudder, and L.N. van Wassenhove, Improving
Speed and Productivity of Software Development: A Global Survey of

Paper II

 104

Software Developers. IEEE Transactions on Software Engineering, 22
(1996), 875-886.

[8] B.W. Boehm, Software engineering economics, Prentice-Hall,
Englewood Cliffs, N.J., (1981).

[9] Boston Consulting Group, Perspectives on Experience, Boston, (1972)
[10] L.C. Briand, J. Wust, S.V. Ikonomovski, and L. H., Investigating

quality factors in object-oriented designs: an industrial case study.
Proc. of the 1999 Int'l Conf. on Software Eng., (1999), 345-354.

[11] M. Cartwright and M. Shepperd, An empirical investigation of an
object-oriented software system. IEEE Transactions on Software
Engineering, 26 (2000), 786-796.

[12] C. Chambers, Technological advancement, learning, and the adoption
of new technology. European Journal of Operational Research, 152
(2004), 226.

[13] S.R. Chidamber, D.P. Darcy, and C.F. Kemerer, Managerial use of
metrics for object-oriented software: an exploratory analysis. IEEE
Transactions on Software Engineering, 24 (1998), 629-639.

[14] S.R. Chidamber and C.F. Kemerer, A metrics suite for object oriented
design. IEEE Transactions on Software Engineering, 20 (1994), 476-
494.

[15] R. Conway and A. Schultz, The Manufacturing Progress Function.
Journal of Industrial Engineering, 10 (1959), 39-53.

[16] A.C. Edmondson, A.B. Winslow, R.M.J. Bohmer, and G.P. Pisano,
Learning How and Learning What: Effects of Tacit and Codified
Knowledge on Performance Improvement Following Technology
Adoption. Decision Sciences, 34 (2003), 197-223.

[17] N. Fenton and S.L. Pfleeger, Software metrics: a rigorous and practical
approach, PWS, London; Boston, (1997).

[18] W. Fisher and S. Wesolkowski, How to determine who is impacted by
the introduction of new technology into an organization. Proceedings of
the 1998 International Symposium on Technology and Society, 1998.
ISTAS 98. Wiring the World: The Impact of Information Technology on
Society., (1998), 116-122.

[19] S. Gascoyne, Productivity improvements in software testing with test
automation. Electronic Engineering, 72 (2000), 65-67.

[20] I. Graham, Migrating to object technology, Addison-Wesley Pub. Co.,
Wokingham, England; Reading, Mass., (1995).

[21] P. Hantos and M. Gisbert, Identifying Software Productivity
Improvement Approaches and Risks: Construction Industry Case Study.
IEEE Software, 17 (2000), 48-56.

[22] R. Harrison, S. Counsell, and R. Nithi, Experimental assessment of the
effect of inheritance on the maintainability of object-oriented systems.
Journal of Systems and Software, 52 (2000), 173-179.

[23] J. Harvey, L.A. Lefebvre, and E. Lefebvre, Exploring the Relationship
Between Productivity Problems and Technology Adoption in Small

The Increase of Productivity over Time - an Industrial Case Study

 105

Manufacturing Firms. IEEE Transactions on Engineering Management,
39 (1992), 352-359.

[24] B. Henderson-Sellers, L.L. Constantine, and I.M. Graham, Coupling
and cohesion (towards a valid metrics suite for object-oriented analysis
and design). Object Oriented Systems, 3 (1996), 143-158.

[25] M. Huggett and S. Ospina, Does productivity growth fall after the
adoption of new technology? Journal of Monetary Economics, 48
(2001), 173-195.

[26] R.T. Hughes, Expert judgement as an estimating method. Information
and Software Technology, 38 (1996), 67-76.

[27] D. Jewett, Integrity S2: a fault-tolerant Unix platform. 21st
International Symposium on Fault-Tolerant Computing, (1991), 512-
519.

[28] T.W. Legatski, J. Cresson, and A. Davey, Post-downscaling
productivity losses: When projected gains turn to unexpected losses.
Competitiveness Review, 10 (2000), 80.

[29] X. Li, Z. Liu, B. Pan, and D. Xing, A measurement tool for object
oriented software and measurement experiments with it, 10th
International Workshop New Approaches in Software Measurement,
Springer-Verlag, Berlin, Germany, (2001), 44-54.

[30] K.D. Maxwell, L. Van Wassenhove, and S. Dutta, Software
development productivity of European space, military, and industrial
applications. IEEE Transactions on Software Engineering, 22 (1996),
706-718.

[31] T.J. McCabe, A software complexity measure. IEEE Transactions on
Software Engineering, SE-2 (1976), 308-320.

[32] G.W. Russell, Experience with Inspection in Ultralarge-Scale
Developments. IEEE Software, 8 (1991), 25-32.

[33] T.L. Saaty and L.G. Vargas, Models, methods, concepts & applications
of the analytic hierarchy process, Kluwer Academic Publishers, Boston,
(2001).

[34] M. Shepperd and M. Cartwright, Predicting with sparse data. IEEE
Transactions on Software Engineering, 27 (2001), 987-998.

[35] M. van Genuchten, Why Is Software Late? An Empirical Study of
Reasons for Delay in Software Development. IEEE Transactions on
Software Engineering, 17 (1991), 582-591.

[36] W.K. Vaneman and K. Trianfis, Planning for technology
implementation: an SD(DEA) approach, Int. Conf. on Management of
Eng. and Technology., Portland, USA, (2001), 375-383.

[37] F.K. Wang and W. Lee, Learning curve analysis in total productive
maintenance. Omega, 29 (2001), 491.

[38] T.P. Wright, Factors affecting the costs of airplanes. Journal of
Aeronautical Sciences, 3 (1936), 122-128.

Paper II

 106

[39] W.D. Yu, D.P. Smith, and S.T. Huang, Software productivity
measurements. Proc. of the 15th Annual Int. Computer Software and
Applications Conference COMPSAC., (1991), 558-564.

[40] W.I. Zangwill and P.B. Kantor, The learning curve: a new perspective.
International Transactions in Operational Research, 7 (2000), 595.

The Increase of Productivity over Time - an Industrial Case Study

 107

Introduction

Paper I

Paper II

Paper III

Paper IV

Paper V

Paper VI

Paper VII

Paper VIII

Paper IX

Evaluating Real-Time Credit-Control Server
Architectures Implemented on a Standard
Platform

Piotr Tomaszewski, Lars Lundberg, Jim Håkansson,
Daniel Häggander

Proceedings of IADIS International Conference on Applied
Computing, vol. 2, pp. 345-352, Algarve, Portugal, February 2005

Abstract

The high non-functional requirements put on payment systems result in
increasing complexity. One way of providing the expected quality is
usage of a specialized platform. However, development on such a
platform can be very expensive. In this paper we examine what level of
quality can be expected when the development is done on a standard
platform. We suggest a number of architectures and evaluate them from
availability, reliability and performance perspectives. We present
suggestions for the system developers concerning the choice of an
appropriate architecture when a certain combination of qualities is
required. Finally we identify problems we cannot solve using standard
platforms.

Paper III

 112

Evaluating Real-Time Credit-Control Server
Architectures Implemented on a Standard Platform

 113

1. Introduction

The growing importance of online services places much attention on
payment systems. These systems are designed to charge customers and
store their information. Therefore they are crucial for any service
provider – they assure collection of revenue. This role results in very
high expectations concerning certain quality aspects of such systems.

One such aspect is availability. A major advantage of e-business is that
it is available 24/7 and that should be true for a payment provider as
well. Any service outage results in financial losses. In addition, a
payment system must be reliable. A reliable payment system should be
able to process each ‘charging request’ and store the charging data
safely. The loss of charging information would result in a loss of
payment record, which is the equivalent to losing money. Another
aspect is performance. Performance is especially important in case of
prepaid services, where a customer pays for a service in advance.
Example of such a service can be prepaid telephony or video-on-
demand. Each customer has an account and a service can be provided
only as long as the assets on the account allow it. That requires real
time credit control.

The fact that the requirements mentioned above are not orthogonal
makes the development of such systems a very challenging task.
Therefore much effort has been put into methods, tools and
technologies that facilitate payment systems developing. One solution
is to use a fault tolerant platform. Such platforms are able to provide
high availability while maintaining good performance and reliability.
They would seem to be an ultimate solution to the problem. However,
as the previous research shows, the development on such a platform
can be expensive. In Paper I we have identified a factor of four
difference in productivity on a specialized, fault-tolerant platform
compared to a standard UNIX platform.

The high development cost may be a barrier that is impossible to cross.
A competitive advantage gained, due to better quality characteristics of
the system, may simply not be worth the money. Therefore our
attention was again put on standard technologies. Even though they do
not provide advanced, specialized features, their proven good
productivity may be a great advantage.

The purpose of this study is to identify the service availability,
performance and reliability characteristics, which we can expect when

Paper III

 114

designing a payment system on a standard UNIX platform. The desired
implementation should be compliant with one of the latest standards
concerning real-time credit control, i.e. Diameter Credit Control [12].
In this study we suggest and evaluate a number of possible
architectures of a payment system. The evaluation is done in an
industrial setting. The testing was performed on a real payment system.
The architectures are evaluated from the perspective of the three
mentioned characteristics; availability, reliability and performance. The
results of the study should help the developers of payment systems in
determining the level of characteristics that they are able to provide
using affordable technology and a method of how to do that.

2. Payment System Application

The role of the payment system will be presented in the example of a
prepaid video-on-demand service. There are three parties involved in a
service delivery (Figure 1), namely: payment provider – a system that
we are going to analyze in this paper, video-on-demand provider and
consumer that orders a video stream. According to Diameter Credit
Control (DCC), the video-on-demand provider must implement Credit
Control Client functionalities, while payment system provides Credit
Control Server functionality. DCC specifies interaction between the
Credit Control Client and the Credit Control Server.

Figure 1. Video-on-demand example

According to DCC after a consumer has requested a video stream, the
video service provider contacts the payment system and requests
permission to deliver the service to the customer for a specified period
of time. The payment system calculates the cost of delivering the
service for given time period and checks the account balance of the
customer. If the balance is too low then it rejects the request, otherwise
it reserves the money and accepts the request. The video service
provider repeats the requests before each new time period.

In the study we consider a simple Credit-Control Client implementation
that does not involve any resending of the requests. Therefore, if the
video service provider does not receive an answer from the payment

Evaluating Real-Time Credit-Control Server
Architectures Implemented on a Standard Platform

 115

system within certain time limit, it aborts the service delivery (video
transmission).

Rating (price calculation) operations performed by payment systems
are often very complex. The calculation of service price depends on
many parameters, such as; the type of service, the type of customer, the
time of the day, the duration of service, historical information about
customer, etc. Though it seems that the payment system mostly records
data, our industrial experience shows that over 80% of all operations
are read operations. This is caused by the need of reading all the
parameters for price calculation. In the evaluation we assume equal
distribution of the request throughout the operation time.

3. Method

In the study we identify a number of typical architectures that can be
used to implement a Credit Control Server according to the DCC
specification using standard UNIX platforms. The eight architectures
are identified based on literature research and interviews with
developers involved in a development of such systems. Each of the
architecture proposals is evaluated. When evaluating availability we
assess if the solution is able to survive a crash of one of its components
without service stoppage. For the evaluation purposes we make a
standard assumption that only one thing can break at the time. The
availability definition is similar to the one suggested by [5, 11] and is
described in terms of percentage of requests answered from requests
that were sent by the client. In addition, we evaluate reliability of each
of the architectures by estimating the percentage of successfully
processed and stored requests. In evaluating performance of the system
when processing its maximal load, we use two performance metrics;
throughput and response time. The measurement of the response time
under load is chosen because it is a real-time system that must provide
required response time when being heavily loaded.

The evaluation is two-folded. We begin with a theoretical, qualitative
evaluation of architecture characteristics. An estimation of the
parameters allows us to eliminate four candidate architectures that are
outperformed by other ones. By outperforming we mean that an
architecture is better than another in one or more the aspects mentioned
and not worse in the others. The estimation is based on data from the
literature. For the remaining architectures, we perform a more thorough
analysis that involves experimentation. The experimentation is carried
out in an industrial setting on a real payment system and platform.
Finally, we present the decisions and trade-offs that must be made by a

Paper III

 116

payment system designer. We also provide suggestions as to which
architecture to choose when a specific combination of qualities is
required.

4. Architectures

In this section we present a number of possible payment server
architectures. The simplest payment server architecture is a
‘standalone’ computer (Figure 2a) with a payment server application
and a standard disk database. We will now refer to this architecture as
A1. The architecture has an availability problem. When the database or
the application or the whole computer fails the service is not available.
This failure also results in loosing the requests that are currently
processed, which is a reliability threat. Another reliability threat is a
disk failure that may result in a loss of data from the database.
However, normal practice would be to use a fail-safe technology, like
RAID. Therefore we will not consider the disk a point of failure.

Both the reliability and the availability of A1 can be improved by
introducing a dual-computer cluster and replication. We can either
replicate a server only or a server and a database [3]. In case of the
server replication both computers must have a shared disk (Figure 2b).
Such an architecture will be referred to as A2. It improves availability
of A1 by introducing a second contact point for the client. When the
database is also replicated (Figure 2c) there must be a data replication
mechanism between cluster nodes. Two possible data replication
modes are available – asynchronous and synchronous.

Figure 2. Hardware configurations – overview

The asynchronous replication does not include replication time into a
database update time. An update operation is committed on a local
database only. The replication to the other machine is postponed -
usually the change logs are bundled, which decreases network traffic.
The shared-nothing architecture variant with an asynchronous

Evaluating Real-Time Credit-Control Server
Architectures Implemented on a Standard Platform

 117

replication will be referred to as A3. It provides better availability than
A1. The reliability risk connected with a disk failure is minimised - data
is stored in two places. However, the asynchronous replication has a
problem of loosing the replication buffer - a number of requests that are
waiting to be replicated. In case of a failure this data is lost and
accounts on the other machine are not updated.

The “replication buffer loss” problem is minimised when a
synchronous replication is used. The synchronous replication adds
replication to a database update operation. An update transaction
returns only if the change is committed in both databases. To increase
availability it is usually possible to temporarily switch to asynchronous
replication when one of the nodes fails. Otherwise the service would
not be available during the failure. Synchronous replication improves
the reliability of A3 but affects performance of update operations.
Database reading is always done locally so replication does not affect
its time. A variant of architecture with synchronous replication will be
referred to as A4.

Architectures A2-A4 are aimed towards reliability and availability
improvement of A1. In order to improve performance of A1 an in-
memory database can be used. A large positive impact on performance
of in memory databases is recognized by practitioners [6, 14, 18] and
admitted by researchers [8]. The whole database is kept in memory
which speeds up database operations by an order of magnitude [8].
Two main configurations of in-memory database are considered in this
study. They are similar to two replication modes; however the
replication is done between the memory and disk. In the first case all
database writes are synchronized with a disk; in the second one they are
deferred. From now on the solution without writes synchronized with
disk will be referred to as A5, the one with writes synchronized is to be
referred as A6.

Since in both cases the most often performed operation, database read,
is done without involving a disk, both solutions offer much better
performance compared to A1. The performance of A5 is better than the
performance of A6. The reliability and availability of A6 is the same as
in A1. The reliability of A5 is lower than of A1 due to that some of the
data is, for certain amount of time, kept in memory only. We call that
data portion a “disk write buffer”. That data portion would be lost in
case of machine crash.

The last two variants we evaluate are combinations of A3 and A4 with
A5. A7 consists of two computers that have in-memory databases and
asynchronous replication between them. A8 has the same configuration

Paper III

 118

with the exception of synchronous replication between machines. The
characteristics they offer are exactly the same as their disk based
counterparts apart from the significantly better performance.

The evolution of basic architecture can be followed in Figure 3.
Because some of the architectures outperform others the outperformed
ones will be excluded from this study. Architecture A1 is outperformed
by A6, which offers better performance providing the same availability
and reliability. The same situation is seen between architectures A2 and
A4, which are outperformed performance wise by A8 and A3 which is
outperformed by A7. For evaluation we have selected the following
architectures: A5, A6, A7 and A8.

Figure 3. Architecture variants

5. Evaluation

5.1 Availability

The availability, described as percentage of answered requests, can be
calculated using the expression (1):

year

noansweryearAvail
Rq

RqRq −
=

(1)

Where Rqyear – number of requests per year, and Rqnoanswer – number of
requests unanswered per year.

Evaluating Real-Time Credit-Control Server
Architectures Implemented on a Standard Platform

 119

 Architectures A5 and A6 are realized using one computer only. If a
computer or an application is out of service (due to failure or
maintenance) a customer is not provided with a service. That means
that the availability of A5 and A6 is limited to the time when
everything works. Additionally there are always a number of requests
that are processed concurrently in the system. These requests are also
lost and unanswered in case of failure. Therefore for A5 and A6 the
Rqnoanswer equals (2):

secMaintainRepaircurFailurenoanswer)(RqTTRqNRq ⋅++⋅=
 (2)

Where NFailure is an average number of hardware and software failures
per year, Rqcur describes an average number of requests that are present
in the system and are being processed at any point of time, Rqsec equals
an average number of requests per second, TRepair is average time to
repair software and hardware failures and Tmaintain is an average
maintenance time in a year. The availability is different in the case of
A7 and A8. There are 2 machines involved and in case of a failure only
the requests, which were sent to the node that crashed and not answered
are lost. Therefore the Rqnoanswer of A7 and A8 equals (3):

curFailurenoanswer RqNRq ⋅= (3)

The availability of A7 and A8 is only affected by number of failures
and number of concurrently processed requests. To exemplify the
difference in availability between standalone and cluster
implementations we have created three scenarios describing
characteristics of three systems. The scenarios are based on interviews
with practitioners. Scenario 1 corresponds to good, Scenario 2 to
average and Scenario 3 to rather bad implementation of payment
system. The scenarios are presented in Table 1. The amount of requests
per year was calculated from Rqsec – we assume an equal distribution of
requests.

Table 1. Comparison of availability of cluster versus single machine implementation
for 3 different scenarios

Characteristics Scenario 1 Scenario 2 Scenario 3
NFailure 10 50 100
Rqcur 10 10 10
Trepair 600 1800 3600
Tmaintain 1800 3600 7200
Rqsec 100 100 100

A5,A6 99.992 99.983 99.966 Availability
results A7,A8 99.99999683 99.99998415 99.9999683

Paper III

 120

In the literature [15], argues that a standalone server usually has 99%
availability. This supports our own finding that high quality systems
standalone systems (A5, A6) can reach 99,9%. Alternatively, it seems
that it is possible to achieve almost 100% uptime for cluster. It is
probably an optimistic assumption; however “five nines” seem to be in
range, even though literature suggests four [15].

5.2 Reliability

Reliability is described as a percentage of successfully stored payment
information - equation (4).

year

lostyearyReliabilit
Rq

RqRq −
=

(4)

Where Rqlost is amount of requests lost in the year. Two types of
reliability threats that can result in data loss were identified in the
study. The first one occurs when a request is lost and a customer does
not get an answer. This threat concerns all architectures because of the
lost of requests processed during a failure. In addition, A5 and A6 do
not accept incoming requests during downtime, which is also
considered a data loss. The second reliability threat concerns the
“internal” data loss. A request is answered but the payment record is
lost due to the loss of replication or disk write buffer. This risk
concerns A5 and A7. In the architectures not involving deferred
replication (A6, A8) Rqlost = Rqnoanswer. For A5 the Rqloss is following
(5):

diskbufFailurenoanswerloss RqNRqRq ⋅+=
 (5)

Where Rqdiskbuf is an average amount of requests in the disk buffer. For
A7 the Rqloss is following (6):

repbufFailurenoanswerloss RqNRqRq ⋅+=
 (6)

Where Rqrepbuf is an average amount of requests kept in the replication
buffer.

In Table 2 a reliability assessment for the examples from Table 1 is
presented. Additionally the Rqdiskbuf and Rqrepbuf are specified.
Remaining values (e.g. NFailure) are the same as in Table 1.

When it comes to reliability the cluster based solutions clearly
outperform the standalone implementations. However, it is worth
noticing that none of the architectures achieves a 0% data loss.

Evaluating Real-Time Credit-Control Server
Architectures Implemented on a Standard Platform

 121

Table 2. Comparison of reliability of architectures for 3 different scenarios

Characteristics Scenario 1 Scenario 2 Scenario 3
Rqdiskbuf 10 10 10
Rqrepbuf 10 10 10

A5 99.99238645 99.98286070 99.96572140
A6 99.99238648 99.98286086 99.96572171
A7 99.99999680 99.99998399 99.99996797

Reliability
results

A8 99.99999683 99.99998415 99.99996829

5.3 Performance

The performance of the selected architecture variants was evaluated in
an experiment. The experiment was performed using two identical
computers connected with a network for evaluation of the cluster based
solutions and one of the computers for the standalone implementations.
The computers ran a payment system application that used an in-
memory database. We used the database produced by Times Ten,
which provides both synchronous and asynchronous replication and
synchronous and asynchronous disk writes options.

For each of the architectures we measured throughput and response
time. Throughput was defined as the maximum number of requests that
can be processed in a unit of time. The amount of requests processed
was increased until we reached the saturation point where increasing
the number of requests did not increase throughput but response time
only. The second characteristic was the response time on a loaded
system – the response time of a system that reached its saturation point.
The performance bottleneck in the system was the CPU. The results of
the performance measurement can be found in Table 3. The values are
normalized.

Table 3. Performance of the architecture variants

Architecture Characteristics A5 A6 A7 A8
Response time results 100 172 140 240
Throughput results 100 65 70 51

6. Related work

Finding an optimal balance between availability, performance and
different data quality aspects is a well known problem (e.g. [4, 5, 7,
21]). In [4] the author presents two server architectures that meet a high
availability requirement. One is based on a shared-disk and the other is

Paper III

 122

based on a shared-nothing paradigm. They directly correspond to A2,
A3 and A4 architectures from our study. In [13] the authors present a
dual-computer with ‘shared nothing architecture’ as a solution for a
fault-tolerant server. The paper provides an implementation proposal as
well as theoretical assessment of availability. Similar solution can be
also found in [10]. A single computer implementation is often ignored
since it usually does not provide an adequate availability level.

The ‘shared nothing architecture’ must involve data replication between
cluster nodes. Replication is also a well studied subject, although most
studies concern many co-existing replicas of the data. An overview of
replication techniques can be found in [9, 19, 20]. Practically three
types of replication can be identified [19]: active, semi-active and
passive. The idea behind active replication is that the requests are
broadcasted to all server nodes. Such a solution requires a deterministic
request processing in order to assure that all servers answer in the same
way [19]. We find it impossible to assure in our case. A semi-active
replication solves that problem. It is achieved by dividing replicas into
a leader and followers. Every time there is a non-deterministic decision
to be made, the leader must make sure that it is made correctly. Semi-
active replication was given attention (e.g. [2, 16]) and it seems that
there is potential in it. In [2], an architecture of a real-time server based
on a variant of semi-active replication is presented. Although its
implementation would result in a high communication overhead (we
would have to consider all updates non-deterministic), the advantage of
semi-active replication is lack of current request loss in case of failure.
Therefore it should be further examined and can be seen as a future
study.

The passive replication is exactly what we have suggested for cluster
based architectures. Many researchers try to find optimisation of
passive replication. In [7] the authors notice that not all users require
the same database control privileges. Any access limitation decreases
the synchronization effort. It is not applicable to our solution where
both nodes should behave in exactly the same way. Another
optimization is designing applications that can tolerate certain
inconsistencies [1]. It is also difficult to apply in our case.

7. Conclusions

The purpose of the study was to evaluate the characteristics of a
payment system that can be obtained given that a system is developed
on a standard platform. The system characteristics evaluated in this
study were availability, reliability and performance.

Evaluating Real-Time Credit-Control Server
Architectures Implemented on a Standard Platform

 123

The initial analysis of some architecture variants resulted in the
elimination of the candidate architectures that contained a disk based
database. An in-memory database seems like the only reasonable
solution in our case. However, such elimination is possible only if a
database can fit into memory, which is the case in our application
domain. It is not an unreasonable assumption for many other
application domains. A discussion concerning that issue can be found
in [8].

The results of the evaluation of the selected architecture variants
indicated that there exists a trade-off that must be decided by a payment
system designer. As each of the four identified solutions offers unique
characteristics, there is no single “winner” that could be best
determined. In determining which solution to use, this depends on the
individual needs as to which should be selected. For example, if high
availability is required, the choice is limited to two cluster based
architectures. The availability they offer costs approximately 40% of
the performance decrease in terms of response time and around 30% in
terms of throughput compared to standalone implementations. They
also require rather expensive cluster implementation. In [10] it was
shown that in a dual-computer cluster implementation about 85% of the
code was devoted to providing availability, i.e. mainly failover and
replication implementation. This code would not be present in
standalone implementations.

Our measurements indicate that that there is also a performance price to
be paid for reliability. The “reliability oriented” solutions (A6 and A8)
have about 70% higher response times and 30% lower throughput
compared to their “performance oriented” counterparts (A5 and A7).
An immediate, synchronous replication gives better reliability but
affects performance. Therefore it is up to the designer to decide if some
data loss, such as in case of failure, is an acceptable price to be paid for
higher performance.

None of the architectures implemented on a standard platform solves
the problem of loosing requests that are currently processed. It is
actually a reliability and service availability threat – a customer does
not receive an answer and, what is worse, he/she can not be sure if the
operation was performed or not.

We are aware that there are more advanced methods of availability and
reliability estimations (e.g. [17]). Our method is rather straightforward
and simple. However, the purpose of our work was not to suggest a
new availability or reliability assessment technique but to present and

Paper III

 124

quantify the limitations of standard platforms when implementing a
Credit Control server and similar payment systems. It seems that in
order to overcome the problems identified (e.g. data loss) more
sophisticated solutions, like middleware or clusterware, are necessary.
Since, as we know (see Paper I), they require high development effort
we see it as a future study to investigate how to introduce them in a cost
efficient manner.

8. Acknowledgements

The authors would like to thank Simon Kågström, Jeanette Eriksson,
Lars-Ola Damm and Lawrence Henesey for reviewing this paper. This
work was partly funded by The Knowledge Foundation in Sweden
under a research grant for the project "Blekinge - Engineering Software
Qualities (BESQ)" (http://www.bth.se/besq)

9. References

[1] D. Barbara and H. Garcia-Molina, The case for controlled inconsistency
in replicated data. Proceedings of Workshop on the Management of
Replicated Data, (1990), 35-38.

[2] P.A. Barrett, Delta-4: an open architecture for dependable systems. IEE
Colloquium on Safety Critical Distributed Systems, (1993), 2/1-2/7.

[3] P.A. Bernstein and E. Newcomer, Principles of transaction processing,
Morgan Kaufmann Publishers, San Francisco, CA, US, (1997).

[4] A. Bhide, Experiences with two high availability designs (replication
techniques). Second Workshop on the Management of Replicated Data,
(1992), 51-54.

[5] Z. Chi and Z. Zheng, Trading replication consistency for performance
and availability: an adaptive approach. Proceedings of 23rd
International Conference on Distributed Computing Systems, (2003),
687-695.

[6] J. Cornetto, Databases dive into main memory. InfoWorld, 20 (1998),
33.

[7] H. Garcia-Molina and B. Kogan, Achieving High Availability in
Distributed Databases. IEEE Transactions on Software Engineering, 14
(1988), 886-897.

[8] H. Garcia-Molina and K. Salem, Main memory database systems: an
overview. IEEE Transactions on Knowledge and Data Engineering, 4
(1992), 509-516.

[9] J. Gray, P. Helland, P. O'Neil, and D. Shasha, The dangers of
replication and a solution. SIGMOD Record 1996 ACM SIGMOD

Evaluating Real-Time Credit-Control Server
Architectures Implemented on a Standard Platform

 125

International Conference on Management of Data, 4-6 June 1996, 25
(1996), 173-182.

[10] D. Haggander, L. Lundberg, and J. Matton, Quality attribute conflicts -
experiences from a large telecommunication application. Proceedings
of Seventh IEEE International Conference on Engineering of Complex
Computer Systems, (2001), 96-105.

[11] Y. Haifeng and A. Vahdat, The costs and limits of availability for
replicated services. Operating Systems Review. 18th ACM Symposium
on Operating Systems Principles (SOSP'01), 21-24 Oct. 2001, 35
(2001), 29-42.

[12] H. Hakala, L. Mattila, J.-P. Koskinen, M. Stura, and J. Loughney,
Diameter Credit-Control Application (internet draft - work in
progress). (2004): http://www.ietf.org/internet-drafts/draft-ietf-aaa-
diameter-cc-06.txt.

[13] G. Hui, Z. Jingli, L. Yue, and Y. Shengsheng, Design of a dual-
computer cluster system and availability evaluation. 2004 IEEE
International Conference on Networking, Sensing and Control, 1
(2004), 355-360.

[14] T. McElligott, An order of magnitude. Telephony, 238 (2000), 70.
[15] G.F. Pfister, In search of clusters, Prentice Hall, Upper Saddle River,

NJ, (1998).
[16] P. Triantafillou, High availability is not enough (distributed systems).

Second Workshop on the Management of Replicated Data., (1992), 40-
43.

[17] M. Walter, C. Trinitis, and W. Karl, OpenSESAME: an intuitive
dependability modeling environment supporting inter-component
dependencies. Dependable Computing, 2001. Proceedings. 2001
Pacific Rim International Symposium on, (2001), 76.

[18] C. Waltner, In-Memory Databases Aid Web Customization.
InformationWeek, (2000), 80-83.

[19] Wiesmann and P.F. M., Schiper A., Kemme B., Alonso G.,
Understanding replication in databases and distributed systems. 20th
International Conference on Distributed Computing Systems, 2000.
Proceedings., (2000), 464-474.

[20] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso,
Database replication techniques: a three parameter classification.
Proceedings of The 19th IEEE Symposium on Reliable Distributed
Systems, (2000), 206-215.

[21] H. Yu and A. Vahdat, Building replicated Internet services using
TACT: a toolkit for tunable availability and consistency tradeoffs. 2nd
International Workshop on Advanced Issues of E-Commerce and Web-
Based Information Systems, (2000), 75-84.

Introduction

Paper I

Paper II

Paper III

Paper IV

Paper V

Paper VI

Paper VII

Paper VIII

Paper IX

A Cost-Efficient Server Architecture for
Real-Time Credit-Control

Piotr Tomaszewski, Lars Lundberg, Jim Håkansson, Daniel
Häggander

Proceedings of the 10th IEEE International Conference on the
Engineering of Complex Computer Systems (ICECCS 2005), pp. 166-
175, Shanghai, China, June 2005

Abstract

The importance of mobile and electronic commerce results in much
attention given to credit-control systems. There are high non-functional
requirements on such systems, e.g. high availability and reliability.
These requirements can be met by changing the architecture of the
credit-control system. In this paper we suggest a new architecture and
a number of alternative implementations of credit-control server. By
quantifying the availability, reliability, performance and cost we enable
the designers to make better trade-off decisions. We compare the new
architecture with the current, “state-of-the-art” solution. Finally, we
present suggestions for the system developers concerning the choice of
an appropriate architecture implementation variant.

Paper IV

 130

A Cost-Efficient Server Architecture for Real-Time Credit-Control

 131

1. Introduction

The popularity of on-line services, like online video or internet
shopping triggers a need of creating billing mechanisms. For revenue
collection the service providers often use an online billing system.
Recently the prepaid services have become very popular. The
characteristic of prepaid solutions is that the service is provided only as
long as the customer has adequate assets on the account. This means a
real-time credit-control – the service should not be delivered when the
customer’s account is too low.

Diameter Credit-Control (DCC) is a standard for developing billing
systems for prepaid services. Currently, its specification draft is
available from The Internet Engineering Task Force [6]. It is promoted
by leading companies providing billing solutions.

The rapid growth of mobile commerce market [12] increases the
expectations concerning billing systems. The requirements mostly refer
to reliability, availability, performance and development cost. The
increasing average monetary value of a request puts a lot of attention
on reliability and availability. Any data loss or service outage becomes
unacceptable.

The need of combining conflicting requirements makes development of
billing systems a challenging task. One way of simplifying their
development is to use a specialized, fault-tolerant platform. An example
of the fault tolerant platform is presented in Section 5. Such a platform
is able to provide required characteristics in terms of performance,
availability and reliability. However, as our previous experiences show
(see Paper I), the development cost on such a platform can be very
high. We have identified a factor of four difference between the
productivity on a specialized platform compared to a standard platform
(UNIX).

On the other hand, solutions based on standard platforms have
problems providing the required availability, performance and
reliability. In another study (see Paper III) we have suggested and
evaluated possible credit-control server implementations on a standard
platform. None of the identified variants provided 100% reliability and
availability.

The purpose of this study is to check if, by combining a standard and a
specialized platform, it is possible to implement, in an efficient manner,

Paper IV

 132

a credit-control server that meets high reliability and availability
requirements. The server should be implemented according to DCC
specification and evaluated from availability, performance, reliability
and development effort perspectives. The result of the study should
help the developers of credit-control and similar applications in
deciding what technology they should use to meet, in a cost efficient
way, the optimal balance between required characteristics.

2. Diameter Credit-Control

Diameter Credit-Control (DCC) defines the interaction between a
credit-control client and a credit-control server. The credit-control
server performs rating and accounting. Rating is an operation that maps
technical units into monetary units, e.g., amount of goods or online
video watching time to the amount of money the customer should pay.
Accounting is an operation of recording and maintaining the
information about the customer’s activities. The overview of the
architecture is presented in Figure 1.

Figure 1. Diameter credit-control

An example of a realization of DCC can be found in Figure 2 where the
model of video-on-demand service is presented.

Figure 2. Video on demand service with DCC

A Cost-Efficient Server Architecture for Real-Time Credit-Control

 133

In DCC the video-on-demand provider is a credit-control client since it
requests the credit-control server (payment provider) to debit the
consumer. When the video-on-demand provider is asked for the next
portion of the video it asks the credit-control server to reserve an
appropriate amount of money on the consumer’s account. If the
reservation and service delivery succeeds the credit-control client asks
the server to debit customer’s account. Two types of services are
offered by the credit-control server:

- One Time Event – in which one request is sent from a credit-control
client to a credit-control server, e.g., an inquiry concerning an
account balance.

- Session Based credit-control – which requires keeping session state
on the server. It involves the exchange of multiple requests.
Examples of such services are online video and prepaid phone calls.

Session Based credit-control is realized using interrogations (see Figure
3). Interrogation is a request that is sent to the credit-control server to
get permission for continuing service delivery. The credit-control
server reserves a quota that covers the estimated service cost for the
next reservation period and charges the customer for the service
delivered from the previous interrogation. In this way the service is
divided into portions (e.g. number of minutes of movie or voice
conversation). Each interrogation reserves assets for the next such
portion and charges the consumer for the previous.

In this study we consider a simple credit-control client implementation
that sends a request to the server only once. If no answer is given, the
credit-control client assumes negative answer and stops service
delivery. No request re-sent is performed by the client.

Figure 3. Interrogations

0..*0..*

credit-control server

credit-control server

credit-control client

credit-control client

FirstInterrogation()FirstInterrogation()

GrantedUnits()GrantedUnits()

IntermediateInterrogation()IntermediateInterrogation()

FinalInterrogation()FinalInterrogation()

GrantedUnits()GrantedUnits()

UsedUnits()UsedUnits()

Paper IV

 134

3. Related work

The development of systems that have highly prioritized availability
and reliability requirements always results in the necessity of making
trade-offs. In [7, 17, 18] the authors discuss the trade-off between
availability and data consistency, in [9] the trade-offs between
maintainability, performance and availability. Also the trade-off
between performance and consistency has been recognized [18]. The
problem with the required qualities is that they are dependant, e.g.
availability usually involves data replication, which from a consistency
perspective means a lot of state updating communication, highly
undesired from performance perspective. Therefore there is no silver
bullet solution in that matter and different suggestions are usually very
application specific.

 Both availability and performance are in the literature [2, 14] often
discussed in the context of replication. According to [2] there are two
main strategies when it comes to replication: “replication of the server”
and “replication of the server and the resource”. As server the stateless
part of application is concerned. In our case it would be the rating
component. The server operates on the resource, which, in our case, is
the database.

The “replication of the server” means that both credit-control nodes
share a single database. Such a solution was presented in [5] for the
system similar to ours. As a benefit of such solution lack of overhead
connected with replication and lack of consistency problems is
presented. An example of “replication of a server and resources” is the
“state-of-the-art” architecture described in this work. When it comes to
this solution the main research effort was devoted to develop the
efficient replication schemes (e.g. [4, 8, 16]). The replication schemes
can provide balance between performance and consistency. However,
there is no way of solving the problem of loss of data processed during
failure without co-operation from the client.

As a way to solve this problem a specialized platform can be
considered. Example of such solution is described in [13], where
CORBA was extended with automatic object replication, migration and
restart of objects that failed. Another example of that kind is [15] - it is
an operating system that runs on a cluster of computers. It provides
internal data replication and migration capabilities. The main problem
with this kind of solutions, as we see it (see Paper I), is a low
productivity of software development for such platforms.

A Cost-Efficient Server Architecture for Real-Time Credit-Control

 135

4. Method

In this study we suggest a new credit-control server architecture and
present number of its implementation variants. We evaluate and
compare them with the “state-of-the-art” credit-control
implementations. The evaluation is done from the reliability,
availability, performance and development cost perspectives.

We define reliability as the probability that a request was successfully
processed and stored. The availability is the probability that the request
sent to the server is answered. The performance is measured as the
maximum throughput of the system and the response time of the
saturated system. The development cost is estimated and describes the
effort of developing each of the implementation variants.

The reliability and availability are defined as functions of certain
implementation and platform characteristics, e.g. downtime and amount
of failures. To make the results tangible we present characteristics of
three implementations and evaluate their availability and reliability for
each of the new architecture implementation variants. For availability
and reliability evaluations we make the standard assumption that only
one component fails at the time.

For the purpose of performance measurement a prototype of the system
is implemented. The evaluation is performed in an industrial setting –
the prototype involves crucial (from performance perspective) parts of
a real payment system. Therefore, according to the agreement with our
industrial partner, the performance figures are normalized.

The development effort is estimated by experts involved in
development of billing systems. The estimation concerned amount of
functionalities that must be implemented and the effort connected with
it. Based on that, we estimated the cost of the solutions.

This study begins with a presentation of the “state-of-the-art”
architectures, which we have identified in a previous study (see
Paper III). We present two credit-control server implementation
variants based on a standard platform. We evaluate them from the
reliability and availability perspectives as well as we measure their
performance. We identify issues that affect reliability and availability
of the “state-of-the-art” solutions.

As a solution to the availability and reliability problems we suggest a
new architecture. It combines standard and fault-tolerant platform. We

Paper IV

 136

describe an example of a fault-tolerant platform. For the new
architecture we present variants of a credit-control server
implementation. The variants are evaluated and compared to the “state-
of-the-art” solutions.

Finally we summarize findings and presented suggestions concerning
the choice of the architecture when certain balance of requirements is
expected.

5. “State-of-the-art” solution

5.1 Presentation

In Paper III we have identified four “state-of-the-art” architecture
variants of a credit-control server implementation on a standard
platform. Two of them are implemented using a single machine and
offer rather low availability and reliability levels. Their main advantage
is low development cost. The remaining two architectures are based on
a shared-nothing cluster [14]. They offer high availability and
reliability. Since, in this study, we are interested mostly in availability
and reliability, only the two cluster-based variants are taken into
consideration.

Both variants are based on a hot backup server architecture [14]. It
consists of two server nodes – a primary and a backup. When primary
fails, a failover is performed. The secondary node becomes the primary
(Figure 4) and takes over operation. Each of the nodes has the same
configuration. Data storage is provided by a database. For performance
reasons an in-memory database is used. Such a database, by keeping all
the data in the RAM memory, speeds up the operations by an order of
magnitude [3].

Since both nodes must operate on the same data there is a replication
between the databases. The difference between the two cluster based
architecture variants is that one uses synchronous and another one uses
asynchronous replication. From now on we call the variants SYNC and
ASYNC.

A Cost-Efficient Server Architecture for Real-Time Credit-Control

 137

Figure 4. Failover scenario – when primary node fails the backup takes over the
operation

In synchronous replication mode (Figure 5) the database transaction
returns when the changes are committed in both databases. In
asynchronous mode the changes are committed only in the primary
server before the transaction returns (Figure 6). The replication of
changes is deferred. That improves performance – not only the round
trip to another node is not included in the transaction but also network
traffic is decreased by sending a number of changes grouped together
instead of sending them one by one.

Figure 5. Synchronous replication

Primary
database

Primary
database

Backup
database

Backup
database

Client

Client

Update()Update()

Acknowledgement()Acknowledgement()

Changelog()Changelog()

Acknowledgement()Acknowledgement()

The drawback with the asynchronous replication is that the backup
server’s state is always “behind” the primary’s one. A number of
requests that were not replicated are lost when primary node fails. We
refer to that amount of requests as to “replication buffer”.

Paper IV

 138

Internally the credit-control server node is divided into two logical
parts (Figure 7) [5]. Rating is the stateless element responsible for
rating. Database is the stateful part responsible for accounting. The
main Database tables are Accounts (user accounts) and SessionInfo
(on-going sessions information, e.g., reservations). Only the Accounts
table is replicated.

Figure 6. Asynchronous replication

Client

Client

Backup
database

Backup
database

Primary
database

Primary
database

Acknowledgement()Acknowledgement()

Changelog()Changelog()

Update()Update()

Acknowledgement()Acknowledgement()

As can be noticed in Figure 7 the rating component can contact both
databases. By default it uses the one that is on the same machine, but if
it can not be contacted the rating performs the operation on the backup
node’s database. The interrogation handling is presented in Figure 8.

Figure 7. “state-of-the-art” implementation of credit-control server

A Cost-Efficient Server Architecture for Real-Time Credit-Control

 139

The rating component gets a request from the client. It asks the
database for information about account balance and reservations. Based
on that, it performs rating. It decides how much money should be
reserved and how much should be debited. Later it reserves money
(update of SessionInfo table) and debits the actual account (update of
Accounts table).

Figure 8. Interrogation processing

credit-control client

credit-control client

database

database

rating

rating

Request()Request()

PerformRating()PerformRating()

Response()Response()

GetCustomerData()GetCustomerData()

CustomerData()CustomerData()

ReserveUnits()ReserveUnits()

UnitsReserved()UnitsReserved()

DebitAccount()DebitAccount()

AccountDebited()AccountDebited()

5.2 Evaluation

Planned downtime does not affect availability or reliability of cluster
based solutions (the work can be migrated to the other node). The only
availability and reliability threat is unplanned downtime (failure) that
results in data loss. In Paper III we have identified two major data loss
threats:

- “current requests loss” – the loss of currently processed requests. In
the system there are always a number of concurrently processed
requests, which are lost in case of failure. We will denote average
number of requests in the system as Rqcur

- “replication buffer loss” - loss of “replication buffer” in case of
asynchronous replication. The average amount of requests in the
replication buffer will be referred to as Rqbuf

The “replication buffer loss” affects only data reliability – the lost data
was committed to the database which means that the customer got an
answer. Therefore, the service availability of both solutions is the same
and can be calculated as (see Paper III):

year

curFailyearAvail
Rq

RqNRq ⋅−
=

Paper IV

 140

where Rqyear is amount of requests per year and NFail is number of
application or platform failures per year. The reliability of replication
modes is different. In SYNC it has the same value as availability:

year

curFailyear
SYNCyReliabilit

Rq
RqNRq ⋅−

=

ASYNC has lower reliability because the data loss is increased by the
of “replication buffer loss”:

year

curFailyear
ASYNC

)(
yReliabilit

Rq
RqRqNRq buf+⋅−

=

To estimate the availability and reliability level we can expect from
SYNC and ASYNC implementation variants we created three different
scenarios describing characteristics of three different system
implementations. The results are presented in Table 1. The amount of
requests per year was calculated based on a number of requests per
second (Rqsec).

Table 1. Reliability and availability evaluation

 Scenario
 1 2 3
NFail 10 50 100
Rqcur 10
Rqbuf 10
Rqsec 100
Availability 99.99999683 99.99998415 99.9999683
Reliability ASYNC 99.99999680 99.99998399 99.99996797
Reliability SYNC 99.99999683 99.99998415 99.99996829

The higher reliability of SYNC implementation variant has a
performance price. In Paper III we have detected 30% throughput
decrease and 70% response time increase in SYNC compared to
ASYNC. The results of the performance measurement can be found in
Table 2. The values were normalized – the ASYNC variant’s results
were used as a baseline and normalized to 100. The response time was
measured when the system was saturated, i.e. when increasing load
increased response time but not throughput.

Table 2. Performance evaluation results

 ASYNC SYNC
Response time (RT) 100 171
Throughput (T) 100 73

A Cost-Efficient Server Architecture for Real-Time Credit-Control

 141

6. Fault-tolerant platform

Fault tolerance is defined as “the ability of a system or component to
continue normal operation despite the presence of hardware or software
faults” [10]. Typically fault tolerance is either hardware or software
based. Hardware based solutions, e.g. [1, 11], involve proprietary
hardware, which makes them very expensive. A software based
solutions overcome this problem by operating on a standard hardware.
An example of a software based solution is the fault-tolerant platform,
which we have evaluated in (see Paper I). It is a system that consists of
(Figure 9):

- Up to 40 traffic processors that process pay-load
- Two I/O processors responsible for the external communication and

maintenance
- Two Ethernet switches and two separate interconnections via

Ethernet networks

Figure 9. A fault-tolerant platform example

The platform offers standard interfaces (APIs) for Java and C++ but the
programming model is unique. The execution unit is a process. There
are static processes that are always running and dynamic ones that are
created and terminated on demand. The platform provides an in-
memory database. The basic storage units are database objects.

To assure an efficient load balance the programmer has a set of
methods for allocating database objects and processes to processor
pools, i.e. sets of traffic processors on which database objects and

Paper IV

 142

processes may operate. The load balancing within a pool is done by the
platform itself.

To facilitate the programming of the highly available systems every
process or database object is replicated on two machines in the cluster –
a failure of one of them does not affect the correct operation of the
whole system. The platform also has built-in features that allow online
upgrades of the applications.

In Paper I we have investigated the productivity on such a platform. It
turned out to be factor of four lower than on a standard platform. As the
main cost drivers we have identified long learning and lack of tools and
libraries that are available for standard platforms.

7. New architecture

7.1 Basic idea

In Section 5 we have presented two “state-of-the-art” implementations
of the credit-control server. None of them provided 100% availability
and reliability. The best solution from reliability perspective is also the
worst one from the performance point of view. Using the “state-of-the-
art” architecture requires performance-reliability trade-offs. Such trade-
offs can be avoided by implementing the credit-control server on a
fault-tolerant platform, like the one described in Section 6. The price
for high reliability and performance is significantly higher development
cost.

Our idea is to combine standard and fault-tolerant platform into one
architecture. By keeping as much as possible of the functionality on a
standard platform we can decrease the development cost. The fault-
tolerant platform can contribute to good availability and reliability.
Such a mixture of a reasonable development cost and good availability
and reliability is not provided by any of currently available solutions.
Therefore we consider it interesting to investigate.

7.2 Architecture overview

In the new architecture to the “state-of-the-art” credit-control server
(cluster with two computers) we have added a Single Point of Contact
(SPOC). The new architecture is presented in Figure 10. The credit-
control client always contacts a single designated machine. The SPOC

A Cost-Efficient Server Architecture for Real-Time Credit-Control

 143

is implemented on the fault-tolerant platform. Therefore, in the further
discussion, SPOC is not considered a point of failure.

Figure 10. New architecture

The basic request processing is similar to the one on the “state-of-the-
art” architecture. The SPOC acts as a proxy and passes requests from
client to the credit-control server node and back. The additional
requirement is that SPOC should provide enough processing power not
to become a bottleneck of the system. We will estimate the processing
power required from the SPOC.

7.3 Implementation variants

In Section 5.2 we have identified two sources of data loss in state-of-
the-art solution, namely “current request loss” and “replication buffer
loss”. The introduction of SPOC gives us a chance to minimise or
eliminate their impact.
One way of increasing reliability and availability is to introduce request
re-sending on SPOC. In the ”request re-send” method the SPOC re-
sends the request if the response from the node is not received within a
specific amount of time.

The main threat connected with re-sending of request is that it may be
processed more than once, which may result in overcharging.
Therefore we introduce mechanism on the credit-control server node
that prevents it. Following changes are suggested:

Paper IV

 144

- In the SessionInfo table we keep the id of the last request from the
session together with the response that was sent to the customer

- When charging the rating component checks if the request was not
answered. If it was, the response from the SessionInfo is sent to
SPOC

- The SessionInfo table is replicated

There is a problem that re-sent request may reach the server while the
original one is still processed. Since the answer to both requests may be
different (e.g. due to tariff change) we must assure that the response to
the client is consistent with the change in database. For that purpose we
introduce additional serial number given by SPOC to each request. This
number is included in the answer from the node. Only the response to
the request with the last serial number is transmitted to the client. Also
the replication conflict (conflicting changes of the same record) should
be resolved by selecting the change caused by request with higher serial
number.

The “request re-send” solves the problem of “current request loss”. It
does not, however, solve the “replication buffer loss” problem that is
present when asynchronous replication is used. To address this we
suggest introducing a “request database”, which is an extension of
“request re-send”. The idea is to keep recent requests on SPOC as long
as they are not replicated to both nodes. When primary node fails the
SPOC re-sends the recent requests to backup node to make sure its state
is updated. The amount of requests to re-send may be based either on
time criterion or more complex solution may be suggested. One way is
to mark each update with information on which node it was committed.
The backup node, on regular bases, selects all requests committed on
the primary one and informs SPOC that they are already replicated.
SPOC removes them from the request database.

For further analysis we suggest three architecture implementation
variants, presented in Table 3.

Table 3. The architecture implementation variants

Variant Description

SPOC+SYNC SPOC + request re-sending + synchronous
replication

SPOC+ASYNC SPOC + request re-sending + asynchronous
replication

SPOC+RQDB SPOC + request re-sending + asynchronous
replication + request database

A Cost-Efficient Server Architecture for Real-Time Credit-Control

 145

8. Evaluation

8.1 Availability and reliability

Both availability and reliability are affected by data loss. The new
architecture variants ability to solve “current requests loss” and
“replication buffer loss” are summarized in Table 4.

The availability of both “state-of-the-art” solutions (SYNC and
ASYNC) was affected only by the “current requests loss” problem.
This problem is solved in all variants of the new architecture. Therefore
all 3 variants have 100% availability.

Table 4. Problems solved in the new architecture implementation variants

Variant “current requests
loss”

“replication buffer
loss”

SPOC+SYNC solved N/A
SPOC+ASYNC solved unsolved
SPOC+RQDB solved solved

When a synchronous replication is used the reliability is affected only
by the “current requests loss” problem. In asynchronous replication
additionally the “replication buffer loss” affects it. This problem is not
solved only in SPOC+ASYNC. Therefore the reliability of
SPOC+SYNC and SPOC+RQDB will be 100%, while the reliability of
SPOC+ASYNC is following:

year

Failyear
ASYNCSPOCyReliabilit

Rq
RqNRq buf⋅−

=+

In order to compare the reliability and availability of the “state-of-the-
art” and the new architectures in a more tangible manner we perform an
estimation of reliability and availability for the same three scenarios
describing characteristics of three different system implementations as
in the Table 1. The results are presented in Table 5. For the comparison
the results of the “state-of-the-art” variants are included.

In the Table 5 it can be noticed that even though the reliability of
SPOC+ASYNC is not 100, in practise it still improves the reliability of
ASYNC.

Paper IV

 146

Table 5. Reliability and availability – comparison of state-of-the-art and the new
architecture

 Scenario
 1 2 3

NFail 10 50 100
Rqcur 10 10 10
Rqbuf 10 10 10
Rqsec 100 100 100

ASYNC
SYNC 99.99999683 99.99998415 99.9999683

SPOC+SYNC
SPOC+ASYNC

A
va

ila
bi

lit
y

[%
]

SPOC+RQDB
100 100 100

ASYNC 99.99999680 99.99998399 99.99996797
SYNC 99.99999683 99.99998415 99.99996829
SPOC+SYNC 100 100 100
SPOC+ASYNC 99.99999683 99.99998415 99.9999683 R

el
ia

bi
lit

y
[%

]

SPOC+RQDB 100 100 100

8.2 Performance

The performance, in terms of throughput and response time, depends
on how powerful the SPOC machine is compared to the server node
that processes requests. The throughput (T) of the entire system is as
high as the lower of SPOC and the node throughputs:

),min(NODESPOCSYSTEM TTT =

Because we do not want to introduce a bottleneck into the system, the
SPOC has to provide a high enough throughput (TSPOC>TNODE). In this
way the throughput of the new architecture variants is the same as of
their counterparts without SPOC. To assess the processing power that is
required from the SPOC we implemented the SPOC functionality on
the cluster with asynchronous replication between databases (identical
with ASYNC configuration) and we measured throughput and response
time on it.

The results were compared with throughput and response time of
SYNC and ASYNC credit-control server implementation variants.
Under normal conditions (no failure) the data processing routines on
the SPOC are the same for all three architecture variants
(SPOC+ASYNC, SPOC+SYNC, SPOC+RQDB). The results of the
throughput comparison are summarized in Table 6.

A Cost-Efficient Server Architecture for Real-Time Credit-Control

 147

Table 6. The comparison of the SPOC and the node performance

 ASYNC SYNC SPOC
Response time (RT) 100 171 57
Throughput (T) 100 73 267

We measured the performance of the whole credit-control server that
includes SPOC. The comparison can be found in Table 7.

Table 7. Comparison of performance of the credit-control server implementation
variants

 SPOC

ASYNC SYNC
ASYNC ASYNC ASYNC

Response time (RT) 100 171 169 240 169
Throughput (T) 100 73 100 73 100

Like before, the response time was measured when the system was
saturated, i.e. when increasing load increased response time but not
throughput.

9. Cost

The cost evaluation was based on three factors:

- the ratio of functionality between the SPOC and the credit-control
server node

- the ratio of development effort between implementation of a
functionality on a fault tolerant platform and on a standard platform

- the cost of additional features in the nodes that enable their co-
operation with the SPOC

The ratio of functionality between SPOC and the credit-control node
and the cost of additional features in the nodes were estimated by
experts. The experts had knowledge about standard and fault-tolerant
platform as well as experience in developing payment systems.
According to them the amount of SPOC functionality in the
SPOC+SYNC and SPOC+ASYNC corresponds to approximately 5%
of the amount of the node functionality. The SPOC+DBRQ is more
complex and its SPOC functionality corresponds to about 7% of the
node functionality. The estimations were based on similarities between
components that would have to be developed to implement the new
architecture and already existing components implementing similar
functionalities in other projects.

Paper IV

 148

The ratio of a cost of functionality implementation between two
platforms was investigated by us in Paper I. We found a factor of four
difference between a functionality development cost.

The cost of additional features that must be added to the nodes was
estimated as 5% in all three cases, compared to the “state-of-the-art”
implementation.

The cost estimation is presented in Table 8. The values are normalized.
It should be noticed that the cost of development on a new architecture
is significantly smaller compared to the development of the whole
credit-control system on the fault-tolerant platform which, according to
our estimations, would cost about 400. This is about three times as
much as the cost of development on our architecture.

Table 8. Development cost estimation

SPOC ASYNC SYNC
ASYNC SYNC RQDB

Cost 100 100 125 125 133

10. Discussion

The results obtained in our study look promising. All three architecture
variants improve the reliability and availability of the standard, “state-
of-the-art” solution. Two of them provide 100% reliability and
availability. Their development cost is significantly smaller compared
to the implementation on a fault-tolerant platform. According to our
estimations the cost corresponds to about 30% of the cost of
implementation on a fault-tolerant platform.

 In the example presented we have also shown that, provided high
enough throughput of the SPOC, the performance price for increasing
availability and reliability may be reasonable in terms of response time
and none in terms of throughput. Moreover we have shown that the
high throughput of the SPOC can be provided for rather low price – the
platform used for SPOC must provide only about 30% to 40% of
processing power of the standard machine.

The three architectures offer different qualities. An overview of their
characteristics is presented in Figure 11 (the “state-of-the-art” solutions
are included for comparison). The size of the bubbles indicates the
difference is cost between the architecture variants. Neither the
distances between the bubbles nor their size ratios indicate the actual

A Cost-Efficient Server Architecture for Real-Time Credit-Control

 149

magnitude of the differences. The figure is only meant to outline the
general differences between the architectures.

Figure 11. Characteristics of the architectures. The bubble size describes the
development cost

ASYNC

SYNC

SPOC+ASYNC

SPOC+SYNC SPOC+RQDB

Performance

R
el

ia
bi

lit
y

an
d

av
ai

la
bi

lit
y

The SPOC+SYNC architecture variant offers a very high availability
and reliability and reasonable development cost. The price for that is
the lowest performance of all architectures. The performance is better
in SPOC+ASYNC variant but it does not provide equally high
reliability level. High availability and reliability together with good
performance is provided by SPOC+RQDB. This variant has, however,
the highest cost of all.

When discussing the solution with our industrial partners they
mentioned number of opportunities connected with introducing the
SPOC. The quality pressure put on the credit-control node platform can
be reduced – a higher number of node failures would not result in
decreased availability or reliability (at least in SPOC+SYNC and
SPOC+RQDB). It may also be possible to use a single SPOC for
number of credit-control servers. Both these issues can decrease the
cost of SPOC introduction, which make the new architecture even more
interesting.

11. Conclusions

The objective of this study was to check if, by combining a standard
and a specialized platform, it is possible to implement, in a cost-
efficient manner, a credit-control server that meets high reliability and

Paper IV

 150

availability requirements. Our results show that, by using this approach,
we can suggest an architecture that offers 100% availability and
reliability for reasonably low price.

To achieve it we have analysed the current “state-of-the-art” of credit-
control server – a cluster of two computers with database replication
between them. We have described its reliability and availability
problems. As the most important we have considered reducing the
number of requests that are lost.

In order to solve the data loss problem in front of a two node cluster we
have introduced a single point of contact application (SPOC)
implemented on a fault-tolerant platform. For the new architecture we
have designed three different credit-control server implementation
variants. The variants have been evaluated from availability, reliability,
performance and development cost perspectives. In the evaluation we
have quantified the characteristics and compared them with the “state-
of-the-art” solutions.

All variants provide 100% availability which is significantly better
compared to the “state-of-the-art” solutions. Two variants provide
100% reliability. The reliability of the third one is not 100% but is
better than the reliability of its “state-of-the-art” counterpart.

The performance of the new architecture depends on the performance
of the SPOC. We have quantified the level of processing power
required from the SPOC to maintain the same throughput as the one
offered by the “state-of the-art” solutions. It turned out that the
requirements concerning SPOC platform are significantly lower than
the ones concerning the nodes implemented on a standard platform.

The evaluation of the development cost showed that, even though the
new architecture variants cost about 30% more compared to the “state-
of-the-art” implementations, they provide the same level of availability
and reliability as the implementation on a fault-tolerant platform for
about one-third of the price.

We have explicitly quantified availability, reliability, performance and
development cost which allows the designers to make better trade-off
decisions. Depending on the required quality levels and the resources
available we suggest a concrete architectural solution.

A Cost-Efficient Server Architecture for Real-Time Credit-Control

 151

12. Acknowledgments

This work was partly funded by The Knowledge Foundation in Sweden
under a research grant for the project "Blekinge - Engineering Software
Qualities (BESQ)" (http://www.bth.se/besq).

13. References:

[1] K.H. Benton B., Yamada H., A fault-tolerant implementation of the
CTRON basic operating system. Proceedings of the 11th TRON Project
International Symposium, (1994), 65-74.

[2] P.A. Bernstein and E. Newcomer, Principles of transaction processing,
Morgan Kaufmann Publishers, San Francisco, CA, US, (1997).

[3] H. Garcia-Molina and K. Salem, Main memory database systems: an
overview. IEEE Transactions on Knowledge and Data Engineering, 4
(1992), 509-516.

[4] R. Guerraoni and A. Schiper, Software-based replication for fault
tolerance. Computer, 30 (1997), 68-75.

[5] D. Haggander, L. Lundberg, and J. Matton, Quality attribute conflicts -
experiences from a large telecommunication application. Proceedings
of Seventh IEEE International Conference on Engineering of Complex
Computer Systems, (2001), 96-105.

[6] H. Hakala, L. Mattila, J.-P. Koskinen, M. Stura, and J. Loughney,
Diameter Credit-Control Application (internet draft - work in
progress). (2004): http://www.ietf.org/internet-drafts/draft-ietf-aaa-
diameter-cc-06.txt.

[7] A. Hisgen, A. Birrell, T. Mann, M. Schroeder, and G. Swart,
Availability and consistency tradeoffs in the Echo distributed file
system. Proc. of the Second Workshop on Workstation Operating
Systems, (1989), 49-54.

[8] Y. Huang and P. Jalote, Availability analysis of the primary site
approach for fault tolerance. Proceedings of the Eighth Symposium on
Reliable Distributed Systems, (1989), 130-136.

[9] D. Häggander, Software design conflicts: maintainability versus
performance and availability, Ph.D. Thesis, Blekinge Institute of
Technology, (2001).

[10] IEEE Computer Society. Standards Coordinating Committee., IEEE
standard computer dictionary: a compilation of IEEE standard computer
glossaries, 610, Institute of Electrical and Electronics Engineers, New
York, NY, USA, (1990).

[11] D. Jewett, Integrity S2: a fault-tolerant Unix platform. 21st
International Symposium on Fault-Tolerant Computing, (1991), 512-
519.

Paper IV

 152

[12] M. Lilge, Evolution of PrePaid Service towards a real-time payment
system. IEEE Intelligent Network Workshop, (2001), 195-198.

[13] S. Maffeis, Piranha: A CORBA tool for high availability. Computer, 30
(1997), 59-67.

[14] G.F. Pfister, In search of clusters, Prentice Hall, Upper Saddle River,
NJ, (1998).

[15] M. Toeroe, Performance simulation of the Jambala platform.
Proceedings of 35th Annual Simulation Symposium, (2002), 190-197.

[16] P. Triantafillou and C. Neilson, Achieving Strong Consistency in a
Distributed File System. IEEE Transactions on Software Engineering,
23 (1997), 35-56.

[17] H. Yu and A. Vahdat, Building replicated Internet services using
TACT: a toolkit for tunable availability and consistency tradeoffs. 2nd
International Workshop on Advanced Issues of E-Commerce and Web-
Based Information Systems, (2000), 75-84.

[18] C. Zhang and Z. Zhang, Trading replication consistency for
performance and availability: an adaptive approach. Proceedings of
23rd International Conference on Distributed Computing Systems,
(2003), 687-695.

A Cost-Efficient Server Architecture for Real-Time Credit-Control

 153

Introduction

Paper I

Paper II

Paper III

Paper IV

Paper V

Paper VI

Paper VII

Paper VIII

Paper IX

Improving Fault Detection in Modified
Code - A Study from the
Telecommunication Industry

Piotr Tomaszewski, Lars Lundberg, Håkan Grahn

To appear in Journal of Computer Science and Technology, special
issue on Advances in Software Metrics and Software Processes (2006)

Abstract

Many software systems are developed in a number of consecutive
releases. In each release not only new code is added but also existing
code is often modified. In this study we show that the modified code can
be an important source of faults. Faults are widely recognized as one of
the major cost drivers in software projects. Therefore, we look for
methods that improve the fault detection in the modified code. We
propose and evaluate a number of prediction models that increase the
efficiency of fault detection. To build and evaluate our models we use
data collected from two large telecommunication systems produced by
Ericsson. We evaluate the performance of our models by applying them
both to a different release of the system than the one they are built on
and to a different system. The performance of our models is compared
to the performance of the theoretical best model, a simple model based
on size, as well as to analyzing the code in a random order (not using
any model). We find that the use of our models provides a significant
improvement over not using any model at all and over using a simple
model based on the class size. The gain offered by our models
corresponds to 38% to 57% of the theoretical maximum gain.

Paper V

 158

Improving Fault Detection in Modified Code
- A Study from the Telecommunication Industry

 159

1. Introduction

Finding and fixing faults is a very expensive activity in the software
development process [38]. In large telecommunication systems fault
detection activities can account for a significant part of the project
budget, e.g., in [7] 45% of the project resources were devoted to testing
and simulation. Therefore, an increase of the fault detection efficiency
can potentially bring significant savings on project cost. A well-known
fact concerning faults is that a majority of the faults can be found in a
minority of the code (the Pareto principle [4, 12, 31]). Different sources
report different numbers concerning the Pareto principle, ranging from
20-60 (60% of the faults can be found in 20% of the modules) to 10-80
(see [12] for a brief overview of the research concerning the Pareto
principle). The Pareto principle shows that there is a potential for
significant savings if we manage to focus our testing efforts on the
most fault prone code units.

One way of helping testers to focus their efforts is to provide them with
a fault prediction model. If we assume that the cost of finding faults in
the class is proportional to the size of the class (like in [5, 6]) then, by
selecting classes with the highest fault density, such a prediction model
increases the fault detection efficiency (i.e., the number of faults found
per the amount of code analyzed). In the long run, increasing the fault
detection efficiency leads to higher quality of the products because
testers focus on finding and removing faults in the classes that have the
highest concentration of faults (fault density). As a result, they remove
more faults within a given budget. Therefore, in this study we develop
fault prediction models that predict fault density.

Fault prediction models are usually based on either different
characteristics of the software that describe the structure of the code
(e.g., design or code metrics [10, 41, 44]) or historical information
about the code (e.g., [34, 35]). Our models are based on design and
code metrics. We perform our analysis at the class level, i.e., our
predictions concern the fault-proneness of individual classes and are
based on the characteristics of those classes. We predict the fault
density in two ways - by predicting the fault density itself and by
predicting the number of faults in a class and dividing it by the size of
this class.

Our models are built and evaluated using data from two different
telecommunication systems developed by Ericsson. From now on we
denote them as System A and System B. In this study we have used two

Paper V

 160

releases of System A (from now on called System A1 and System A2)
and one release of System B. These are the most current releases of
both systems (the current release of System B and the two latest
releases of System A). Both systems are large telecommunication
systems. Their sizes are about 800 classes (500 KLOC) and about 1000
classes (600 KLOC) for System A and System B, respectively. Both
systems operate in the service layer of mobile phone network. As they
are mission-critical for the customers, they undergo an extensive testing
before they are released.

Both systems are mature systems that have been present in the market
for several years. Over that period a number of releases of each system
have been produced. Each new release usually introduces a significant
amount of new functionality. Typically, new functionality is introduced
by modifying existing classes and/or implementing new classes. In
System A1 the modification of classes from the previous release
accounted for 65% of the code written in the current release (35% of
the new code was introduced as new classes). In System A2 37% of the
code was introduced as a modification of previous classes, and in
System B 44% of the code was introduced as a modification of the
classes from the previous release. A well-known fact is that a
modification of already existing code is an important source of faults
[34, 37]. This is supported by our data. Faults found in the modified
code accounted for 86%, 62%, and 78% of all faults found in System
A1, System A2, and System B, respectively. It can be noticed that in all
three systems the modified code was significantly more fault-prone
compared to the new code.

In this study we build and evaluate models that predict faults
specifically in modified code, which is different from most studies in
the area that do not distinguish between new and modified code (see
Related Work section). One reason for focusing on the modified code is
that, as we have shown, the modified code is an important source of
faults. Focusing on the modified code also gives us an opportunity to
include not only usual metrics that describe the structure of the final
product (e.g., size, complexity) but also metrics that describe the
characteristics of the modification (e.g., the number of new and
modified lines of code in the class). Also many studies in the fault
prediction domain predict faults at the component or module level [15,
17, 21-24, 31, 32, 35]. As we have shown in [40], the class level
prediction, which we suggest in this paper, is of higher precision and
therefore is likely to bring higher improvements.

We arbitrarily select System A1 as the system on which we build our
models. The models are later evaluated by applying them to System A2

Improving Fault Detection in Modified Code
- A Study from the Telecommunication Industry

 161

and System B. In this way we check if our models are stable across
different releases of the same system as well as across different
systems. We show that the models increase the efficiency of fault
detection in similar way in all three systems.

The rest of the paper is structured as follows: in Section 2 we present
the work that has been done by others in the area of fault prediction.
Section 3 describes the methods we have used for model building and
evaluation. Section 4 presents the results we have obtained. In Section
5 we discuss our findings and different validity issues. In the last
section (Section 6) we present the most important conclusions from our
study.

2. Related work

Fault prediction models that predict the number of faults or the fault
density are very common in literature (e.g., [7, 8, 30, 33, 43, 44]). The
most typical methods for building prediction models are different
variants of linear regression (e.g., [7, 8, 30, 32, 43, 44]). Other methods
include, e.g., negative binomial regression [33]. Usually the
construction of prediction model starts with selecting independent
variables (variables that are used to predict the dependant variable -
faults). The most common candidates are different code metrics (e.g.,
[21, 35, 44]) or variations of Chidamber and Kemerer (C&K) [9] object
oriented metrics (e.g., [5, 10, 44]). There are also studies that take
historical information about the code fault-proneness into account (e.g.,
[33-35]). The initial set of independent variables is often large (e.g.,
over 200 metrics in [14]). A common assumption is that models based
on a large number of variables are less robust and have lower practical
value (more metrics have to be collected) [7, 11]. Therefore, the first
step of model building usually involves a reduction of the number of
metrics. A commonly used method for the dataset reduction is a
correlation analysis ([7, 10, 44]). It is usually used to detect highly
correlated metrics. Highly correlated metrics can, to a large extent,
measure the same thing (e.g., the number of code lines and the number
of statements are usually highly correlated because both measure size).
Including them into the model causes a risk for multicolinearity [7].
Multicolinearity is especially risky when regression models are built. It
leads to “unstable coefficients, misleading statistical tests, and
unexpected coefficient signs”[11]. Correlation analysis is also used for
selecting independent variables to predict faults (e.g., [31, 44]). Only
those metrics that are correlated with faults are good fault predictors.

Paper V

 162

Below, we present studies in which fault prediction models were built.
For each study we describe the set of metrics used, the metric selection
criteria, and the results obtained. In the cases of prediction models built
using linear regression we also quote R2 values. R2 is a “goodness-of-
fit” measure that describes how well the model fits the data it was built
on. It describes the proportion of variability of variable predicted by the
model [20]. Therefore, it has values between 0 and 1 [27]. The closer
R2 is to 1 the better is the prediction model. For details concerning the
calculation of R2 see Section 3.3.

In [44], Zhao et al. compare the applicability of design and code
metrics to predict the number of faults. The analyzed system is one
release of a large telecommunication system. The authors do not say if
the code analyzed is new or modified. The design metrics collected are
mostly different SDL related metrics (the number of SDL diagrams, the
number of task symbols in SDL descriptions, etc.). The code metrics
included the number of lines of code, the number of variables, the
number of signals, and the number of if statements. The initial selection
of metrics is based on the correlation analysis. To build the models the
authors use the stepwise regression, which additionally eliminates the
metrics that are not good as fault predictors. The authors conclude that
both code and design metrics are applicable and give good results.
However, in this study, the best fault prediction is obtained when both
types of metrics are included in the same model. R2 values obtained in
this study are 0.63 for the design metrics model, 0.558 for the code
metrics model, and 0.68 for the model based on design and code
metrics.

The applicability of object-oriented metrics for predicting the number
of faults is evaluated by Yu et al.[43]. The analyzed system consists of
new classes only. The set of metrics used is largely based on C&K
metrics [9]. The authors evaluate univariate and multivariate models.
The best univariate model is based on the Number of Methods per
Class metric (R2 = 0.423). The results of univariate regression are used
to select metrics for multivariate regression. For the metric to be
selected, the univariate regression model based on it has to be
significant (t-test) as well as it has to account for a large proportion of
variability of the predicted value. However, in practice, the authors
only reject the variables from the insignificant models. Finally, six
different metrics are included in the proposed regression model, i.e.,
Number of Methods per Class, Coupling, Response for Class, Lack of
Cohesion, Depth of Inheritance, and Number of Children. The R2
statistic of this model is 0.597. The authors also show the model based
on all ten metrics they collected. This model has the R2 value equal to
0.603.

Improving Fault Detection in Modified Code
- A Study from the Telecommunication Industry

 163

Cartwright and Shepperd [7] present a study in which they predict
faults in object oriented system. The metric suite they use consists of
some of the object-oriented C&K metrics (Depth of Inheritance, and
Number of Children), some code metrics, and some metrics that are
characteristic for the development method employed (Shlaer-Mellor).
The authors obtain very high prediction accuracy. Their best univariate
linear model is based on the number of events in the class and has R2 =
0.876. The authors show that the accuracy of the model can be
increased by adding a variable indicating if the class inherits from some
other class (R2 = 0.897.).

Unlike our study, the studies described above do not focus specifically
on modified code. However, they are very good examples of how fault
prediction models are build as well as what kind of data fit can be
expected from them.

There are also studies that attempt to predict faults in modified systems.
Nagappan and Ball [29] evaluated the applicability of relative code
churn measures to predict the fault densities of software units. As
relative code churn measures they understand the amount of code
change normalized by the size of the code unit the change was
introduced to. Their study was based on the code churn between
Windows Server 2003 and Windows Server 2003 Service Pack 1. The
authors concluded that the relative code churn measure could be used
as predictor of a system’s fault density. Their best model achieved a
data fit (R2) of 0.821. Munson and Elbaum [28] analyzed a large
software system and they also noticed that relative measures are very
good predictors of the fault-proneness of modified code. The metric
they evaluated was the relative complexity of modified modules. They
showed that this metric was highly correlated with the fault density.
Selby [37] reached a similar conclusion. He observed that the number
of faults in a modified class tends to increase with the size of the
modification of the class.

 There are also other studies that attempt to assess the applicability of
different metrics to predict faults. In most cases these are studies in
which classification models were built, i.e., models that predict if there
are faults in the module, not how many faults there are. From our
perspective such studies are interesting, since they give an indication of
metrics that are good predictors of fault-proneness. For example, El
Emam et al. [10] observes an impact of inheritance and coupling on
the fault-proneness of the class. The relation between inheritance,
coupling, and probability of finding faults in the class was also
identified by Briand et al. [5]. In [17], Gunes Koru and Tian evaluate

Paper V

 164

the applicability of complexity measures to predict faults. They
concluded that there is a relation between complexity and faults, but it
is not linear and therefore complexity measures are not likely to be
good fault predictors when used in linear prediction models, like our
ones.
When it comes to the evaluation, most classification models are
evaluated against the percentage of correctly classified classes. Briand
et al. [5] noticed that such an evaluation may have a low practical
value. Even though the model may point to a minority of classes, these
classes can potentially account for a majority of the code. The
prediction models used for estimating the number of faults are usually
evaluated against their “goodness of fit” to the data they were built on,
i.e., using R2 statistic. Therefore, as we see it, there is a lack of studies
evaluating prediction models from the perspective of gain, in terms of
cost reduction, that can be expected from applying them.

3. Methods

3.1 Metrics suite

In this study we base our prediction models on the metrics that describe
the structure of the system, i.e., on code and design metrics. All metrics
that we collect are summarized in Table 1. All our measurements are
done at the class level. The design metrics are mostly metrics that
belong to the classic set of object oriented metrics suggested by
Chidamber and Kemerer (C&K metrics) [9]. The code metrics are
different size metrics (e.g., the number of statements), metrics
describing McCabe cyclomatic complexity (Maximum Cyclomatic
Complexity) as well as metrics describing the size of modification
(Change Size – the number of new and modified lines of code in the
final system as compared to the previous release of the system). For
each class we collect information about the number of faults that were
found in the class as well as calculate the fault density.

All product measurements mentioned in this study can be obtained
automatically from the code using software tools. In this study we used
the Understand C++ [1] application to obtain all the design and code
metrics (apart from the ChgSize quantification) from the systems’ code.
The ChgSize was quantified using the LOCC [39] application. The
information about faults was extracted from an internal Ericsson fault
reporting system. We understand that it would be highly desirable [25,
26] to reveal some information about the raw data we collected.
However, since these data are highly confidential, due to our agreement
with Ericsson we are not allowed to do that.

Improving Fault Detection in Modified Code
- A Study from the Telecommunication Industry

 165

Table 1. Metrics collected in the study

Name Variable Description
Independent variables

Coup Coupling Number of classes the class is
coupled to [9, 13]

NoC Number of Children Number of immediate
subclasses [9]

Base Number of Base Classes Number of immediate base
classes [9]

WMC Weighted Methods per
Class

Number of methods defined
locally in the class [9]

RFC Response for Class
Number of methods in the
class including inherited
ones[4, 9, 31]

DIT Depth of Inheritance
Tree

Maximal depth of the class in
the inheritance tree[9, 12]

LCOM Lack of Cohesion

“how closely the local
methods are related to the
local instance variables in the
class” [13]. In the study
LCOM was calculated as
suggested by Graham [16, 18]

Stmt Number of statements Number of statements in the
code

StmtExe Number of executable
statements

Number of executable
statements in the code

StmtDecl Number of declarative
statements

Number of declarative
statements in the code

Comment Number of comments
lines

Number of lines containing
comments

MaxCyc Maximum Cyclomatic
Complexity

The highest McCabe
complexity of a function from
the class

ChgSize Change Size Number of new and modified
LOC (from previous release)

CtC Ratio Comment to Code Ratio of comment lines to
code lines

Dependent variables

Faults Number of faults Number of faults found in the
class

FaultDensity Fault density Fault density of the class

Paper V

 166

3.2 Model building

We assume that the cost of performing fault detection is directly
proportional to the size of the class. Therefore, our prediction models
should identify the classes with the highest fault densities. Fault
detection in such classes is the most efficient because it requires the
least amount of code to be analysed to find a fault. Class analysis
according to the model means that fault detection activities are
performed on the classes in the order of their decreasing fault density
predicted by the model. As we see it, the fault density can be predicted
in two ways:

- by predicting the fault density (Faults/Stmt) – the fault density is
predicted by the model.

- by predicting the number of faults (Faults) and dividing the
predicted number of faults by the real class size (Stmt) – Faults are
predicted by the model, while size (Stmt) is measured.

In our study we evaluate both approaches. Even though they seem to
predict the same thing, the prediction accuracy, given our set of metrics
and our method of building models (regression), may be different for
both of them. Linear regression, which we use for building models,
attempts to predict the dependent variable as linear combination of
independent variables. It may turn out that, e.g., linear combination of
our metrics predicts fault density much more accurately than it predicts
the number of faults.

We evaluate six prediction models, three predicting the fault-density
and three predicting the number of faults. The models are built using:

- single metric – a model based on the single best fault (fault-density)
predictor

- selected metrics – a model based on a set of the best fault (fault-
density) predictors

- all metrics – a model based on all metrics collected

To find the single and the selected metrics we use the simplest method,
which is the correlation analysis. Since it turned out that our data were
not normally distributed we use Spearman correlation co-efficient,
which is not dependent on normality assumption [42]. As selected
metrics, we choose those that are correlated to the independent metrics,
i.e., with correlation coefficient values not close to 0. In the case of our
dataset it turned out that the lowest correlation among the metrics from
the selected metrics model was 0.29. Additionally, the correlations of

Improving Fault Detection in Modified Code
- A Study from the Telecommunication Industry

 167

our selected metrics with the dependent variables have to be significant
at a 0.05 level (a standard significance level describing 5% risk of
rejecting a correct hypothesis). In this way we eliminate the metrics
that, due to a low correlation with the number of faults and the fault-
density, can not be considered useful for building prediction models.

Our univariate models are built using linear regression. The
multivariate models are built using stepwise multivariate linear
regression. The univariate linear regression estimates the value of the
dependant variable (i.e., the number of faults or the fault-density) as a
function of one of the independent variables (i.e., code and design
metrics) [36]:

f(x) = a + b1x1 (1)

Multivariate linear regression estimates the value of the dependant
variable (i.e., the number of faults or the fault-density) using linear
combination of independent variables (i.e., code and design metrics)
[36]:

f(x) = a + b1x1+b2x2+b3x3+…..+bkxk (2)

Stepwise regression is one of the methods that attempt to build a model
on the minimal set of variables that explain the variance of the
dependant variable. Other methods of that kind are forward (backward)
regression. In these methods variables are added (removed) to the
model until adding (removing) the next one does not give any benefit
(does not change model’s ability to predict the dependant variable)
[27]. We select stepwise regression because, compared to the forward
regression, it additionally excludes variables that do not contribute to
the model anymore [27]. Therefore, by using stepwise regression we
hope to get models based on minimal sets of variables. Stepwise
regression is used on the previously defined sets of metrics (All,
Selected) and the final models are built on subsets of the previously
defined sets of metrics, i.e., building a model on all metrics does not
mean that all metrics are used in the final model but that all metrics are
used as an input to the stepwise regression.

For each model we calculate a coefficient of determination, R2, which
is the standard measure of model’s “goodness-of-fit”. R2 measures the
strength of the correlation between the actual and the predicted number
of faults. The R2 equation is presented below (3):

Paper V

 168

()

()∑

∑

=

=

−

−

−=
n

i
i

n

i
ii

yy

yy

R

1

2

1

2

2 1

)

(3)

where: iy – the actual number of faults (or the actual fault density),

iy) - the predicted number of faults (or the predicted fault density), y -
the average number of faults (or the average fault density).

The practical meaning of R2 is that it describes the proportion
(percentage) of variability of the predicted variable accounted by the
model [20]. The higher the R2 value is, the better the prediction model
fits the data it is built on. R2 values range from 0 to 1 [27], where 1
means the perfect model that accounts for all variability of the predicted
variable (perfect prediction). R2 equal to 0 indicates that the model is
useless as a prediction model. We include R2 for two reasons. First, it
enables comparisons between our models. Second, it makes it possible
to compare our results with the results obtained by other researchers,
who usually quote R2 values obtained for their models (see Section 2
for examples).

Similarly to [44], we also evaluate the significance of the entire
prediction model using the F-test [27]. We select a 0.05 significance
level, i.e., if the significance of the F-test has a value below 0.05 then
the prediction model is significant.

All statistical operations connected with model building (i.e.,
correlation, stepwise regression and calculation of statistics connected
with it) were performed using the statistical software package SPSS [2].

3.3 Model evaluation

To evaluate our models we need some objective measurement of the
accuracy of our models. We want to know what advantage can be
expected from using our models as compared to not using any model at
all. We also want to know how far our models are from the theoretical
best model. A good prediction model must also give good results when
it is applied to the data other than the one it was built on.

To measure the objective “goodness” of our models we introduce three
reference models:

Improving Fault Detection in Modified Code
- A Study from the Telecommunication Industry

 169

- Random model – this model describes a completely random search
for faults. The results obtained by this model are, on average, the
results we could expect when no model is used and the order in
which the classes are analyzed is random.

- Best model – this is a theoretical model that makes the right choices
about which classes to analyze. In this model the classes are selected
according to their actual fault density. According to our criteria, it is
impossible to do better than that.

- Size model – a common (mis)conception [11] is that bigger classes
tend to have more faults and higher fault densities. Therefore, we
introduce a model in which the classes were analyzed based on their
size (bigger classes are analyzed earlier).

A comparison of our models with the Random model gives us an
indication if following our model is better than not following any
model at all. The Best model gives us an indication of how good a
model can get, and how far we are from being perfect. The Size model
might often be encountered in real life situations because of its
simplicity, as well as because many models suggested in literature
actually tend to correlate with size [11]. By including this model we
can evaluate it against our criteria of efficiency improvement as well as
compare our models with it.

To check if our models are good prediction models, i.e., if they can be
successfully applied to different projects, we build our models based on
data from one of the projects only (System A1) and we apply them to:

- Project A1, on which the models are built
- Project A2, which is a different (next) release of Project A1
- Project B, which is a completely different project

By comparing how well our models work in Project A1 and Project A2
we get an indication if they are stable across different releases of the
same system. By comparing how well the models work in Project A
and Project B we get an indication if they are stable across different
systems. The stability is required because a prediction model is
normally used to predict faults in projects/releases other than those it
was built on.

In order to compare the models’ performance both within and between
systems we use three complementary comparison methods for assessing
model “goodness”. Generally, the “goodness” of the model is measured
by the amount of code necessary to analyze in order to detect a certain
number of faults, i.e., a model is better if by following it we are able to

Paper V

 170

detect more faults by analyzing the same amount of code compared to
another model.

Our first comparison method is a diagram plotting the percentage of
faults detected against the percentage of code that has to be analyzed to
detect them. On every diagram we include our reference models
(Random, Size, and Best model). By comparing how well our models
do in relation to the Random model and to the Best model we are able
to assess how good the models are and compare their performance in
different systems.

The second method attempts to perform a quantification of the model’s
“goodness”. Our Gain metric quantifies the ratio of an improvement
offered by our model over the Random model to the theoretical
maximum improvement possible. The calculation steps for the Gain
metric are presented in Figure 1. Eq.1 in Figure 1 presents the way in
which the Gain metric is calculated. In Eq.1 IOR stands for
Improvement Over Random. The IORModel measure quantifies the
overall improvement over the Random model that is offered by Model.
On our diagrams, on which we plot the percentage of faults detected
against the percentage of code that has to be analyzed to detect them,
such an improvement over the Random model corresponds to the size
of area between the Random model and Model (see Figure 2).

Figure 1. Calculation of the Gain metric. Model(i) is the percentage of faults found if
analyzing the i-th class according to the Model, Random(Code(Model,i)) is
the expected percentage of faults detected if analyzing the same amount of
code as in case of Model(i) but not following any model at all, n is the
number of classes. The details regarding calculation steps can be found in
Section 3.3.

Eq.1:

Best

OurModel
OurModel IOR

IOR
Gain =

Eq.2:
∑
=

⎟
⎠

⎞
⎜
⎝

⎛ −−−+
=

n

i

iModelCodeiModelCodeiModelDTRiModelDTR
ModelIOR

1 2
))1,(),((*))1,(),((

Eq.3:)),(()(),(iModelCodeRandomiModeliModelDTR −=

To calculate IOR we divide the area between the Random model and
Model into a number of parallelograms equal to the number of classes
in the system, and we sum their areas (see Eq. 2 in Figure 1). In Eq. 2,
n is the number of classes in the system, Code(Model,i) is the

Improving Fault Detection in Modified Code
- A Study from the Telecommunication Industry

 171

percentage of code that must have been covered when analyzing the i-
th class according to the Model. It must be remembered that in order to
analyze the i-th class according to Model we must have analyzed all the
classes with predicted fault densities larger than the predicted fault
density of the i-th class, which means that Code(Model,i) consists not
only of the size of the i-th class but also the sum of all sizes of classes
with predicted fault densities larger than the predicted fault density of
the i-th class. DTR stands for Distance To Random. Figure 1, Eq.3
presents the way DTR is calculated. In Eq.3, Model(i) is the percentage
of faults detected when analyzing the i-th class according to the Model.
Random(Code(Model,i)) is the expected percentage of faults that we
would detect using the Random model when analyzing the same
amount of code as when analyzing the i-th class according to the
Model.

Figure 2. Improvement Over Random (IOR) for a Model is defined as the size of area
between the Model and the Random model (checkered area on the figure)

The Gain metric gives a normalized value between -1 and 1, where 1
describes the Best model and -1 describes the worst possible model. It
is so, because it is impossible to do better than the Best model and it is
also impossible to do worse than the worst possible model, in which all
the classes are selected according to their increasing actual fault
density. Therefore, IORWorst = -IORBest, which explains the -1 value.
The Random model in this scale gets value 0, which means that all
models with Gain lower that 0 are worse than the Random model and
all those with gain over 0 are an improvement over the Random model.
The Gain metric quantifies only the average gain from using the model.
As every average, it might be missing some important details.
Therefore, we use it together with previously described diagrams
presenting the gain from using the model for different percentages of
the code. They give more insight in how the models actually perform.

Paper V

 172

Our final, third method of assessing model “goodness” is by checking
the statistical significance of the difference between the performance of
a model and the performance of Random model. The analysis of the
graphs described before can give some conclusions regarding the model
“goodness” but based on them it is hard to say to what extent the
improvement over the Random model is statistically significant.
Therefore, for each model, we perform the statistical analysis is which
we test the following null hypothesis:

H0: the expected mean distance between tested model and Random
model equals zero

where as distance we understand Distance To Random (DTR), defined
before. Statistical tests appropriate for testing this hypothesis according
to [42] are paired t-test and its non-parametric alternative Wilcoxon test
(Wilcoxon Signed-Rank Test). Since our data were not normally
distributed we applied the non-parametric test, i.e., Wilcoxon test.

The Wilcoxon test is performed in the following way [42]: first for
every data point the distance between the Random model and the
examined model is calculated. The distances are basically DTRs, as we
defined them before. Absolute values of DTRs are ranked, and the
sums of positive ranks (T+) and negative ranks (T-) are calculated. As
the test statistic T of the Wilcoxon test the smaller of these two values
is used, i.e., T=min (T+,T-). This value can be compared against
tabularized values for desired significance level. For large samples it
can be approximated by a normal random variable as described in [3].
SPSS, the statistical package used by us, reports the significance level
for each test. Therefore, we do not need to pre-select the desired
significance level for our test – we base our analysis on the highest
confidence with which we can reject null hypothesis. i.e., if SPSS
reports the significance of 0.05 it means that with 95% confidence we
can reject the null hypothesis that our model’s performance does not
differ from the performance of the Random model.

4. Results

4.1 Model building

As described in Section 3.2 our models are built using the data from
System A1. We begin the model building with a correlation analysis.
The results of the correlation analysis are presented in Table 2. The
main purpose of the correlation analysis is to identify metrics that are
the best single predictors of the number of faults and the fault-density

Improving Fault Detection in Modified Code
- A Study from the Telecommunication Industry

 173

(we look for single metrics with the highest correlations with the
number of faults and the fault density). From Table 2 it can be noticed
that ChgSize is the best predictor for both values (correlation values in
bold in Table 2). Therefore, we select this metric to build the prediction
models for the number of faults and the fault-density based on one
metric.

Table 2. The correlation analysis (Spearman correlation co-efficient) of the metrics
collected from System A1. The correlations with a grey background are NOT
significant at 0.05 significance level. The correlation of the best individual
predictor of fault number and fault density is in bold.

 Base Coup NOC WMC RFC

Com
ment

Stmt
Stmt
Decl

Stmt
Exe

Max
Cyc

DIT
LCO

M
CtC

Chg
Size

 Base 1

 Coup 0.35 1

 NOC -0.13 0.06 1

 WMC 0.23 0.76 0.18 1

 RFC 0.63 0.68 0.07 0.82 1

 Comment 0.21 0.73 0.05 0.80 0.68 1

 Stmt 0.15 0.67 0.09 0.74 0.62 0.84 1

 StmtDecl 0.01 0.57 0.08 0.61 0.44 0.73 0.86 1

 StmtExe 0.25 0.72 0.10 0.79 0.70 0.83 0.92 0.64 1

 MaxCyc 0.21 0.65 0.09 0.65 0.56 0.73 0.83 0.51 0.93 1

 DIT 0.97 0.35 -0.13 0.22 0.61 0.20 0.11 -0.01 0.22 0.12 1

 LCOM -0.08 0.3 0.18 0.37 0.15 0.32 0.20 0.38 0.11 0.07 -0.08 1

 CtC 0.18 -0.01 -0.06 -0.02 0.07 0.12 -0.36 -0.34 -0.24 -0.26 0.21 0.06 1

 ChgSize 0.07 0.48 0.02 0.47 0.40 0.59 0.68 0.7 0.50 0.42 0.04 0.28 -0.25 1

 Faults 0.00 0.43 0.02 0.47 0.41 0.54 0.52 0.48 0.48 0.38 -0.01 0.15 -0.1 0.6
 FaultDensity -0.03 0.35 0.01 0.39 0.32 0.46 0.42 0.4 0.36 0.29 -0.04 0.15 -0.05 0.53

The second reason for performing the correlation analysis is to
eliminate the metrics that can not be considered useful for building our
prediction models (see Section 3.2 for details). The remaining metrics
are used to build the model based on “selected metrics”. It turned out
that we removed the same metrics for the model that predicts the
number of faults and the model that predicts the fault-density. We have
decided not to use the following metrics in “selected metrics” models:

- Base, NOC, CtC, DIT – due to their low correlation with the faults
and with the fault density and due to low significance of the
correlation

- LCOM – due to the low correlation with the faults and with the
fault-density

- Comment – due to a unsure meaning of this metric and its
correlation to size

Paper V

 174

We find the high positive correlation between Comment and Faults
quite surprising. There are some possible explanations of that
phenomenon, like considering the number of comments as a measure of
human perceived complexity. We exclude this metric from selected
metrics, because it is difficult to assure that the “commenting style” is
maintained between the projects (there are no explicit guidelines
concerning this in either of the analyzed projects). Therefore, it is
difficult to say if prediction models based on Comments would be
stable also in other products/other releases of the same product.

In the study we build six different prediction models based on the data
from System A1. Their names, independent variables and outputs are
summarized in Table 3. The models are built using stepwise regression.
The significance of each model’s coefficient is checked using the t-test.
The hypothesis tested is that the coefficient could have value 0, which
would imply a lack of relationship between the independent and
dependant variables (and therefore would make the original model the
best, but not a meaningful mathematical relation between both
variables) [36]. It turned out that all coefficients were significant at the
0.05 level. The significance of the entire model is tested using the F-
test. The goodness-of-fit of each model is assessed using the R2

statistic. The actual models are presented in Table 4.

Table 3. A summary of our models. Single metric: ChgSize. Selected metrics: Coup,
WMC, RFC, Stmt, StmtDecl, StmtExe, MaxCyc, ChgSize.

Name Based on Predicts
AllNumber All metrics Number of faults
SelectedNumber Selected metrics Number of faults
SingleNumber Single metric Number of faults
AllDensity All metrics Fault density
SelectedDensity Selected metrics Fault density
SingleDensity Single metric Fault density

4.2 Model evaluation

As it can be noticed in Table 4 all our models are significant according
to the F-test. By looking at the R2 values we can see that the goodness-
of-fit is better for the models predicting the number of faults compared
to those predicting fault-densities. Apparently, given our set of metrics,
it is easier to predict the number of faults than the fault-density. As we
expected (see Section 3.2) the models based on all metrics (AllNumber
and AllDensity) have a better fit compared to their counterparts based

Improving Fault Detection in Modified Code
- A Study from the Telecommunication Industry

 175

on a limited number of metrics (see the R2 values in Table 4). They
may, however, suffer from the multicolinearity problem – e.g.,
according to the AllNumber model the number of faults increases with
Comments and decreases with StmtExe, which is difficult to explain
since both StmtExe and Comments are positively correlated with the
number of faults (see Table 2).

Table 4. Prediction models obtained using stepwise regression based on data from
System A1. R2 describes goodness-of-fit (values closer to 1 indicate better
fit), Sig. is significance level of F-test. F, R2, and Sig. quoted for AllNumber,
SelectedNumber, and SingleNumber concern the models that predict the
number of faults. These models are divided by Stmt in Equation section in
order to provide the fault density prediction.

Model Equation R2 F Sig.

AllNumber
FaultDensity = (0.004 * Comment + 0.003 *
ChgSize - 0.677 * Base + 0.276 * Ctc - 0.003 *
StmtDecl - 0.005 * LCOM + 0.010 * RFC -
0.001*StmtExe + 0.089)/Stmt

0.752 75.944 0.0

SelectedNumber FaultDensity = (0.004*ChgSize+0.001*StmtExe-
0.002*StmtDecl + 0.008)/Stmt 0.585 96.412 0.0

SingleNumber FaultDensity = 0.005*ChgSize/Stmt 0.550 252.84 0.0

AllDensity
FaultDensity = 54.040*CtC + 0.115*ChgSize -
42.431*DIT - 0.096*Stmt + 3.036*Coup +
0.670*RFC - 19.685

0.479 30.997 0.0

SelectedDensity FaultDensity=0.184*ChgSize-0.138*Stmt +
2.429*Coup + 1.057*WMC + 2.748 0.280 19.815 0.0

SingleDensity FaultDensity=0.081*ChgSize + 12.739 0.058 12.742 0.0

Our main model evaluation is performed from the perspective of the
fault detection efficiency improvement that they offer. We use each
model as an indicator of the order in which the classes should be
analyzed. For the models that predict the fault-density (AllDensity,
SelectedDensity, SingleDensity) we order the classes according to the
output of the model, so that we analyze classes with the highest
predicted fault-density first. In the models that predict the number of
faults (AllNumber, SelectedNumber, SingleNumber) the predicted
number of faults is divided by the class size (Stmt). This partially
predicted density measure is used to select the classes for analysis.

Our evaluation consists of three steps. First, for each model we plot a
graph in which the percentage of faults detected is mapped to the
percentage of code that has to be analyzed to detect them. The model is
considered better than the other one if, by following it, we are able to
detect more faults by analyzing the same amount of code. Later we

Paper V

 176

calculate the Gain for each of our models. For details concerning the
Gain metric see Section 3.3. Finally, we check if the differences
between our models and the Random model are statistically significant.

To benchmark our models we include three reference models in the
evaluation. The reference models are presented in Figure 3. By
comparing the Best and the Random model in Figure 3 we can see that
there is a large room for improvement that can be filled using a fault
prediction model. For example, if we inspect 20% of code randomly, on
average we would find 20% of faults. However, by inspecting the most
fault prone 20% of code we can find 60%, 80%, or even almost 100%
of faults for System A1, System A2, and System B, respectively (see
Figure 3). That is three, four, and five times as much as by inspecting
the code randomly. Therefore, a model that tells us which part of the
code to analyze first can potentially result in cost savings and increased
quality of software. In all future figures we include the Best, Random,
and Size models (always in dashed line) in order to provide reference
points for evaluating our models.

The second conclusion from analyzing Figure 3 is that the Size model
does not help very much when it comes to increasing the efficiency of
fault detection. In fact, it is either about as good as the Random model
(System A1, and System B) or even worse than the Random model in
the case of System A2. Neither of our cases supports the theory that the
size affects fault density and that the Size model can be used to predict
fault density.

When evaluating our models we start with evaluating the fault detection
efficiency improvement gained by using the models that predict the
number of faults (AllNumber, SelectedNumber, SingleNumber). The
results are presented in Figure 4. As it can be noticed all three models
present an improvement over both the Random model as well as the
simple Size model. This holds true not only for System A1, on which
the models are built, but this is also very clear for System A2 and
System B. Our models seem to be stable and to work similarly well in
all systems.

Improving Fault Detection in Modified Code
- A Study from the Telecommunication Industry

 177

Paper V

 178

Improving Fault Detection in Modified Code
- A Study from the Telecommunication Industry

 179

The evaluation of the models’ performance when applied to System A2
and System B indicates which models are the most promising ones as
prediction models, i.e., which models are the best for predicting faults
in projects other than the project they are built on. It seems that the
least complex model (SingleNumber) works best. For example, both in
System A1 and System B the model makes it possible to detect over
80% of faults by examining only 40% of the code. It is, on average,
twice as many faults as we would detect when inspecting the code
randomly and only about 10%-15% less than the possible maximum
described by the Best model.

After evaluating the models that predict the number of faults we
perform an evaluation of the models that predict fault density. The
performance of the SingleDensity, SelectedDensity, and AllDensity
models is presented in Figure 5. As in the case of models that predict
the number of faults, the models that predict the fault density in most
cases have a clear advantage over the Random model. Although the
gain from using them is slightly but noticeably lower compared to the
models that predict the number of faults (compare with Figure 4) the
density prediction models are still an improvement over not using any
model at all (i.e., using Random model).

When it comes to evaluating the stability, the SingleDensity and
SelectedDensity models are stable in providing improvement over the
Random model in all three systems. The AllDensity model works well
in System A1 and System A2, but it does not in System B. It is
probably an example of overfitting – the model is very much based on
the unique characteristics of System A, which are present in two
subsequent releases of the same system A (A1 and A2) but are not
present in System B.

As a next step, we calculate the Gain for our models (see Section 3.3
for details concerning the Gain metric). The results are presented in
Table 5. In Table 5 we quantify the gain for each model when applied
to each system as well as provide an average gain for each model. The
numbers from Table 5 support our findings from the analysis of the
diagrams. From the models predicting the number of faults,
SingleNumber dominates over the other two models. The
SelectedDensity model is the best model from the models that predict
fault density. The SingleNumber model seems to be the best model of
all, since it provides, on average, 57% percent of the maximum gain
possible. SelectedNumber comes second, providing on average 49% of
the maximum efficiency gain. Once again the poor performance of the
Size model is confirmed – in all cases it is actually worse than the
Random model.

Paper V

 180

Improving Fault Detection in Modified Code
- A Study from the Telecommunication Industry

 181

Table 5. The quantification of the Gain from using the model. Gain measures the
improvement of the efficiency over the random model as a percentage of the
improvement offered by the Best model. The closer the values are to 1 the
better the model is. Values larger than 0 indicate that the model offers an
improvement over Random model. For details concerning the Gain metric
see Section 3.3.

 Single
Number

Selected
Number

All
Number

Single
Density

Selected
Density

All
Density Size

System A1 0,42 0,43 0,52 0,32 0,22 0,38 -0,09

System A2 0,75 0,55 0,57 0,41 0,61 0,60 -0,54

System B 0,55 0,49 0,35 0,47 0,51 0,16 -0,06

Average gain 0,57 0,49 0,48 0,40 0,45 0,38 -0,23

Finally, we check if the differences between our models and the
Random model are statistically significant. The hypothesis about
equality of models was tested using Wilcoxon test (see Section 3.3 for
details regarding the test and the interpretation of results). For all
models (SingleNumber, SelectedNumber, AllNumber, SingleDensity,
SelectedDensity, AllDensity, Size model, Best model) applied to all
systems (System A1, System A2, System B) SPSS reported that the
hypothesis about the equality of models can be rejected at 0.000 level,
which practically means that the differences are significant for any
conventional significance level. Additionally, the hypothesis for the
Size model was rejected based on positive ranks, while for all other
models it was rejected based on the negative ranks. It might be
considered an indication, that the Size model is worse than the Random
model (the sum of negative ranks was greater than sum of positive
ranks – see Section 3.3 for details), while all other models are better,
which supports our conclusions from the analysis of figures 3-5.

5. Discussion

5.1 Findings

The results obtained in our study are promising. All our models
(AllNumber, SelectedNumber, SingleNumber, AllDensity,
SelectedDensity, SingleDensity) represent a significant improvement
compared to the Random model. It means that, when focusing fault
detection efforts on a portion of the code only, more faults would be
detected when using our model compared to analysing the classes in a
random order. The exact value of the gain depends on the model
selected, and the percentage of code analysed.

Paper V

 182

By analyzing Table 5 we can see that the best results are obtained when
using the SingleNumber model. When applied to our three systems on
average it produces 57% of the improvement of the Best model. The
application to System A2 brings 75% of the maximum possible
improvement. Application to System B brings 55% of the maximum
possible improvement. The second best model, SelectedNumber, in the
same situation brings 55% and 49% of the maximum possible
improvement.

It is worth noticing that both our best models work well when relatively
small percentages of code are analysed (see Figure 4 for SingleNumber
and Figure 5 for SelectedDensity). For example, when we analyze
about 40% of the code, then by following our two best models we
should detect about 80% of faults. This is twice as many as if we were
not following any model. A good performance when analyzing small
percentages of code is probably of the largest practical value. This is
the practical situation in which prediction models are most useful. If we
decide to inspect 80% of the code even without using any model we
already have a large statistical chance of finding many faults (80% on
average). Therefore, using models in such a case must lead to a smaller
benefit, basically because there is a much smaller room for
improvement.

Another interesting finding from Table 5 is that in case of almost all
models their performance is better when they are applied to System A2
compared to their performance when they are applied to System B. This
seems to be reasonable, as System A2 is the next release of System A1
on which the models were built. It might mean that models produced
within one product line have the best potential accuracy. However, this
does not need to be a rule –in our case too we can see that in some
cases our models work better in System B than in System A2, e.g.,
SingleDensity. The models that do exceptionally bad when applied to
System B are the models based on all metrics (AllNumber, and
AllDensity). An explanation might be that such models tend to overfit
the dataset they were built on and therefore lack generality. AllNumber,
and AllDensity work reasonably well in the case of System A2 but
significantly worse in System B. This is the most apparent in case of
the AllDensity model, which provides 60% of the maximum
improvement in System A2 and only 16% in the case of System B.
That would suggest that the models based on large number of metrics
(i.e., AllDensity, AllNumber) are tightly fit to the unique characteristics
of System A, which are present in System A1 and A2 but are not
present in System B. Therefore, it seems that models based on a smaller
number of metrics have better potential for stability and transferability
to systems other than the system they were built on.

Improving Fault Detection in Modified Code
- A Study from the Telecommunication Industry

 183

One more general finding from our study is that for modified code the
class size is not a good predictor of fault density. This can be observed
in Table 5, where the application of the Size model brings bad results in
all our systems. In all cases the Size model is, on average, even worse
than the Random model. Table 5, however, only presents average
values. It might be that the Size model works well when a small
percentage of code is analyzed and becomes really bad afterwards.
Such a situation would indicate some applicability of the Size model.
However, by analyzing Figure 3 we clearly see that it is not the case. In
neither of our systems the Size model is significantly better than the
Random model for small percentage of the code (only in System A1 it
is slightly better for the first 30% of the code, but the improvement is
not large).

Our results also support findings of other researchers [29, 37] that
considered relative modification measures (i.e., the size of modification
divided by the size of a code unit) as the best for predicting fault
densities of modified classes. Our most successful model,
SingleNumber, is based on such a relative modification measure.

Another general finding is that our dataset supports the Pareto principle
(majority of faults are accumulated in a minority of code) for modified
code. It is, however, difficult to pin-point which Pareto principle it
exactly supports. It seems that System A1 follows the 60/20 rule stating
that 60% of the faults can be found in 20% of the code. System A2 is
closer to the classical 80/20 rule, while System B actually supports the
extreme 80/10 rule.

5.2 Validity

As suggested in [42] we distinguish between four types of validity:
internal, external, construct and conclusion validity.

The internal validity “concerns the causal effect, if the measured effect
is due to changes caused by the researcher or due to some other
unknown cause” [19]. Since our study is mostly based on correlations,
by definition we can not claim the causal relationship between our
dependant and independent variables. However, it is also not our
ambition to claim that. There can be (and probably is) an underlying
third factor that demonstrates itself in both dependent and independent
variables and therefore it is possible to predict one of them using
another. Because of that, by finding correlations we are able to build a
useful prediction model.

Paper V

 184

The external validity concerns the possibility of generalising the
findings. The study was performed on two systems, which are
representative for systems of their class (i.e., telecommunication
systems). The systems are rather large (up to 600 KLOC). In order to
increase the external validity we have evaluated the models using the
data different from the data used to build the models. One threat to
external validity can be that all systems used in this study are
telecommunication systems and that they were produced in the same
company, which may make them somewhat similar. In the future we
plan to evaluate our models in other kinds of systems developed by
other companies.

The construct validity ”reflects our ability to measure what we are
interested in measuring” [19]. One thing that may be worth discussing
is the assumption that an effort connected with the fault detection
activities is proportional to the size of the class. Many other studies
consider the cost of detecting faults in the class to be a fixed value and
therefore evaluate models only by how well they detect faults. We
believe that the size of a class is a better cost indicator. At first we also
considered the size of a change as a possible effort estimation metric. It
is, however, not enough to analyse only the modified code, since the
modification can violate some more general class assumption and result
in fault in a part of the class that was not modified. Therefore, we
selected size of the class for estimating analysis effort.
The conclusion validity concerns the correctness of conclusions we
have made. When discussing conclusion validity we want to assess to
what extent our conclusions are believable. The conclusion validity is
mostly interested in checking if there is a correct relationship (i.e.,
statistically significant) between the variables. Therefore, where
possible, we have presented the statistical significance of our findings.

6. Conclusions

The goal of this study was to build prediction models that would
increase the efficiency of fault detection in modified code. We have
built a number of models based on data collected from one release of a
large telecommunication system. The objective of the model was to
predict fault density in the classes. The models were evaluated using
the next release of the system on which the models were built, as well
as another large telecommunication system. The evaluation was
performed against three reference models: a model based on random
selection of the classes for analysis, the theoretical best model, and a
simple model based on the size of the class.

Improving Fault Detection in Modified Code
- A Study from the Telecommunication Industry

 185

We have found that our models provide a stable improvement
compared to both the random and the size-based models. Our models
are able to provide, on average, 38% to 57% of the maximal theoretical
improvement in fault detection efficiency. The difference in
performance of our models as compared to the random model was
shown to be statistically significant.

As the most promising, we have found a model that predicts the
number of faults based on the number of new and modified lines of
code. The output of this model is divided by the class size to obtain the
fault density. This model made it possible to achieve 75% of the
maximum possible improvement when applied to the next release of the
system on which it was built. When applied to a completely different
system it achieved 55% of the maximum improvement. In both cases,
these were the best results obtained for respective systems by any of
our models.

The second most promising model was the one that predicted the
number of faults based on the number of new and modified lines of
code, the number of declarative and the number of executable
statements in the class. This model made it possible to achieve 55% of
the maximum possible improvement when applied to the next release of
the system on which it was built, and 49% when applied to a different
system.

We have also found yet another indication that models that consist of a
small number of metrics that are highly correlated to faults tend to
behave better when applied to a new dataset, as compared to models
which use a large number of metrics. Models that use many metrics
tend to overfit the dataset on which they were built, which makes them
less stable when applied to other datasets.

In this study we have also managed to find empirical evidence for a
number of popular hypotheses concerning faults. Our findings support
the findings of those researchers that consider the relative size of
modification as the best fault density predictor in modified code. Our
datasets also comply with the Pareto principle. We have found an
evidence of the 60/20 rule (60% of the faults can be found in 20% of
the code), but also the 80/20 and even the 80/10 rule. Another finding
concerns the applicability of the size metric to predict the fault density.
We have shown that for modified classes the class size is a poor
predictor of class fault-density.

Paper V

 186

7. Acknowledgments

The authors would like to thank Ericsson for providing us with the data
for the study and The Collaborative Software Development Laboratory,
University of Hawaii, USA (http://csdl.ics.hawaii.edu/) for the LOCC
application.

This work was partly funded by The Knowledge Foundation in Sweden
under a research grant for the project "Blekinge - Engineering Software
Qualities (BESQ)" (http://www.bth.se/besq).

8. References

[1] Understand C++ homepage, in http://www.scitools.com/ucpp.html.
(2005). Scientific Toolworks Inc.

[2] SPSS package homepage, in http://www.spss.com. (2006). SPSS Inc.
[3] A.D. Aczel and J. Sounderpandian, Complete business statistics,

McGraw-Hill, Boston, Mass., (2006).
[4] B. Boehm and V.R. Basili, Software Defect Reduction Top 10 List.

Computer, 34 (2001), 135-137.
[5] L.C. Briand, J. Wust, J.W. Daly, and D.V. Porter, Exploring the

relationship between design measures and software quality in object-
oriented systems. The Journal of Systems and Software, 51 (2000), 245-
273.

[6] L.C. Briand, J. Wust, S.V. Ikonomovski, and L. H., Investigating
quality factors in object-oriented designs: an industrial case study.
Proc. of the 1999 Int'l Conf. on Software Eng., (1999), 345-354.

[7] M. Cartwright and M. Shepperd, An empirical investigation of an
object-oriented software system. IEEE Transactions on Software
Engineering, 26 (2000), 786-796.

[8] S.R. Chidamber, D.P. Darcy, and C.F. Kemerer, Managerial use of
metrics for object-oriented software: an exploratory analysis. IEEE
Transactions on Software Engineering, 24 (1998), 629-639.

[9] S.R. Chidamber and C.F. Kemerer, A metrics suite for object oriented
design. IEEE Transactions on Software Engineering, 20 (1994), 476-
494.

[10] K. El Emam, W.L. Melo, and J.C. Machado, The prediction of faulty
classes using object-oriented design metrics. The Journal of Systems
and Software, 56 (2001), 63-75.

[11] N. Fenton and M. Neil, A critique of software defect prediction models.
IEEE Transactions on Software Engineering, 25 (1999), 675-689.

Improving Fault Detection in Modified Code
- A Study from the Telecommunication Industry

 187

[12] N. Fenton and N. Ohlsson, Quantitative analysis of faults and failures
in a complex software system. IEEE Transactions on Software
Engineering, 26 (2000), 797-814.

[13] N. Fenton and S.L. Pfleeger, Software metrics: a rigorous and practical
approach, PWS, London; Boston, (1997).

[14] F. Fioravanti and P. Nesi, A study on fault-proneness detection of
object-oriented systems. Fifth European Conference on Software
Maintenance and Reengineering, (2001), 121-130.

[15] S. Gascoyne, Productivity improvements in software testing with test
automation. Electronic Engineering, 72 (2000), 65-67.

[16] I. Graham, Migrating to object technology, Addison-Wesley Pub. Co.,
Wokingham, England; Reading, Mass., (1995).

[17] A. Gunes Koru and J. Tian, An empirical comparison and
characterization of high defect and high complexity modules. Journal
of Systems and Software, 67 (2003), 153-163.

[18] B. Henderson-Sellers, L.L. Constantine, and I.M. Graham, Coupling
and cohesion (towards a valid metrics suite for object-oriented analysis
and design). Object Oriented Systems, 3 (1996), 143-158.

[19] M. Host, B. Regnell, and C. Wohlin, Using Students as Subjects-A
Comparative Study of Students and Professionals in Lead-Time Impact
Assessment. Empirical Software Engineering, 5 (2000), 201-214.

[20] G. Keppel, Design and analysis: a researcher's handbook, Prentice Hall,
Upper Saddle River, N.J., (2004).

[21] T.M. Khoshgoftaar, E.B. Allen, and J. Deng, Controlling overfitting in
software quality models: experiments with regression trees and
classification. Proc. of The 17th International Software Metrics
Symposium, (2000), 190-198.

[22] T.M. Khoshgoftaar, E.B. Allen, and D. Jianyu, Using regression trees
to classify fault-prone software modules. IEEE Transactions on
Reliability, 51 (2002), 455-462.

[23] T.M. Khoshgoftaar, E.B. Allen, W.D. Jones, and J.P. Hudepohl,
Accuracy of software quality models over multiple releases. Annals of
Software Engineering, 9 (2000), 103-116.

[24] T.M. Khoshgoftaar and N. Seliya, Fault Prediction Modeling for
Software Quality Estimation: Comparing Commonly Used Techniques.
Empirical Software Engineering, 8 (2003), 255-283.

[25] B. Kitchenham, L. Pickard, and S.L. Pfleeger, Case studies for method
and tool evaluation. IEEE Software, 12 (1995), 52-62.

[26] B.A. Kitchenham, S.L. Pfleeger, L.M. Pickard, P.W. Jones, D.C.
Hoaglin, K. El Emam, and J. Rosenberg, Preliminary guidelines for
empirical research in software engineering. IEEE Transactions on
Software Engineering, 28 (2002), 721.

Paper V

 188

[27] J.S. Milton and J.C. Arnold, Introduction to probability and statistics:
principles and applications for engineering and the computing sciences,
McGraw-Hill, Boston, (2003).

[28] J.C. Munson and S.G. Elbaum, Code churn: a measure for estimating
the impact of code change. Proceedings of the International Conference
on Software Maintenance, (1998), 24-31.

[29] N. Nagappan and T. Ball, Use of relative code churn measures to
predict system defect density. Proceedings of the 27th International
Conference on Software Engineering ICSE 2005., (2005), 284-292.

[30] A.P. Nikora and J.C. Munson, Developing fault predictors for evolving
software systems. Proc. of The Ninth International Software Metrics
Symposium, (2003), 338-349.

[31] N. Ohlsson, A.C. Eriksson, and M. Helander, Early Risk-Management
by Identification of Fault-prone Modules. Empirical Software
Engineering, 2 (1997), 166-173.

[32] N. Ohlsson, M. Zhao, and M. Helander, Application of multivariate
analysis for software fault prediction. Software Quality Journal, 7
(1998), 51-66.

[33] T.J. Ostrand, E.J. Weyuker, and R.M. Bell, Predicting the Location and
Number of Faults in Large Software Systems. IEEE Transactions on
Software Engineering, 31 (2005), 340-355.

[34] M. Pighin and A. Marzona, An empirical analysis of fault persistence
through software releases. Proceedings of the International Symposium
on Empirical Software Engineering, (2003), 206-212.

[35] M. Pighin and A. Marzona, Reducing Corrective Maintenance Effort
Considering Module's History. Proc. of Ninth European Conference on
Software Maintenance and Reengineering, (2005), 232-235.

[36] D.G. Rees, Essential statistics, Chapman & Hall, London; New York,
(1995).

[37] R.W. Selby, Empirically based analysis of failures in software systems.
IEEE Transactions on Reliability, 39 (1990), 444-454.

[38] I. Sommerville, Software engineering, Addison-Wesley, Boston, Mass.,
(2004).

[39] U.o.H. The Collaborative Software Development Laboratory, USA,
LOCC Project Homepage, http://csdl.ics.hawaii.edu/Tools/LOCC/.
(2005), The Collaborative Software Development Laboratory,
University of Hawaii, USA. The Collaborative Software Development
Laboratory, University of Hawaii, USA.

[40] P. Tomaszewski, J. Håkansson, L. Lundberg, and H. Grahn, The
Accuracy of Fault Prediction in Modified Code – Statistical Model vs.
Expert Estimation. Proceedings of the 13th Annual IEEE International
Conference and Workshop on the Engineering of Computer Based
Systems, (2006), 334-343.

Improving Fault Detection in Modified Code
- A Study from the Telecommunication Industry

 189

[41] P. Tomaszewski, L. Lundberg, and H. Grahn, Increasing the Efficiency
of Fault Detection in Modified Code, Asian Pacific Software
Engineering Conference, APSEC, Taipei, Taiwan, (2005), 421-430.

[42] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and A.
Wesslen, Experimentation in software engineering: an introduction,
Kluwer, Boston, (2000).

[43] P. Yu, T. Systa, and H. Muller, Predicting fault-proneness using OO
metrics. An industrial case study. Proc. of The Sixth European
Conference on Software Maintenance and Reengineering, (2002), 99-
107.

[44] M. Zhao, C. Wohlin, N. Ohlsson, and M. Xie, A comparison between
software design and code metrics for the prediction of software fault
content. Information and Software Technology, 40 (1998), 801-809.

Introduction

Paper I

Paper II

Paper III

Paper IV

Paper V

Paper VI

Paper VII

Paper VIII

Paper IX

A Method for an Accurate Early Prediction
of Faults in Modified Classes

Piotr Tomaszewski, Håkan Grahn, Lars Lundberg

To appear in the Proceedings of 22nd IEEE International Conference
on Software Maintenance, September 2006, Philadelphia, USA

Abstract

In this paper we suggest and evaluate a method for predicting fault
densities in modified classes early in the development process, i.e.,
before the modifications are implemented. We start by establishing
methods that according to literature are considered the best for
predicting fault densities of modified classes. We find that these
methods can not be used until the system is implemented. We suggest
our own methods, which are based on the same concept as the methods
suggested in the literature, with the difference that our methods are
applicable before the coding has started. We evaluate our methods
using three large telecommunication systems produced by Ericsson. We
find that our methods provide predictions that are of similar quality to
the predictions based on metrics available after the code is
implemented. Our predictions are, however, available much earlier in
the development process. Therefore, they enable better planning of
efficient fault prevention and fault detection activities.

Paper VI

 194

A Method for an Accurate Early Prediction of Faults in Modified Classes

 195

1. Introduction

A majority of software systems evolve during their lifetime. This
system evolution causes many changes to be introduced in the original
source code. Such code modifications are an important source of faults
[9, 13, 20, 21]. It is widely known that faults are one of the major cost
drivers in software development projects. Activities connected with
fault handling account for a significant part of the project budget, e.g.,
in the study reported in [4] 45% of the project resources were devoted
to testing and simulation. Therefore, any method that reduces the cost
associated with faults handling is likely to bring significant project cost
savings.

The fact that about 60%-80% of the faults can be found in about 20%
of the code modules [1, 11] and that about half of the code modules are
usually defect free [1] shows that there is a potential for savings if we
manage to focus our fault handling efforts on the portion of the code
that actually contains faults. A popular method for identifying fault-
prone code is using a fault prediction model (e.g., [6, 11, 13-15, 22]). If
we assume that the cost of finding faults in a class is proportional to the
size of the class (like in [2, 3]) then, by selecting classes with the
highest fault densities, such a prediction model increases the fault
detection efficiency (i.e., the number of faults found per amount of code
analyzed). As a result, more faults are removed within a given budget.
Therefore, in this study we build models that predict fault density.

Fault prediction models are usually based on different characteristics of
the software, e.g., design or code metrics (e.g., [6, 22]). Some of those
metrics are available only after the system is implemented, e.g., the
number of lines of code or McCabe complexity [7]. There are also
metrics that are available before the coding has started. For example,
many design metrics, like the number of methods or coupling [5], can
be calculated from the design documentation. Prediction models based
on such design metrics are able to identify fault-prone classes even
before these classes are actually modified. Being able to identify the
most fault-prone classes so early in the development process makes it
possible to apply preventive measures to such classes. For example,
they can be assigned to more experienced developers or an increased
number of code reviews/inspections can be planned for such classes.

There are a lot of studies that attempt to predict faults in the modified
code units [8, 10, 17, 19-21]. One general conclusion from these
studies is that the most promising indicator of fault density of a

Paper VI

 196

modified code unit is the relative size of the modification of this code
unit, i.e., the size of the modification divided by the size of the whole
code unit (see Section 2 for details concerning these studies).

In this paper we apply the idea of a relative modification size to the
metrics that are available before the system is implemented. We define
a number of metrics, available at design time, that approximate the
relative size of the modification. We evaluate their ability to predict
fault densities of classes before these classes are implemented. We
show that our metrics are able to predict fault densities of classes with
accuracy similar to the accuracy of a prediction based on metrics that
are available after the code is implemented.

Our evaluation is based on data describing three releases of two
telecommunication systems developed by Ericsson. These are large
systems (about 1000 classes, 500 KLOC each) that are mission-critical
for mobile network operators. Because of that, they undergo extensive
and therefore expensive quality assurance before they are released to
the market. The systems are mature and have been available on the
market for over six years.

The rest of the paper is structured as follows: in Section 2 we present
work that has been done by others in the area of fault prediction in
modified code. Section 3 describes the metrics we have defined to
predict fault densities in modified classes. In Section 4 we present our
evaluation method. Section 5 presents the results of the evaluation. In
Section 6 we discuss our findings. In the last section (Section 7) we
present the most important conclusions from our study.

2. Related work

As we indicated in the introduction there is a lot of research that aims at
predicting faults in evolving systems. Nagappan and Ball [10]
evaluated the applicability of relative code churn measures to predict
the fault densities of software units. As relative code churn measures
they understand the amount of code change normalized by the size of
the code unit the change was introduced to. Their study was based on
the code churn between Windows Server 2003 and Windows Server
2003 Service Pack 1. The authors concluded that the relative code
churn measure could be used as predictor of a system’s fault density.
The measures described in [10] are typical code metrics. To calculate
them the system must be implemented, which limits the usage of the
prediction models to after the system is implemented.

A Method for an Accurate Early Prediction of Faults in Modified Classes

 197

Munson and Elbaum [9], analyzed large software system and they also
noticed that relative measures are very good predictors of the fault-
proneness of modified code. The metric they evaluated was the relative
complexity of modified modules. They showed that this metric was
highly correlated with the fault density.

Selby [17] reached a similar conclusion. He observed that the number
of faults in a modified class tends to increase with the size of the
modification of the class. The information about the modification of a
file was also considered very useful by Ostrand at al. [12]. They
noticed that modified files are very fault-prone – more fault prone than
new files.

We also performed studies (Paper V, Paper VII) in which we built
models that predict fault densities in modified classes. We found that
the most promising metric for estimating the number of faults in the
modified code was the size of the modification, which we calculated as
a number of new and modified lines of code in the class. As a
consequence, the best fault density prediction metric was the relative
modification size, obtained by dividing the size of the modification by
the size of the class.

In all studies described above the faults are predicted in modified code,
but only after the system is implemented. There are also studies that
report promising results when it comes to predicting faults before the
implementation has started. For example, Zhao at al. [22] compared the
accuracy of fault prediction using design metrics with the accuracy of
fault prediction using code metrics. The authors concluded that the
results obtained from models based on design metrics are even more
accurate than the results obtained using code metrics only. The authors,
however, did not say if the modules analyzed were new or modified.
Also the design metrics collected are mostly different SDL related
metrics (the number of SDL diagrams, the number of task symbols in
SDL descriptions, etc.), which limits their usage to systems designed
using SDL.

There are studies that evaluate the applicability of other metric suits to
predict faults. For example, Yu et al. [15] evaluated the applicability of
the most common object-oriented metrics for predicting the number of
faults. The authors obtained rather promising results but their study was
based on new classes only.

To check if object-oriented metrics are also applicable for predicting
faults in modified code we performed a study [20], in which we
compared the accuracy of fault predictions using object oriented

Paper VI

 198

metrics with the accuracy of predictions using code metrics. It turned
out that our results were similar when we used design or code metrics
that described the characteristics of a final system. However, when we
introduced the code metric describing the size of modification, it
largely increased the quality of prediction using code metrics. This
metric, alone, achieved higher prediction accuracy than all metrics
describing the characteristics of a final system combined into one
multivariate prediction model. Therefore, we concluded that to improve
the quality of early (i.e., available before implementation) prediction of
faults we must look for metrics that:

- describe the characteristics of the modification
- are available before the implementation is done

In this paper we suggest such metrics and we evaluate their ability to
predict fault proneness of modified classes.

3. Predictor metrics

As we indicated in previous sections, our goal is to find metrics that are
available at the time when the new release of the system is already
designed, but not yet implemented. The metrics should describe the
relative size of modification (RelMod), i.e., the size of the modification
divided by the size of the class:

)Size(Class
ication)Size(ModifRelMod =

 (1)

In studies where the prediction is performed after the code is
implemented, such a metric was shown to be very successful for
predicting fault densities of modified files (see Section 2 for details).
However, the task of obtaining such a metric is significantly simpler
when the code is implemented. At that time we can simply measure
Size(Modification), i.e., the number of added and changed lines of code
in the class, and Size(Class), i.e., the number of code lines in the class.
Both values are easily available from version control systems.
However, at the design time none of these metrics are available. For
that reason, they must be approximated by some other metrics.

Typically size metrics measure the length of code and therefore they are
based on counting the number of some language constructs, e.g., the
number of statements, the number of code lines, or the number of
operands. Even though all these metrics do not measure exactly the
same thing, they usually tend to be highly correlated, which makes it

A Method for an Accurate Early Prediction of Faults in Modified Classes

 199

possible to predict one of them using another. One size metric of that
kind that is available from the design documentation is the number of
methods (NoM). This metric was shown to be a very good predictor of
the final size of the system measured in the number of code lines [16].
In our study two metrics are based on the concept of counting methods:

- NoM– the Number of Methods in the Class, which we use as a
Size(Class) metric

- NoACM – the number of Added or Changed Methods in the Class,
which we use as a Size(Modification) metric

One can argue that one problem with using NoM as a size metric is that
the average size of a method (in lines of code) may be different in
different classes. Studies like [16] show, that these differences tend to
average out at the project level. However, since for modified classes we
actually have information about the average size of the method, we
decided to check if using this information improves the accuracy of a
prediction. The average size of a method can be calculated from the
previous release of the system. Therefore, we introduced a new metric
ApproxSize (approximated size of the class) which we define in the
following way:

PrevRel

PrevRel
CurRel NoM

Size
NoMApproxSize •=

 (2)

where CurRel indicates that the metric concerns the release for which
we perform predictions, while PrevRel indicates that a certain metric
concerns the previous release of the system. Obviously, we use
ApproxSize as Size(Class) metric.

Based on the metrics introduced above (NoM, NoACM, and
ApproxSize) we defined two metrics describing the relative size of the
modification.

The first one, RelModNoM, measures the modification as the number of
new or modified methods in the class in relation to the number of all
methods in the class:

NoM
NoACMRelMod NoM =

 (3)

The second one, RelModApproxSize, uses the ApproxSize metric to
approximate the size of the class. Therefore, RelModApproxSize is defined
in the following way:

ApproxSize
NoACMRelModApproxSize =

 (4)

Paper VI

 200

4. Evaluation method

The evaluation of our metrics is performed using the data collected
from three releases of two large telecommunication systems developed
by Ericsson. From now on, we call these systems System A1, System
A2, and System B, where System A1 and System A2 are two
consecutive releases of one system. As we indicated in Section 1, these
systems are large, they comprise of about 1000 classes and about half a
million code lines each. In the releases under study a significant amount
of code was introduced as a modification of already existing classes. In
System A1 44% of the code was introduced as the modifications of
existing classes, in System A2 43% of the code introduced in this
release was introduced in existing classes. In System B 37% of the code
written in this release was written in existing classes. An interesting
thing is that 78%, 60% and 62% of faults that were found in System
A1, System A2, and System B, respectively, were located in modified
classes. This clearly suggests that modified classes are an important
source of faults.

We evaluate our metrics (RelModNoM,, and RelModApproxSize) from the
perspective of their applicability to predict the fault proneness of
modified classes. We order classes in the order of their decreasing fault
density. We evaluate the different metrics by plotting the percentage of
faults that would be detected if analyzing a system according to its
suggestion against the accumulated percentage of the code that would
have to be analyzed. Since our prediction method is meant for modified
classes in our evaluations we use only modified classes from the
respective systems.

To obtain a point of reference for our evaluations, we introduce two
theoretical reference models:

- Random model – the model describing a completely random search
for faults

- Best model – the model that makes only the right choices about
which classes to analyze first

The Random model provides a baseline for evaluating our predictions,
as it describes what results, on average, we could expect if we analyzed
the code not following any model at all. On average, by analyzing n%
of code we find n% of faults. Therefore, the Random model looks the
same for all systems. By comparing the performance of our prediction
with the Random model we can see if our prediction method provides
an improvement over not using any prediction method at all.

A Method for an Accurate Early Prediction of Faults in Modified Classes

 201

The Best model provides a boundary of how good the prediction can
be. In this theoretical model the code units are selected according to
their actual fault density. The Best model looks differently for different
systems, because it depends on the actual distribution of faults in the
system. By comparing the performance of our prediction with the Best
model we can see how far our prediction is from the best possible
prediction.

The models described above are theoretical models. Other studies (see
Section 2 for details) indicate that the best prediction practically
available can be obtained by using the actual relative size of code
modification. Therefore, we additionally include this metric as a point
of reference. The relative size of code modification (RelModCode) is
defined as:

NoLOC
NoACLOCRelModCode =

 (5)

where NoACLOC is the number of added and changed lines of code in
the class, while NoLOC is the total number of lines of code in the class.
The reader must bear in mind that RelModCode is available only after the
code is implemented. It can be seen as the current “state-of-the-art” in
prediction of fault densities in the modified classes. Therefore, it is not
evaluated in our study but it is included in our evaluations as a point of
reference.

5. Results

The results of the evaluation using System A1 are presented in Figure
1. As can be noticed, there is no visible difference in the prediction
quality between our metrics (RelModNoM and RelModApproxSize) and the
relative modification metric measured after the code is implemented
(RelModCode). This indicates that the fault densities of the classes in
System A1 could be predicted equally accurately before the system was
implemented and after the system was implemented. There is no
obvious difference between the performance of RelModNoM and
RelModApproxSize.

On average, our prediction models provide about half of the maximum
possible improvement over the Random model. This is not any formal
quantification, but an observation based on the fact that in Figure 1 our
predictions are placed more or less half way between the Random
model and the Best model.

Paper VI

 202

Figure 1. Evaluation of the applicability of metrics to predict the fault-densities of
modified classes in System A1.

System A1

0

20

40

60

80

100

0 20 40 60 80 100

% of code

%
 o

f f
au

lts

Best model
RelModCode
RelModApproxSize
RelModNoM
Random

The results of evaluation using System A2 are presented in Figure 2.
By analyzing Figure 2 we can see that RelModCode and RelModApproxSize

predict fault densities with a similar accuracy. Therefore, the best
prediction available before the code is implemented gives similar
results as the best prediction available after the code is implemented.
The accuracy of RelModNoM is actually similar to the accuracy of the
two remaining prediction models, apart from between 30% and 40% of
code where it is clearly worse. Similarly to the results obtained when
evaluating our prediction method using data from System A1, in
System A2 our predictions offer about half of the maximal possible
improvement.

The results of the evaluation of our prediction methods using data
collected from System B are presented in Figure 3. In Figure 3 we can
see that the prediction using RelModCode is more accurate than any of
the two prediction methods available at the design time. In practice,
however, it is visible only when between 20% and 40% of the code is
considered.

In System B the prediction using RelModApproxSize seems to be more
accurate compared to the prediction using RelModNoM, especially when
low percentages of the code are considered (up to 30%). However, as in
case of Systems A1 and A2, in System B the overall difference in
performance between RelModApproxSize and RelModNoM is not large.

A Method for an Accurate Early Prediction of Faults in Modified Classes

 203

Figure 2. Evaluation of the applicability of metrics to predict the fault-densities of
modified classes in System A2.

System A2

0

20

40

60

80

100

0 20 40 60 80 100

% of code

%
 o

f f
au

lts Best model
RelModCode
RelModApproxSize

RelModNoM
Random

Figure 3. Evaluation of the applicability of metrics to predict the fault-densities of
modified classes in System B.

System B

0

20

40

60

80

100

0 20 40 60 80 100

% of code

%
 o

f f
au

lts Best model
RelModCode
RelModApproxSize
RelModNoM
Random

Paper VI

 204

Also similarly to the previous cases (i.e., System A1 and System A2) in
System B the early prediction methods are stable in providing about a
half of the maximum possible improvement over the Random model.
The prediction using RelModCode seems to be more accurate here than in
the previous cases – in Figure 3 the RelModCode for all percentages of
the code is closer to the Best model than to the Random model.

6. Discussion

Our findings clearly show that it is possible to perform accurate
predictions concerning the fault densities of modified classes at the
design stage, i.e., before these classes are actually implemented. Our
evaluation, in which we used three releases of large telecommunication
systems, showed that in all three cases the quality of the prediction
based on the data available before the implementation was comparable
with the quality of the best prediction available after the code was
implemented. These findings are promising, as they indicate that it is
possible to obtain the information that can be used for planning fault
detection and fault prevention activities at the time when this
information is most needed, i.e., early in the development process.
The results indicate that our method of approximating the size of code
modification by using the information about the number of new and
modified methods in the class works well and is accurate enough for
making predictions. Also both our methods for approximating the final
size of the class are accurate enough. It seems, however, that the
method, in which we use the information about the size of the class
from before the modification is slightly more accurate compared to the
method that takes only the number of methods in the class into account.
It can be observed because the predictions obtained using this
approximation (i.e., RelModApproxSize) are very similar to the predictions
using the actual size of the class after modification (i.e., RelModCode).

One reason for the higher accuracy of predictions based on the number
of methods and the size of the class from previous release of the system
as compared to only using the number of methods might be that the
spread of sizes of methods seems to be smaller within the classes than
between classes. This can be explained by the fact that there is usually
one person responsible for implementing a class and, therefore, this
person’s “programming style” may make the methods similar in size.
This is, however, only a hypothesis, which we have not evaluated in
this study.

On the other hand, by looking at figures 1-3 we see that the actual
difference between RelModApproxSize and RelModNoM is, in practice, very

A Method for an Accurate Early Prediction of Faults in Modified Classes

 205

small. It would indicate that the sizes of the methods are not very
different even between classes. It can mean that there are some
common design practices that are followed by different designers
within the company, which make their methods somewhat similar in
size.

Even though, based on our evaluations, we would rather suggest using
RelModApproxSize, we must clearly state that using RelModNoM also
provides an improvement over not using any prediction method at all
(i.e., following the Random model). The improvement is not much
smaller compared to using RelModApproxSize. The main difference, as we
see it, is that RelModApproxSize seems to be more stable (see Figure 2 and
Figure 3). This is, however, only our subjective judgment based on the
observation of figures 1-3, not supported by any formal statistical
analysis.

One can argue that one of the greatest advantages of fault prediction
models based on code metrics, as well as those based on some design
metrics, is that the measurements necessary for predictions can be
obtained automatically. For example, for our RelModCode it is possible
to write an application that will get as an input the code from current
and previous releases of the system, and as output will produce the
prediction. The information about class sizes and modification sizes can
be measured by a software tool, e.g., LOCC [18], or can be obtained
from a version control system.

Such a full automation in case of our prediction method will be hard to
achieve. Some things, like class size in the previous release of a system
or the number of functions in the planned release are relatively easy to
obtain automatically. Class size in the previous release of the system
can be measured using some code measuring tool. If the design of the
system is done using, e.g., UML modeling language, it is also relatively
easy to extract the information about the number of methods in the
class in the designed system. We are, however, not aware of any
method for automatically obtaining the information regarding the
number of new and modified methods in the class at design time.
Therefore, if such prediction method is to be implemented, the
company must introduce a process, in which each designer manually
quantifies the number of methods to be modified and added to a class
when planning the modification of this class. This should be a neither
difficult nor expensive process. It must, however, be used rigorously
for our prediction method to work.

One validity threat to our study is that the systems on which we
evaluate our models come from the same company (i.e., Ericsson) and

Paper VI

 206

the same application domain (i.e., telecommunications). As we
indicated before, it is possible that within this particular company there
is some kind of “style guide” that e.g., makes the differences between
the method sizes small and therefore makes the number of methods an
accurate predictor of the size measured in code lines. We investigated
this factor and, to our knowledge, there is no such guide stated
explicitly. It is however, still possible that there is some implicit
“programming style” within the company that is followed by the
designers. This could potentially limit the applicability of our findings
to this company only. Therefore, to further evaluate the models, an
evaluation using data describing systems developed in some other
companies and for different application domains would be
recommended.

7. Conclusions

The goal with this paper is to suggest and evaluate a method for
predicting fault densities in modified classes early in the development
process. In this study we focus on predicting fault densities of classes
before they are actually modified. Access to information about the
fault-proneness of the classes before they are modified enables more
efficient planning of different fault prevention and fault detection
activities. For example, in order to assign more experienced developers
to especially fault-prone classes, the information about fault-proneness
of the classes in the system must be available before the coding actually
begins.

In our study we establish the current “state-of-the-art” when it comes to
predicting the fault densities of modified classes. We find that the
relative size of code modification is considered as the best fault density
predictor, i.e., the size of the code modification divided by the size of
the class. This metric is available only after the system is implemented,
so it is not applicable for the early prediction of fault-proneness.

Since the relative size of the modification is considered as the best fault
density predictor for modified classes, we want metrics that
approximate this measure but that are available before the coding starts.
We suggest two such measures. Both of them approximate the size of
modification by counting the number of added and modified methods in
the modified classes. As class size metric one of them uses the number
of methods in the class, while the other one also incorporates the
information about the average size of the method in the previous
release of a certain class.

A Method for an Accurate Early Prediction of Faults in Modified Classes

 207

We evaluate both our prediction methods and obtain promising results.
Both our methods provide a prediction of quality similar to the quality
of the prediction using the “state-of-the-art” solution that is only
available after the code is implemented. It means that, by using our
method, it is possible to obtain the information of similar quality much
earlier in the development process.

Since the measurements necessary for our prediction can not be
obtained automatically we also discuss the changes that need to be
introduced to the development process in order to collect all the data we
need for making our predictions. We conclude that, even though the
data must be collected manually, the process of obtaining it is very
simple and inexpensive. It must, however, be followed rigorously for
our method to work.

8. Acknowledgments

The authors would like to thank Ericsson for providing us with the data
for the study and The Collaborative Software Development Laboratory,
University of Hawaii, USA (http://csdl.ics.hawaii.edu/) for the LOCC
application.

This work was partly funded by The Knowledge Foundation in Sweden
under a research grant for the project "Blekinge - Engineering Software
Qualities (BESQ)" (http://www.bth.se/besq).

9. References

[1] B. Boehm and V.R. Basili, Software Defect Reduction Top 10 List.
Computer, 34 (2001), 135-137.

[2] L.C. Briand, J. Wust, J.W. Daly, and D.V. Porter, Exploring the
relationship between design measures and software quality in object-
oriented systems. The Journal of Systems and Software, 51 (2000), 245-
273.

[3] L.C. Briand, J. Wust, S.V. Ikonomovski, and L. H., Investigating
quality factors in object-oriented designs: an industrial case study.
Proc. of the 1999 Int'l Conf. on Software Eng., (1999), 345-354.

[4] M. Cartwright and M. Shepperd, An empirical investigation of an
object-oriented software system. IEEE Transactions on Software
Engineering, 26 (2000), 786-796.

[5] S.R. Chidamber and C.F. Kemerer, A metrics suite for object oriented
design. IEEE Transactions on Software Engineering, 20 (1994), 476-
494.

Paper VI

 208

[6] K. El Emam, W.L. Melo, and J.C. Machado, The prediction of faulty
classes using object-oriented design metrics. The Journal of Systems
and Software, 56 (2001), 63-75.

[7] N. Fenton and S.L. Pfleeger, Software metrics: a rigorous and practical
approach, PWS, London; Boston, (1997).

[8] T.L. Graves, A.F. Karr, J.S. Marron, and H. Siy, Predicting fault
incidence using software change history. IEEE Transactions on
Software Engineering, 26 (2000), 653-661.

[9] J.C. Munson and S.G. Elbaum, Code churn: a measure for estimating
the impact of code change. Proceedings of the International Conference
on Software Maintenance, (1998), 24-31.

[10] N. Nagappan and T. Ball, Use of relative code churn measures to
predict system defect density. Proceedings of the 27th International
Conference on Software Engineering ICSE 2005., (2005), 284-292.

[11] N. Ohlsson, A.C. Eriksson, and M. Helander, Early Risk-Management
by Identification of Fault-prone Modules. Empirical Software
Engineering, 2 (1997), 166-173.

[12] T.J. Ostrand, E.J. Weyuker, and R.M. Bell, Predicting the Location and
Number of Faults in Large Software Systems. IEEE Transactions on
Software Engineering, 31 (2005), 340-355.

[13] M. Pighin and A. Marzona, An empirical analysis of fault persistence
through software releases. Proceedings of the International Symposium
on Empirical Software Engineering, (2003), 206-212.

[14] M. Pighin and A. Marzona, Reducing Corrective Maintenance Effort
Considering Module's History. Proc. of Ninth European Conference on
Software Maintenance and Reengineering, (2005), 232-235.

[15] Y. Ping, T. Systa, and H. Muller, Predicting fault-proneness using OO
metrics. An industrial case study. Proc. of The Sixth European
Conference on Software Maintenance and Reengineering, (2002), 99-
107.

[16] M. Ronchetti, G. Succi, W. Pedrycz, and B. Russo, Early estimation of
software size in object-oriented environments a case study in a CMM
level 3 software firm. Information Sciences, 176 (2006), 475-489.

[17] R.W. Selby, Empirically based analysis of failures in software systems.
IEEE Transactions on Reliability, 39 (1990), 444-454.

[18] U.o.H. The Collaborative Software Development Laboratory, USA,
LOCC Project Homepage, http://csdl.ics.hawaii.edu/Tools/LOCC/.
(2005), The Collaborative Software Development Laboratory,
University of Hawaii, USA. The Collaborative Software Development
Laboratory, University of Hawaii, USA.

[19] P. Tomaszewski, J. Håkansson, L. Lundberg, and H. Grahn, The
Accuracy of Fault Prediction in Modified Code – Statistical Model vs.
Expert Estimation. Proceedings of the 13th Annual IEEE International
Conference and Workshop on the Engineering of Computer Based
Systems, (2006), 334-343.

A Method for an Accurate Early Prediction of Faults in Modified Classes

 209

[20] P. Tomaszewski, L. Lundberg, and H. Grahn, The Accuracy of Early
Fault Prediction in Modified Code. Fifth Conference on Software
Engineering Research and Practice in Sweden, (2005), 57-63.

[21] P. Tomaszewski, L. Lundberg, and H. Grahn, Increasing the Efficiency
of Fault Detection in Modified Code, Asian Pacific Software
Engineering Conference, APSEC, Taipei, Taiwan, (2005), 421-430.

[22] M. Zhao, C. Wohlin, N. Ohlsson, and M. Xie, A comparison between
software design and code metrics for the prediction of software fault
content. Information and Software Technology, 40 (1998), 801-809.

Introduction

Paper I

Paper II

Paper III

Paper IV

Paper V

Paper VI

Paper VII

Paper VIII

Paper IX

Statistical Models vs. Expert Estimation for
Fault Prediction in Modified Code – an
Industrial Case Study

Piotr Tomaszewski, Jim Håkansson, Håkan Grahn, Lars
Lundberg

Submitted to a journal.

Abstract

Statistical fault prediction models and expert estimations are two
popular methods for deciding where to focus the fault detection efforts
when the fault detection budget is limited. In this paper we present a
study in which we empirically compare the accuracy of fault prediction
offered by statistical prediction models with the accuracy of expert
estimations. The study is performed in an industrial setting. We invited
eleven experts that are involved in the development of two large
telecommunication systems. Our statistical prediction models are built
on historical data describing one release of one of those systems. We
compare the performance of these statistical fault prediction models
with the performance of our experts when predicting faults in the latest
releases of both systems. We show that the statistical methods clearly
outperform the expert estimations. As the main reason for the
superiority of the statistical models we see their ability to cope with
large datasets. This makes it possible for statistical models to perform
reliable predictions for all components in the system. This also enables
prediction at a more fine-grain level, e.g., at the class instead of at the
component level. We show that such a prediction is better both from the
theoretical and from the practical perspective.

Paper VII

 214

Statistical Models vs. Expert Estimation for Fault Prediction
in Modified Code – an Industrial Case Study

 215

1. Introduction

The high cost of finding and correcting faults in software projects has
become one of the major cost drivers of software development. In
literature, we can find many case studies, which show that the activities
connected with fault detection account for a significant part of the
project budget. On the other hand, software projects often face budget
limitations that put stringent restrictions on extensive and expensive
quality assurance. To achieve the highest possible product quality,
software developers need to decide where to focus their fault detection
efforts in order to detect as many faults as possible within a given
budget.

If we assume that the cost of fault detection (e.g., inspection) for a code
unit (e.g., a class or a component) is proportional to the size of this unit,
we can see that fault detection is most efficient when it is focused on
the code units with the highest fault density, i.e., with the largest
number of faults per line of code. It is commonly known that faults are
very rarely distributed evenly in software systems. Typically, the
majority of faults can be found in a minority of the code units (for an
overview of research concerning this issue see [10]). Therefore, when
the budget is limited, fault detection should be performed on the code
units in order of their decreasing fault density. To plan such fault
detection, we must be able to predict the fault density of the code units.
One approach to perform fault density prediction is to build statistical
fault prediction models. Such models predict fault-proneness of the
code units based on their characteristics, e.g., size, complexity, etc.
This approach is very popular in academia – there is a lot of research
describing and evaluating such models [3, 5, 6, 8, 12, 18, 21, 28, 31].
Our own experience shows, however, that fault prediction models are
less popular and not so widespread in industry.

Another approach to predict the fault-proneness of the code units are
expert estimations. In this approach, human experts suggest the order in
which the code units should be analyzed. The experts usually base such
decisions on their experience and knowledge about the system. In
contrary to the statistical prediction models, this approach seems to be
very popular in industry but is not well researched.

An expert judgement is an accepted and a common way of performing
estimations in many software engineering related areas [2, 15, 29].
Despite this fact, we have failed to find any report presenting a
comparative evaluation of the applicability of expert judgments vs.

Paper VII

 216

statistical prediction models for predicting the fault-proneness of code
units. Therefore, in this study our goal is to compare the accuracy of the
fault prediction made by statistical fault prediction models with the
accuracy of expert estimations.

The study is industry based. As study objects we have selected two
large software systems from the telecommunication domain developed
at Ericsson. We denote them as System A and System B. We use one
release of System A and two releases of System B (called System B1
and System B2). System B1 is used to build our statistical prediction
models. The models are evaluated on System A and System B2. To
perform the expert estimation we have invited six persons involved in
the development of System A and five persons involved in the
development of System B2.

Each system release that we examine in this study introduces a
significant amount of new functionality. Typically, the new
functionality is introduced either as new classes or as modifications of
existing classes. In our dataset we have found that code inserted as
modifications of existing classes accounts for a minority of the code
introduced in each system’s release. At the same time the modified
classes contained a majority of the faults. Therefore, in this study we
focus specifically on predicting fault density in the modified code.

The reminder of this paper is structured as follows. In Section 2 we
present the work done by others in the area of fault prediction. Section
3 contains more detailed information concerning the systems and the
experts in our study. In Section 4 we introduce the methods that we use
in this study. In Section 5 we present the results, and in Section 6 we
discuss our findings and their validity. Section 7 contains the most
important conclusions from our study.

2. Related work

A lot of work has been done in the area of fault detection improvement.
A large portion of this research focuses on building fault prediction
models. Depending on the output (the dependant variable), these fault
prediction models belong to one of the following groups [19]:

- Quality prediction models - these models attempt to quantify the
quality of the code unit, e.g. by predicting the number of faults in the
code unit. Examples of such models can be found in [5, 6, 21, 28,
31].

Statistical Models vs. Expert Estimation for Fault Prediction
in Modified Code – an Industrial Case Study

 217

- Classification models – these models classify code units as fault-
prone or not, i.e., they predict if the code unit contains faults.
Examples of such models can be found in [3, 8, 12, 18].

The models often operate at different levels of the logical structure of
the code. There are models that predict fault-proneness of classes [1, 4,
5, 8, 20, 31], modules [10, 17, 18, 24], components [22], or files [25].

The prediction models are usually based on different characteristics of
the code units. These characteristics are commonly presented in the
form of different code metrics (e.g., [16, 27, 31]) or, for classes,
variations of C&K [7] object oriented metrics (e.g., [3, 8, 31]). There
are also studies that take historical information about fault-proneness of
code units into account (e.g., [26, 27]).

The construction of a prediction model usually starts with the selection
of the independent variables (i.e., the variables that are used to predict a
dependant variable). The initial set of independent variables is often
large. A common assumption is that models based on a large number of
variables are less robust and have a lower practical value (more metrics
have to be collected) [5, 9]. Therefore, some authors (e.g., [5]) focus on
building only simple models, containing one or at most two predicators
(independent variables).

A commonly used method to select the best fault predicators is
correlation analysis ([5, 8, 31]). The methods for building prediction
models range from uni- and multivariate linear regression (e.g., [5, 6,
21, 24, 28, 31]) and logistic regression (e.g., [3, 8, 12, 18]) through
regression trees (e.g., [16, 17]) to neural networks (e.g., [19, 30]).

Despite the fact that expert judgements are an accepted and widely
practiced way of performing estimations [2, 15, 29], we have found
only very little research that connect expert estimations with predictions
of the fault-proneness of individual code units. The only examples that
we have found are studies [32, 33] in which expert estimations are used
together with statistical analysis as complementary methods. The
statistical methods are used to group code units with similar
characteristics. Then, it is up to the expert to estimate if a given group
of code units is fault-prone. We have, however, failed to find any report
presenting a comparative evaluation of expert judgments and statistical
fault prediction models.

Paper VII

 218

3. Study objects

3.1 Systems under study

In this study we use the most current release of System A and two latest
releases of System B. These are large telecommunication systems. The
sizes of these systems are about 800 classes (500 KLOC), and over
1000 classes (600 KLOC) for System A and System B, respectively.
Both systems are mature and have been on the market for over 6 years.
Over that time the systems have evolved – a number of releases of each
of them have been produced. Both systems are implemented in object
oriented technology using the same programming language. One of the
systems has been developed in Sweden. The other one has mostly been
developed in China and is currently being transferred to Sweden.

The systems are logically divided into a number of subsystems. Each
subsystem is built of components. Each component consists of a
number of classes. The numbers of components that have been
modified in the examined releases of the products are 35 in System A,
41 in System B1, and 43 in System B2. That corresponds to 249
modified classes in System A, 319 modified classes in System B1, and
180 modified classes in System B2. The information about faults is
available at the class level. Therefore, we are able to assign faults to the
particular classes and, through them, to the components.

When analyzing the code and the fault data we have found that in all
three cases (System A, System B1, and System B2) the most fault-
prone code is the code introduced as modifications of existing classes.
In System A the code introduced as modifications of the classes from
the previous release accounts for 37% of the code written (63% of the
new code was introduced as new classes). These 37% of the code
contained 62% of the faults found in the project release that we
examine in this study. A similar trend has also been observed in System
B. In System B1 about 44% of the introduced code modifies classes
from the previous release. These 44% contain 78% of all faults. In
System B2 the modified code accounted for 45% of code introduced in
this release. The modified classes in System B2 contained 59% of
faults. It can be noticed that modified code is not only more fault-prone
but it also is a significant source of faults in evolving systems, like the
ones we examine in this study. Therefore, in this study we focus
specifically on predicting the fault densities of modified code units.

Statistical Models vs. Expert Estimation for Fault Prediction
in Modified Code – an Industrial Case Study

 219

3.2 Participating experts

In total, we have invited eleven experts to this study. Six of them have
been involved in the development of System A, and five of them have
been involved in the development of System B2. All of our experts
have several years of working experience with telecommunication
systems. Their tasks are system design and implementation. All our
experts are familiar with the architectures and functionalities of their
respective systems. They also know the scopes of the releases under
study. They know what functionality that was added in the releases they
were asked to perform estimations for.

The major difference between experts involved in performing
estimations concerning System A and those performing estimations
concerning System B2 is their experience with the respective products.
System B2 is currently being transferred from an offshore development
site. Therefore, all of the experts involved in performing estimations
concerning System B2 have limited experience (up to one year) of
working with System B2, as compared to the six-year experience of the
experts involved in the development of System A.

At the time of the study, the development of the examined releases of
the systems was finished. One risk of such a study set-up is that the
experts may basically know the fault distribution. We believe it has not
been the case in our study. The work in the project is organized
according to the “component responsibility” principle - each developer
is fully responsible for one or more components. Because of that, in
practice, the developers do not have a global picture concerning fault
distribution – they only receive information concerning the faults that
were found in the components they are responsible for. Normally,
during the project time, they are not provided with any global statistics
concerning faults. Therefore, their predictions concerning the faults
made in this study are not based on any global statistics but on their
own “gut-feeling”, based on experience and knowledge of the scope of
a project.

4. Methods

In this section we present the methods, which we use in this study.
Section 4.1 presents the methods we used to build our prediction
models. Section 4.2 presents the way we collected and used the data
gathered from our experts. In Section 4.3 we present the methods we
use to evaluate and compare our prediction models with the estimations
of our experts.

Paper VII

 220

4.1 Building prediction models

Our prediction models are built based on data from System B1. The
goal of our models is to predict fault density of different code units. As
we see it, the fault density can be predicted in two ways:

- by predicting the fault density (Faults/Size) – fault density is a
dependant variable in the model.

- by predicting the number of faults (Faults) and dividing the
predicted number of faults by real size (Size) of the code unit –
Faults are predicted by the model, while size is measured.

In this study we have collected data that makes it possible for us to
perform predictions both at the class and at the component level. The
metrics collected at the class level are summarized in Table 1. These
are mostly C&K [7] design metrics, and code metrics. The metrics
collected at the component level are summarized in Table 2. These are
simple code metrics measuring the size of the component and the size
of the change. Within the components we have performed
measurements only on those classes that were modified.

Similarly to [5], we have decided to build simple prediction models that
are based on one predicator only. Such models do not suffer from the
risk of multicolinearity, which is a typical risk for multivariate models
[9]. Therefore, simple models are usually more likely to be stable over
releases. An additional benefit from using simple models is that they
require less data to be collected, as compared to multivariate models.
Obviously, by using one metric only, we deliberately give up the
potential benefit from introducing more information, carried by other
metrics, into the model. However, as our previous research shows (see
Paper V) in practice the prediction using a univariate model may be
almost as good as the prediction using a multivariate model.

In order to select the best single fault predicators from the class and the
component metrics we perform a correlation analysis. The correlation
analysis is commonly used for that purpose by other researchers [23,
31]. It quantifies the relation between two metrics as a value between -1
and 1. An absolute value of a correlation close to 1 characterizes good
predicator variables. The values close to zero indicate a very weak
linear relationship between the variables, and thus a low applicability of
one variable to predict the other.

Statistical Models vs. Expert Estimation for Fault Prediction
in Modified Code – an Industrial Case Study

 221

Table 1. Metrics collected at the class level.

Name Variable Description

Independent variables

Coup Coupling Number of classes the class
is coupled to [7, 11]

NoC Number of Children Number of immediate
subclasses [7]

WMC Weighted Methods per
Class

Number of methods defined
locally in the class [7]

RFC Response for Class
Number of methods in the
class including inherited
ones[7]

DIT Depth of Inheritance
Tree

Maximal depth of the class
in the inheritance tree[7, 10]

LCOM Lack of Cohesion

“how closely the local
methods are related to the
local instance variables in
the class” [11]. In the study
LCOM was calculated as
suggested by Graham [5, 6,
13, 14, 21, 28, 31]

ClassStmt Number of statements
Number of statements in the
code (used as the size metric
in our study)

MaxCyc Maximum cyclomatic
complexity

The highest McCabe
complexity of a function
within the class

ClassChg Change Size
Number of new and
modified LOC (from
previous release)

Dependent variables

Faults Number of faults Number of faults found in the
class

FaultDensity Fault density Fault density of the class

In this study we build two prediction models. One of them predicts
faults at the class level and the other one predicts faults at the
component level. The models are built using a univariate linear
regression. The univariate linear regression estimates the value of the

Paper VII

 222

dependant variable (the number of faults or the fault-density) as the
function of an independent variable [24]:

f(x) = a + bx (1)

Even though our prediction models attempt to predict the actual value
of fault density, in this study we use this information only as an
indicator of the order in which the code units should be analyzed.

Table 2. Metrics collected at the component level.

Name Variable Description
Independent variables

CompStmt Number of statements

Number of statements in the
component (only statements
from modified classes in the
component were counted)

CompMeth Number of methods

Number of statements in the
component (only methods
from modified classes in the
component were counted)

CompClass Number of modified
classes

Number of modified classes
in the component

CompChg Changesize
Number of new and
modified LOC (compared to
previous release)

Dependent variables

CompFaults Number of faults Number of faults found in
the component

CompFaultDe
nsity Fault density

Fault density of the
component (CompFaults
divided by the accumulated
size of the modified classes
in the component)

4.2 Expert estimation

The expected outcome of the expert estimation is a ranking of the code
units according to their decreasing fault density. Such a ranking makes
it possible to compare the accuracy of an expert estimation with the
accuracy of a prediction made by our prediction models.

Statistical Models vs. Expert Estimation for Fault Prediction
in Modified Code – an Industrial Case Study

 223

In the beginning of this study we have performed a number of
interviews with our experts. The goal was to establish an appropriate
level for performing the expert predictions. The question was if the
experts should perform estimations at the class or at the component
level. It quickly turned out that the class level presents too fine-grained
information. Even though the experts knew what each component does,
it was very difficult for them to predict the responsibility of particular
classes within components. Additionally, the amount of data (249
classes for System A, and 180 for System B2) was considered
unmanageable. The number of components is significantly smaller –
there are 35 components with modified classes in System A and 43 in
System B2. Therefore, in this study the expert estimation is performed
only at the component level.

The expert estimation was performed individually by each of our
experts. During the individual rankings the experts were provided with
the list of modified components. Additionally, for each component, we
enclosed the information concerning the subsystem to which the
component belongs, as well as the accumulated size of the modified
classes within the component. The experts were asked to rank the
components according to their decreasing fault density. Each expert
was given a clear explanation concerning our study in order to assure a
full understanding of the task. Additionally, for System A we managed
to organize a consensus meeting. As input to this meeting we provided
the experts with the individual rankings. The goal of the consensus
meeting was to prepare a common “joint” ranking of components. In all
cases, the experts were allowed to not rank all the components.

4.3 Evaluation of prediction accuracy

We evaluate the statistical prediction models and the expert predictions
from the perspective of the increase of the efficiency of fault detection
that they provide. We consider a prediction method better if, by
following it, we are able to detect more faults by analyzing the same
amount of code as compared to another prediction method. Therefore,
we evaluate different predictions by plotting the percentage of faults
that would be detected if analyzing a system according to a certain
prediction method against the accumulated percentage of code that
would have to be analyzed.

To obtain a point of reference for our evaluations, we introduce two
reference models:

- Random model – the model describing a completely random search
for faults

Paper VII

 224

- Best model – the theoretical model that makes only the right choices
about which code unit to analyze first

The Random model provides a baseline for evaluating our models, as it
describes what results, on average, we could expect if we analyzed the
code not following any model at all. The Random model is the same for
all systems – on average by analyzing n% of code we find n% of faults.
The Random model looks the same for the prediction at the class and at
the component level.

The Best model provides a boundary of how good the prediction can
be. In this theoretical model the code units are selected according to
their actual fault density. The Best model looks differently for different
systems, because it depends on the actual distribution of faults in the
system. The Best model is also different for predictions at the class and
at the component level. The class level prediction has finer granularity
and therefore, at least theoretically, it is able to provide more precise
results. In this study we assess the practical value of having finer
granularity prediction by comparing the Best model for components
and for classes.

The evaluation of model predictions vs. expert estimations is performed
by checking how each particular solution performs compared to the
Best model, the Random model, and to each other. The closer the
prediction is to the Best model the better it is. If the prediction is better
than the Random model then we can say that using it presents an
improvement over not using any method at all.

5. Results

5.1 Building prediction models

As described in Section 4.1, we begin building our prediction models
with selecting the best individual fault predicator. We do that by
performing a correlation analysis. In the correlation analysis we look
for the best predicator of either fault density or the number of faults, as
from the number of faults we can calculate the fault density by dividing
the predicted number of faults by the size of a code unit (i.e., a class or
a component). The correlation analysis is performed for both class and
component level metrics. The class level metrics are explained in Table
1, and the component level metrics are explained in Table 2. The results
of correlation analysis are presented in Table 3.

Statistical Models vs. Expert Estimation for Fault Prediction
in Modified Code – an Industrial Case Study

 225

Table 3. Correlation analysis results at the class and the component level. The
highest correlations for respective levels (class, component) are marked in
bold.

Class level metrics Component level metrics

Coup NOC WMC RFC Class
Stmt MaxCyc DIT LCOM Class

Chg
Comp
Chg

Comp
Stmt

Comp
Meth

Comp
Class

Faults 0.25 -0.01 0.14 0.04 0.26 0.31 -0.07 0.13 0.60 0.79 0.63 0.35 0.55
Fault

Density 0.06 -0.01 -0.01 -0.03 -0.02 0.01 -0.01 0.05 0.20 0.21 0.07 0.01 0.09

The highest correlations are marked in bold in Table 3. As it can be
noticed, the most promising fault predicator for both classes and
components is the size of the modification (ClassChg metric at the class
level, and CompChg metric at the component level). In both cases the
correlation coefficients are the highest when predicting the number of
faults. Therefore, we build models that predict the number of faults and
we divide their output by the size of the respective code unit, i.e., the
class or component.

The models based on ClassChg and CompChg are built using the linear
regression. The results of model building are presented in Table 4. As
both models are based on the information concerning the size of the
modification, not surprisingly they look quite similar.

Table 4. Prediction models build in the study. “Prediction level” indicates if the
models works at class or at component level. “Model calculated” is the
model obtained by linear regression. “Model applied” is the transformation
of the “Model calculated” so that it predicts fault density instead of the
number of faults.

Model name Prediction
level Model calculated Model applied

ComponentPred Component Faults=0.002*ComChg
+ 0.209

FaultDensity=(0.002*ComChg +
0.209) / CompStmt

ClassPred Class Faults=0.002*ClassChg
+ 0.018

FaultDensity=(0.002*ClassChg
+ 0.018) / ClassStmt

5.2 Expert estimations

5.2.1 Expert predictions concerning System A

In total, six experts performed predictions concerning System A. At
first they performed ranking of the components individually. Later the
group of experts was presented with the task of making one joint
decision using individual results as input to the discussion. The

Paper VII

 226

distribution of “votes” of individual experts, the group consensus, and
the actual ranks of the components are presented in Table 5. Only those
components that were selected by at least one expert are presented.

In the individual rankings neither of our experts ranked all 35
components. In fact, each expert ranked between 5 and 8 components.
Altogether, the experts pointed out 15 different components, i.e.,
neither of them had any opinion about the fault-proneness of the
remaining 20 components. These 15 ranked components together
account for about 60% of the code. The “group consensus” was
apparently more difficult to reach than the individual rankings because
the experts ranked only 4 components. These four components
accounted for about 30% of the code.

Table 5. The rankings of individual experts and the joint ranking of all experts. Only
15 components out of 35 were selected, and only those components are
presented in the table below. Lower rank value indicates higher fault-
density in the component predicted by expert. “Correct ranking” is the
actual rank of the component when all 35 components are ranked. The
components are presented in the order of their decreasing fault density.

Component
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Expert1 ranking 1 4 2 3 5
Expert2 ranking 3 1 2 4 5
Expert3 ranking 5 3 6 7 1 2 4
Expert4 ranking 2 6 3 1 5 4 7
Expert5 ranking 3 5 1 2 4 6 7 8
Expert6 ranking 4 1 2 5 7 8 3 6
Group consensus

ranking 3 4 1 2

Correct ranking 5 6 7 8 9 10 12 13 16 17 18 22 24 25 26

It can be noticed that in the individual rankings the components can be
divided into two subgroups. One subgroup contains components that
were selected by a majority of the experts, i.e., four and more experts
pin-pointed them. These are components with numbers: 2, 4, 5, 6, 10,
12. The other group consists of components selected only by one or
two interviewees, i.e., components with numbers: 1, 3, 7, 8, 9, 11, 13,
14, 15. It is quite clear that apart from two exceptions (Component 2,
and Component 6) there is a rather large discrepancy between the ranks
assigned by the experts to the components. This means that, despite the
fact that most experts considered a certain component fault-prone, their
estimation of its fault-density was different.

Statistical Models vs. Expert Estimation for Fault Prediction
in Modified Code – an Industrial Case Study

 227

All components ranked in the “group consensus” ranking are the
components that were selected by the majority of experts in the
individual rankings. Component 2 and Component 6 were ranked
according to the trend from the individual rankings, which was not
surprising because the experts were quite consistent in ranking them as
the first and the third in the individual rankings. Ranking Component
10 and Component 4 as the second and the fourth, respectively, must
have been an outcome of the group discussion, because such a ranking
was not suggested by any individual expert.

At this point we can also perform some initial assessment of the
accuracy of the expert prediction concerning System A. By comparing
the results of individual experts with the actual ranking of components
(the last row in the table) we can see that out of the 15 components the
experts pointed to, only 8 belong to the actual top 15 components with
the highest fault densities in System A. By comparing the “consensus
group” ranking with the actual ranking of components we can see that
neither of the components pin-pointed by the experts belongs to the top
4 components with the highest fault-densities. In fact, also in the
individual rankings none of the experts identified any of the four most
fault-prone components in System A.

5.2.2 Expert predictions concerning System B2

Five experts performed predictions concerning System A. Their
individual rankings together with the actual ranks of the components
are presented in Table 6. Only those components that were selected by
at least one expert are presented. Out of 43 components that were
modified in System B2, the experts pointed out 16 components, i.e.,
neither of our experts had any opinion regarding remaining 27
components. The 16 components selected by our experts account for
about 66% of the code.

Similarly to the predictions concerning System A, in System B2 the
ranked components can be divided into two subgroups. One subgroup
consists of the components that were selected by the majority of
experts, i.e., that were selected by at least 3 experts. To this group
belong components with numbers: 2, 5, 6, 8, 12. The other subgroup
consists of components that were selected by the minority of our
experts. These are components with numbers: 1, 3, 4, 7, 9, 10, 11, 13,
14, 15, 16.

It seems that the agreement concerning the rankings was quite low
among the experts that performed predictions in System B2. From the
components selected by the majority of the experts, the highest

Paper VII

 228

agreement was achieved for the components with numbers 5 and 12.
We see this agreement as weaker, as compared to the agreement
concerning Component 2 and Component 6 in System A. This is,
however, our subjective judgment only.

Table 6. The rankings of individual experts concerning System B2. 16 components
out of 43 were selected, and only those components are presented in the
table below. Lower rank value indicates higher fault-density in the
component predicted by expert. “Correct ranking” is the actual rank of the
component when all 43 components are ranked. The components are
presented in the order of their decreasing fault density.

 Component
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Expert1 ranking 1 4 3 2
Expert2 ranking 4 1 3 6 2 5
Expert3 ranking 1 3 4 2
Expert4 ranking 8 9 3 2 7 1 4 5 6 9 10 11
Expert5 ranking 2 4 5 1 3
Correct ranking 2 3 9 10 11 12 13 14 15 16 19 20 21 22 23 24

The accuracy of expert predictions concerning System B2 seems to be
similar to the accuracy of expert predictions concerning System A. Out
of 16 components selected, 10 belong to the actual top 16 most fault
prone components in System B2.

5.3 Evaluation of prediction accuracy

Our prediction starts with building the reference models. For both
systems we build three reference models, one describing an average
result of random picking of code units for analysis (Random model),
and two models describing the theoretical best result that can be
obtained. One of them describes the maximum that can be obtained
when predicting faults at the class level (Best model class), the other
when predicting at the component level (Best model component).

The reference models created for System A are presented in Figure 1.
The reference models created for System B2 are presented in Figure 2.
As can be noticed, both graphs look similar, and some common
conclusions can be drawn for both systems. In both systems the
Random model is quite far from the best possible model, which
indicates that there is large room for efficiency improvement that can
be filled by an accurate fault prediction. For example, by analyzing
20% of the code randomly we can find 20% of faults. Ideally, in both

Statistical Models vs. Expert Estimation for Fault Prediction
in Modified Code – an Industrial Case Study

 229

systems by analyzing the most fault-prone 20% of the code we should
be able to find up to 70% of the faults in case of the class level
prediction (see Best model class in Figure 1 and Figure 2), and up to
about 50% of the faults, if the prediction is made at the component
level (see Best model component in Figure 1 and Figure 2).

Figure 1. Reference models in System A – the evaluation

0

20

40

60

80

100

0 20 40 60 80 100

% of code to analyze

%
 o

f f
au

lts
 fo

un
d

Best model class

Best model component

Random model

Although theoretical, the higher maximum possible improvement
achieved by predicting at the class level indicates that the class level
prediction should be able to give better results. The class level
prediction is made based on more fine-grained information and,
therefore, it is more precise. From Figure 1 we see that, theoretically,
the best component level prediction is capable of providing about two-
third of the improvement over the random model offered by the best
class level prediction (in Figure 1 the distance between Best model
component and Best model class is more or less equal to 2/3 of the
distance between the Best model class and the Random model). The
gain from using a class level prediction is even more visible in System
B2. In Figure 2 we can see that the best component level prediction can
be only half as good as the best class level prediction. The reader must
bear in mind that this discussion concerns the best possible models that
predict fault density at the respective code unit levels. It does not reflect
the performance of our models.

 The evaluation of expert estimations and our prediction models when
applied to System A is presented in Figure 3. In Figure 3 we present all
the individual expert estimations, “group consensus” estimation, both
of our statistical prediction models (ClassPred, ComponentPred), and

Paper VII

 230

three reference models (Random model, Best model class, and Best
model component).

Figure 2. Reference models in System B2 – the evaluation

0

20

40

60

80

100

0 20 40 60 80 100

% of code to analyze

%
 o

f f
au

lts
 fo

un
d

Best model class

Best model component

Random model

From Figure 3 we can conclude that both statistical prediction models
clearly outperform the expert estimations. They not only offer higher
accuracy in the range of code covered by any of the expert estimations
(approximately up to 50% of code of System A) but also provide
predictions that are significantly better compared to the Random model
for the rest of the code. By comparing ClassPred with the best of the
expert estimations for the percentage of code covered by the expert
estimations we can see that ClassPred offers three times as big
improvement over the Random model as the best of expert estimations.

Other findings from Figure 3 concern the practical gain from using
more fine grained information and predicting at the class level. As we
can see there is a clear gain connected with predicting at the class level.
For example, for the range of code covered by expert estimations the
gain from using ClassPred is almost equal to the maximum possible
gain from using any component level prediction model, i.e., compared
to the Best model component.

Quite surprisingly the “Group consensus” estimation turns out to be
one of the worst estimations made by our experts. Some of the
individual estimations are actually not only more correct but they also
account for more code.

Statistical Models vs. Expert Estimation for Fault Prediction
in Modified Code – an Industrial Case Study

 231

Figure 3. Statistical prediction model vs. expert prediction in System A – the
evaluation of accuracy.

0

20

40

60

80

100

0 20 40 60 80 100

% of code to analyze

%
 o

f f
au

lts
 fo

un
d

Best model class

Best model component

ClassPred

ComponentPred

Expert predictions

Group consensus

Random model

The evaluation of expert estimations and our prediction models when
applied to System B2 is presented in Figure 4. As in the case of System
A, we present all the individual expert estimations, both of our
statistical prediction models (ClassPred, ComponentPred), and three
reference models (Random model, Best model class, and Best model
component).

In Figure 4 we can see that for small percentages of the code (i.e., up to
about 15% of the code) both statistical prediction methods and expert
estimations provide equal gain over the Random model. When over
15% of code is analyzed, the gain from using the statistical prediction
model is significantly larger compared to the gain from using any of the
expert estimations. It is clearly visible in the case of the class level
prediction (i.e., the ClassPred model). ClassPred provides a constant
improvement over the Random model. It not only outperforms all
expert estimations, but provides a significant improvement over the
Random model for the range of code not covered by any of the expert
estimations.

Paper VII

 232

Figure 4. Statistical prediction model vs. expert prediction in System B2 – the
evaluation of accuracy.

0

20

40

60

80

100

0 20 40 60 80 100

% of code to analyze

%
 o

f f
au

lts
 fo

un
d

Best model class
Best model component
ClassPred
CompPred
Expert estimation
Random model

The CompPred model is visibly worse than ClassPred. It is, however,
not worse than the best of expert estimations. Additionally, the
CompPred model provides an improvement over the Random model
even for the range of code not covered by the expert estimations.

6. Discussion

6.1 Findings

The results obtained in our study seem to support the idea of building
fault prediction models. We have shown that statistical models have
some advantages over human expert estimation. The biggest advantage
of statistical models is that they are not negatively affected by the size
of the dataset. Therefore, statistical prediction models are able to
estimate the fault-proneness of all code units even in large systems.
Ranking all code units in a large system may be a difficult task for
human experts. For example, our experts were quite confident when it
comes to ranking the first couple of most fault-prone components.

Statistical Models vs. Expert Estimation for Fault Prediction
in Modified Code – an Industrial Case Study

 233

Beyond a certain number of components they admitted they would put
remaining components in a random order.

The other advantage of prediction models is a direct effect of their
ability to cope with large datasets. As we have shown, the statistical
prediction models can successfully operate on fine-grained data, e.g.,
they can predict the fault-proneness of individual classes instead of
predicting the fault-proneness of entire components. Our results
indicate that human experts, irrespectively of their experience, may not
be able to grasp large and complex system structures. This makes it
difficult for human experts to make predictions at a low level of a
system structure. At the same time we have shown that predicting at a
low level brings not only theoretical but also practical benefits. In both
systems, which we analyzed, the theoretical best prediction at the
component level provides on average only about 40% to 60% of the
improvement that can be offered by the best theoretical prediction at
the class level (compare Best model component with Best model class
in Figures 3 and 4). The superiority of the class level prediction is also
visible in practice. Our class level prediction model noticeably
outperforms our component level prediction model in all cases.

There is also one more advantage of predication models, which we
have not evaluated in this study. It is their cost. They are reasonably
cheap to build and even cheaper to apply – normally, they can be
implemented in a form of e.g., a script that collects and processes all
the required information automatically. An expert estimation is more
expensive, since for each project it must be set up and performed
independently. Obviously, to perform expert estimation we need
experts. Sometimes, in relatively new projects, or when projects are
overtaken by another team of designers, the experts may simply not be
available.

On the other hand, an expert estimation has some positive aspects, also
not evaluated in this study. Our statistical prediction models predict
faults, but do not classify them in any way. Naturally, not all faults are
the same – some of them may be more difficult to find than the others.
Some faults may be more severe than the others. It is possible that the
experts tend to pin-point more correctly the components that are more
likely to contain these kinds of faults. Due to the lack of appropriate
data we could not verify this hypothesis in our study.

Another benefit of the expert estimation can be its flexibility. The
experts can take into account information that is not present in the
statistical model. For example, in our statistical prediction models the
size of the modification is considered to be the best fault predicator and

Paper VII

 234

all our models are based on it. However, it may happen so, that even
though the change in the component is relatively small, there was a
number of people involved in introducing it, which may make such a
change more prone to faults compared to a change introduced by a
single designer. Such rare, project-specific issues are likely to be
captured by experts but it is very difficult to predict them in advance
and incorporate them into a statistical prediction model.

However, when analysing estimations of our experts, we have found a
number of worrying factors. The experts do not agree with each other,
they either select different components, or, if they select the same
components, they estimate their fault density differently. They also
seem to have problems identifying the most fault prone components in
the system. In Table 5 and Table 6 we can see that, even though most
of the experts agree on the high fault densities in some of the
components, these components are actually not the most fault prone in
the respective systems.

Another interesting observation that can be made when comparing the
performance of experts in System A and in System B2 is that much
longer experience with the product does not affect the accuracy of the
expert prediction. Our experts involved in performing the estimations
concerning System A have about five years longer experience with the
product than the experts involved in the estimations concerning System
B2. However, the accuracy of the expert predictions concerning both
systems is not very different. In both systems the experts have selected
a similar number of components. These components account for a
similar percentage of code (see Sections 5.2.1 and 5.2.2 for the details
concerning the expert prediction results). From Figure 3 and Figure 4
we can see that the fault detection efficiency improvement gained by
using expert predictions is similar in both systems. Since it is
unreasonable to assume that product related experience has no impact
on the accuracy of fault prediction, the only possible conclusion is that
there is some threshold value connected with experience, after which
the accuracy of predictions is more or less similar. It is, however,
important to remember that what we discuss here is a product related
experience, not the experience as a whole. All our experts had
experience in the development domain (i.e., telecommunications),
which may additionally explain the similarity in their performance.

6.2 Validity

The reader must bear in mind that this paper has been meant more as an
experience report than a formal experiment report. Our selection of
projects was convenience-based – we have selected projects that were

Statistical Models vs. Expert Estimation for Fault Prediction
in Modified Code – an Industrial Case Study

 235

available to us. Also, since the entire exercise has not been performed
as a controlled experiment, we can not assure that e.g., the experts did
not have some at least partial knowledge about the actual fault-
proneness of the components. For the reasons described in Section 3.2,
and because of their poor performance, we believe this was not the case
but we can not claim that we have eliminated this risk utterly. The
number of experts involved in each project may also be considered
small and therefore it is difficult to perform any meaningful statistical
analysis of their performance. However, there are a number of issues
that make it easier to generalize findings from our study. The study was
performed in an industrial setting. We used real, large
telecommunication systems. Our experts had real experience and
knowledge about the project. Additionally, they were motivated and
interested in the study, which should have contributed positively to the
quality of their predictions.

We also believe that our statistical prediction models obtained in this
study are general. When building them, we followed the good academic
practice of building models on different data than the data used to
evaluate the models. We evaluated our models not only using the next
release of the system the models were built on, but also using another
system. We believe that all these factors make the evaluation of our
statistical prediction models reliable.

Therefore, we believe that some general lessons can be learned from
our study. It seems very probable that most experts would face the
problems our experts faced, e.g., problems with coping with large
amounts of data. It is also very likely that prediction at a low level, like
e.g., at the class level, would give better results compared to prediction
at a higher level, e.g., at the component level. We are almost sure that
for most medium-to-large systems the class level prediction is not
feasible to be performed by people.

Most issues concerning the expert estimation validity, like experts’
possible knowledge about the actual fault distribution, should result in
better than average performance of the experts. It might be considered
as an argument supporting our conclusions, because even with this
“handicap”, the expert estimations were outperformed by the statistical
prediction models.

7. Conclusions

The goal of this study was to compare the accuracy of fault predictions
made by statistical fault prediction models with the accuracy of fault

Paper VII

 236

predictions made by human experts. We compared both prediction
methods by applying them to two large software systems from the
telecommunication domain. To perform the study we invited eleven
experts involved in the development of these systems and we built two
statistical fault prediction models. Our statistical fault prediction
models were built based on data different from the data used in the
evaluation.

The evaluation was performed from the perspective of an increase of
the fault detection efficiency that could have been obtained if analyzing
the code units in the order suggested by the experts or in the order
suggested by our statistical models. Both prediction methods were
evaluated against three reference models: a model based on a random
selection of the code units for analysis, the theoretically best model for
predicting faults at the class level, and the theoretically best model for
predicting faults at the component level.

We found that both the expert estimations and the statistical prediction
models provided an improvement over the random selection of code
units for analysis. When comparing the performance of the expert
estimations with the performance of the statistical models we found that
the statistical prediction models outperformed the expert estimations.
For example, for the systems that we analyze in this study, we find that
for the portion of code covered by the expert estimations our statistical
fault prediction models offered a higher improvement as compared to
the best of the expert estimations. Moreover, the statistical predictions
continued to provide an efficiency improvement over not using any
model even after the point where our experts gave up.

We identified a number of reasons for the statistical models being
better. Statistical models are not affected by the size of the dataset so
they perform equally well on small and large systems, while the human
ability to grasp the complexity of larger systems is limited. In addition,
the ability to deal with large datasets makes it possible for the statistical
models to perform more fine-grained predictions, i.e., predictions at a
lower level. We showed that a more fine-grained prediction, e.g., a
prediction at the class level instead of at the component level, is not
only better from a theoretical but also from a practical perspective. Our
class level prediction model was more accurate compared to our
component level prediction model in both examined systems.

We also made a number of observations concerning estimations made
by our experts. One worrying factor was that the components which the
experts selected, in large proportion were not the actual most fault-
prone components in the systems. Another worrying issue was a low

Statistical Models vs. Expert Estimation for Fault Prediction
in Modified Code – an Industrial Case Study

 237

agreement between our experts concerning the estimation of the fault-
proneness of components. Our experts either selected different
components for analysis or, if they selected the same components, they
assessed their fault-proneness differently.

In this study we also discussed other advantages and disadvantages of
statistical prediction models and expert estimations. The statistical
prediction methods are reasonably cheap to build and apply, as well as
they can be used in the absence of experts, e.g., when a project is
transferred to another development organization. On the other hand,
expert estimations are more flexible and can take into account some
project specific issues that can affect fault-proneness of the
components. Such project specific issues are usually hard to
incorporate into otherwise general statistical fault prediction models.

8. Acknowledgments

The authors would like to thank Ericsson for providing us with the
data, Ericsson staff members for active participation in this study, and
The Collaborative Software Development Laboratory, University of
Hawaii, USA (http://csdl.ics.hawaii.edu/) for the LOCC application.

This work was partly funded by The Knowledge Foundation in Sweden
under a research grant for the project "Blekinge - Engineering Software
Qualities (BESQ)" (http://www.bth.se/besq).

9. References

[1] V.R. Basili and L.C. Briand, A validation of object-oriented design
metrics as quality indicators. IEEE Transactions on Software
Engineering, 22 (1996), 751-762.

[2] B.W. Boehm, Software engineering economics, Prentice-Hall,
Englewood Cliffs, N.J., (1981).

[3] L.C. Briand, J. Wust, J.W. Daly, and D.V. Porter, Exploring the
relationship between design measures and software quality in object-
oriented systems. The Journal of Systems and Software, 51 (2000), 245-
273.

[4] L.C. Briand, J. Wust, S.V. Ikonomovski, and L. H., Investigating
quality factors in object-oriented designs: an industrial case study.
Proc. of the 1999 Int'l Conf. on Software Eng., (1999), 345-354.

[5] M. Cartwright and M. Shepperd, An empirical investigation of an
object-oriented software system. IEEE Transactions on Software
Engineering, 26 (2000), 786-796.

Paper VII

 238

[6] S.R. Chidamber, D.P. Darcy, and C.F. Kemerer, Managerial use of
metrics for object-oriented software: an exploratory analysis. IEEE
Transactions on Software Engineering, 24 (1998), 629-639.

[7] S.R. Chidamber and C.F. Kemerer, A metrics suite for object oriented
design. IEEE Transactions on Software Engineering, 20 (1994), 476-
494.

[8] K. El Emam, W.L. Melo, and J.C. Machado, The prediction of faulty
classes using object-oriented design metrics. The Journal of Systems
and Software, 56 (2001), 63-75.

[9] N. Fenton and M. Neil, A critique of software defect prediction models.
IEEE Transactions on Software Engineering, 25 (1999), 675-689.

[10] N. Fenton and N. Ohlsson, Quantitative analysis of faults and failures
in a complex software system. IEEE Transactions on Software
Engineering, 26 (2000), 797-814.

[11] N. Fenton and S.L. Pfleeger, Software metrics: a rigorous and practical
approach, PWS, London; Boston, (1997).

[12] F. Fioravanti and P. Nesi, A study on fault-proneness detection of
object-oriented systems. Fifth European Conference on Software
Maintenance and Reengineering, (2001), 121-130.

[13] I. Graham, Migrating to object technology, Addison-Wesley Pub. Co.,
Wokingham, England; Reading, Mass., (1995).

[14] B. Henderson-Sellers, L.L. Constantine, and I.M. Graham, Coupling
and cohesion (towards a valid metrics suite for object-oriented analysis
and design). Object Oriented Systems, 3 (1996), 143-158.

[15] R.T. Hughes, Expert judgement as an estimating method. Information
and Software Technology, 38 (1996), 67-76.

[16] T.M. Khoshgoftaar, E.B. Allen, and J. Deng, Controlling overfitting in
software quality models: experiments with regression trees and
classification. Proc. of The 17th International Software Metrics
Symposium, (2000), 190-198.

[17] T.M. Khoshgoftaar, E.B. Allen, and D. Jianyu, Using regression trees
to classify fault-prone software modules. IEEE Transactions on
Reliability, 51 (2002), 455-462.

[18] T.M. Khoshgoftaar, E.B. Allen, W.D. Jones, and J.P. Hudepohl,
Accuracy of software quality models over multiple releases. Annals of
Software Engineering, 9 (2000), 103-116.

[19] T.M. Khoshgoftaar and N. Seliya, Fault Prediction Modeling for
Software Quality Estimation: Comparing Commonly Used Techniques.
Empirical Software Engineering, 8 (2003), 255-283.

[20] X. Li, Z. Liu, B. Pan, and D. Xing, A measurement tool for object
oriented software and measurement experiments with it, 10th
International Workshop New Approaches in Software Measurement,
Springer-Verlag, Berlin, Germany, (2001), 44-54.

Statistical Models vs. Expert Estimation for Fault Prediction
in Modified Code – an Industrial Case Study

 239

[21] A.P. Nikora and J.C. Munson, Developing fault predictors for evolving
software systems. Proc. of The Ninth International Software Metrics
Symposium, (2003), 338-349.

[22] M.C. Ohlsson, A. Andrews Amschler, and C. Wohlin, Modelling fault-
proneness statistically over a sequence of releases: a case study.
Journal of Software Maintenance and Evolution: Research and
Practice, 13 (2001), 167-199.

[23] N. Ohlsson, A.C. Eriksson, and M. Helander, Early Risk-Management
by Identification of Fault-prone Modules. Empirical Software
Engineering, 2 (1997), 166-173.

[24] N. Ohlsson, M. Zhao, and M. Helander, Application of multivariate
analysis for software fault prediction. Software Quality Journal, 7
(1998), 51-66.

[25] T.J. Ostrand, E.J. Weyuker, and R.M. Bell, Predicting the Location and
Number of Faults in Large Software Systems. IEEE Transactions on
Software Engineering, 31 (2005), 340-355.

[26] M. Pighin and A. Marzona, An empirical analysis of fault persistence
through software releases. Proceedings of the International Symposium
on Empirical Software Engineering, (2003), 206-212.

[27] M. Pighin and A. Marzona, Reducing Corrective Maintenance Effort
Considering Module's History. Proc. of Ninth European Conference on
Software Maintenance and Reengineering, (2005), 232-235.

[28] Y. Ping, T. Systa, and H. Muller, Predicting fault-proneness using OO
metrics. An industrial case study. Proc. of The Sixth European
Conference on Software Maintenance and Reengineering, (2002), 99-
107.

[29] M. Shepperd and M. Cartwright, Predicting with sparse data. IEEE
Transactions on Software Engineering, 27 (2001), 987-998.

[30] H. SungBack and K. Kapsu, Identifying fault-prone function blocks
using the neural networks - an empirical study. IEEE Pacific Rim
Conference on Communications, Computers and Signal Processing, 2
(1997), 790-793.

[31] M. Zhao, C. Wohlin, N. Ohlsson, and M. Xie, A comparison between
software design and code metrics for the prediction of software fault
content. Information and Software Technology, 40 (1998), 801-809.

[32] S. Zhong, T.M. Khoshgoftaar, and N. Seliya, Analyzing software
measurement data with clustering techniques. IEEE Intelligent Systems,
19 (2004), 20-27.

[33] S. Zhong, T.M. Khoshgoftaar, and N. Seliya, Unsupervised learning for
expert-based software quality estimation. Proceedings of the Eighth
IEEE International Symposium on High Assurance Systems
Engineering, (2004), 149-155.

Introduction

Paper I

Paper II

Paper III

Paper IV

Paper V

Paper VI

Paper VII

Paper VIII

Paper IX

Comparing the Fault-Proneness of New and
Modified Code – An Industrial Case Study

Piotr Tomaszewski, Lars-Ola Damm

To appear in the Proceedings of International Symposium on Empirical
Software Engineering, September 2006, Rio de Janeiro, Brazil

Abstract

Faults are considered as one of the important factors affecting the cost
of software development projects. To be able to efficiently handle
faults, we must increase our understanding of the factors that make the
code fault-prone. A majority of large software systems evolve during
their lifetime. In each new release of the system the functionality can be
added by writing new classes or/and by modifying already existing
ones. In this study we compared the fault-proneness of new and
modified classes in such systems. Our study is based on two releases of
two large telecommunication systems developed at Ericsson. The major
finding of the study is that the risk of introducing faults (the number of
faults in the class/the number of new or modified lines of code in the
class) is 20 to 40 times as high in modified classes compared to new
ones. In the systems which we analyzed a small modification (a few
percent) of the class resulted in as many faults as we would expect
when the same class was written from scratch. Previous research on
this relationship does not appear to exist. Partly in conflict with related
research, we found that there is no statistically significant difference
between the average number of faults in modified and new classes, and
that the average fault-densities (the number of faults/the size of the
entire class) in new and in modified classes are very similar. Finally,
we also suggest how our findings can be used in practice..

Paper VIII

 244

Comparing the Fault-Proneness of New and Modified Code
– An Industrial Case

 245

1. Introduction

Faults are widely recognized as one of the most important cost drivers
in software development. A lot of work has been put into finding
methods for efficient fault handling [2, 9]. There are methods for
finding faults in the code but there are also preventive measures that
can lead to producing less fault prone code. In order to use them
efficiently it is important to focus them on the code that is most likely
to be the most fault-prone [2, 9]. To achieve that we must increase our
knowledge and understanding of the characteristics of the code that in
practice make it fault-prone.

It is more a rule than an exception that large software systems evolve.
New versions of systems are produced to adapt them to new or
changing needs. Adding new functionality means that some new code
must be introduced into the current system. In object oriented systems
this code can be introduced either as modification of already existing
classes or as new classes.

The relation between the fault-proneness of the code introduced as
modification of an existing code unit and the fault-proneness of the
code introduced as a new code unit is not entirely clear. Some
researchers see modification of existing code as an example of reuse,
and therefore consider modified code less fault-prone than new code,
e.g., [8]. Other researchers report that there is no significant difference
between the fault-proneness of new and modified code [7]. These
reports result in very mixed signals sent to software developers
regarding the fault-proneness of modified code as compared to the new
one. As we discuss in the “Related work” section, the differences in
reports can partially be attributed to the differences in findings.
However, partially they are a result of different assumptions or
interpretations, or due to a different understanding of the term “fault-
proneness”.

In this paper we understand the term “fault-prone code” in three
different ways:

1. Code is fault-prone when it contains many faults, i.e., there is a
large number of faults per class

2. Code is fault-prone when it has a high fault density, i.e., a class
has a large number of faults per a line of code

3. Code is fault-prone when writing it leads to introducing many
faults into the class, i.e., the number of faults per a written or
modified line of code in the class is high

Paper VIII

 246

The difference between point 2 and point 3 in the list above is visible in
the case of modified classes, where the size of the modification is
smaller than the size of the entire class. Below, we explain our three
ways of understanding the “fault-proneness” term in more detail.

In the literature, the most popular trend is to relate the fault-proneness
of a code unit (e.g., class, module, file) to the number of faults in the
code unit [6-8], which corresponds to point 1 from our list. If we
consider that focusing our fault detection efforts on classes with the
larges number of faults is the most efficient, then we assume that the
cost of finding all faults in the class is constant, i.e., it is the same for
all classes independently of their sizes.

However, some authors (e.g., [6]) admit that it might be considered
more correct to consider fault-density as a measure of fault-proneness
of the code unit because fault-density measure captures some other cost
perspective. It assumes that the cost of performing a fault detection
activity on the code unit is proportional to the size of this code unit
(such an assumption can be found in [3]). This understanding
corresponds to point 2 from our list.

There is also another cost model that can be taken into account. The
cost in that model can potentially relate to the amount of code that was
actually written (i.e., the size of the modification). In case of new
classes it would be the number of code lines in the class. In case of
modified classes it would be the number of new or modified lines of
code. By dividing the number of faults in the class by such a cost
metric we would obtain some kind of risk metric, describing the risk of
producing a fault when introducing code into a new class as compared
to the risk of producing a fault when introducing the same amount of
code as a modification of an existing class. This understanding of the
term “fault-proneness” corresponds to point 3 from our list.

Even though these three “fault-proneness” definitions are different,
they may all be of interest in certain cases. It is so because there is a
wide range of fault detection techniques, which have different cost
models. For example, one can reasonably argue that the efficiency of
extensive code inspections, where the code of an entire class is
inspected, is related to the fault-density of the class. On the other hand,
the efficiency of a code-walkthrough that focuses on the code that was
actually written/modified is more related to the number of faults per
written/modified code line, i.e., to our risk metric. Since, as we see it,
all three perspectives can be meaningful in some cases, we take all of
them into account in our study.

Comparing the Fault-Proneness of New and Modified Code
– An Industrial Case

 247

Our study is based on the data collected from two consecutive releases
of two large telecommunication systems produced by Ericsson. Both
these systems operate in the service layer of a mobile phone network.
The systems were developed in object oriented technology using C++.
They consist of about 1000 classes and about 500 KLOC each. Each
system is divided into a number of components (around 40 components
in each of the systems). In each of the releases under study between 60
and 120 new classes were added and between 175 and 320 of existing
classes were modified. The staff involved in development of those
system can be considered experienced, every person involved had
several years of experienced with the respective systems. As these
systems are mission critical they undergo expensive and extensive
testing (mostly the focus is put on function and system testing).

Based on the data collected from the systems described above we
attempt to answer the following specific research questions:

Q1. Is there a significant difference between the number of faults in
new and modified classes?

Q2. Is there a significant difference between the fault densities of
new and of modified classes?

Q3. Is there a significant difference in the risk of producing a fault
when introducing code in the new class as compared to the risk
of producing a fault when introducing the same amount of code
as the modification of an existing class?

The reminder of this paper is structured as follows. In Section 2 we
present the results of related studies. In Section 3 we describe methods
we used. In Section 4 we present our results. In Section 5 we discuss
our findings. Section 6 contains the most important conclusions from
our study.

2. Related work

We failed to find a lot of research that focuses specifically on
comparing the fault-proneness of new and modified code. There are
some studies that as one of the advantages of code reuse present the
lower fault-proneness of the reused code units as compared to the fault
proneness of new code units. In [8] Selby quantified the fault proneness
of reused components as “74% less than that of newly developed
components”[8]. However, as reused components Selby considered
those that were both modified and unmodified. In his paper [8] we can
see that the components which underwent a major revision (more than
25% of changes) are as fault prone as the new code, the components

Paper VIII

 248

that underwent minor revision (<25% of changes) are about half as
fault prone as the new ones. These are the completely reused
components that make the difference, as they have almost no faults. As
a measure of fault-proneness, Selby considered the number of faults per
component, irrespectively of its size.

The significantly lower fault-proneness of completely reused
(unmodified) components as compared to the fault proneness of the
modified components is supported not only by a conventional wisdom
but also some empirical studies, e.g., [4]. However, in [4], there is no
comparison of the fault-proneness of new and modified components,
which is the goal of our study.

Such a comparison can be extracted from [6], where Ostrand at al.
build fault prediction models. Among the variables they used there are
two categorical predictors that indicate if a file is new or changed.
Based on their models, the authors showed that the modified file is
likely to have about “2.9 times more faults than existing unchanged
files with otherwise similar characteristics” [6]. For new files this factor
is 6.4, i.e., that new files are likely to have “6.4 times more faults than
existing unchanged files with otherwise similar characteristics”[6].
These two statements make it possible to conclude that new files have
more faults than modified ones. However, since among those “similar
characteristics”, the authors mention file size we can reasonably assume
that the same relation holds truth for fault densities, i.e., new files have
higher fault densities than modified files. This conclusion is not based
on the statistical analysis of fault proneness but on an observation of
the fault prediction model built in this study [6].

The studies mentioned above tend to consider new code units as more
fault prone. In [7], Pighin and Marzona came to different conclusions.
By comparing an average number of faults per file they concluded that
there is no statistically significant difference between new and reused
code. The authors quote the average number of faults per new and per
old file. The values describing the fault-proneness of new files are
about 20%-60% higher compared to the values describing the fault
proneness of the old files. Unfortunately, the authors also do not
distinguish between modified and unmodified files. They only
distinguished between new and old files. In either case, however, their
results differ from the results of the other studies presented in this
section.

As we can see there is no consensus between different researchers
when it comes to the fault-proneness of the new and the modified code.
Also we can see that in all cases presented, the authors do not take any

Comparing the Fault-Proneness of New and Modified Code
– An Industrial Case

 249

information about the size of modification into account. Therefore,
based on these studies, it is difficult to assess if e.g., it is actually more
risky to modify an existing code than to write a new one. Additionally,
unlike our study, most of the studies presented in this section, i.e., [4, 7,
8], were not performed on object-oriented systems and therefore it is
not clear if conclusions from them apply to object oriented systems.

3. Methods

3.1 Data collected

We collected data from two consecutive releases of two systems
developed by Ericsson. From now on we refer to them as to System A1,
System A2, System B1, and System B2, where System A1 and System
A2 are two consecutive releases of System A and System B1 and
System B2 are two consecutive releases of System B. For each of the
system releases we collected the data about classes that were new in
each given release as well as classes that were modified in each given
release, i.e., classes that were present in the previous release of the
system but were modified in the release under study. We did not collect
information regarding classes that were fully reused. For each class we
collected the following data:

- the number of faults that were found in the class (FAULTS)
- the size of the class (SIZE) measured in thousands of codelines

(KLOC)
- the size of the modification (MODSIZE) measured in thousands of

codelines (KLOC). For classes that were modified MODSIZE was
measured as the number of new or modified lines of code in the
class, for the new classes it was equal to SIZE

The measurements concerning size and modification size were
collected using the LOCC application [10]. Due to confidentiality
reasons we are not allowed to reveal any information concerning the
actual number of faults in the system. Therefore, our FAULTS metric
has been modified – we multiplied the actual number of faults by a
randomly selected value (the same in all cases). Therefore, our data is
internally consistent and it makes sense to compare the numbers for the
new and the modified code, but it does not make sense to use the data
to predict the system quality.

Our first question Q1 (see Section 1) considers the amount of faults per
class so the metric that is associated with it is, obviously, the FAULTS
metric. The second question (Q2) considers class fault density.

Paper VIII

 250

Therefore, we introduce a new metric, called DENSITY, which we
define as (1):

SIZE
FAULTSDENSITY =

(1)

Our final, third question is about the risk of introducing a codeline into
the class. We associate with it a new metric, which we call RISK. The
RISK metric is defined in the following way:

MODSIZE
FAULTSRISK =

(2)

3.2 Analysis methods

To answer all three questions we applied exactly the same procedure.
For each variable (i.e., FAULTS, DENSITY, and RISK) in each project
we started by calculating the average value and standard deviation for
new and modified classes. Obtaining these values made it possible for
us to give answers to our three questions. However, we could not say
that the differences (or the lack of differences) between the new and the
modified classes were statistically significant. Therefore, additionally
we performed a statistical analysis.

In our statistical analysis, we for each project tested the hypothesis
about the equality of distributions of our respective variables (i.e.,
FAULTS, DENSITY, and RISK). The statistical tests suggested for
that purpose are [11]:

- t-test when variables are normally distributed
- Mann-Whitney U test when variables are not normally distributed

 Since our data does not follow the normal distribution we used the
Mann-Whitney U test. The computational procedure for Mann-Whitney
U test can be found in [1, 11]. In our study we selected a standard
significance level of 0.05 [1]. The statistical significance of 0.05 means
that we accept 5% chance of rejecting the hypothesis about the equality
of the fault-proneness of new and modified code when the hypothesis is
actually correct. In other words, selecting 5% significance level means
that we are at least 95% confident that the hypothesis regarding the
equality of fault-proneness of new and modified code is false before we
reject it.

Comparing the Fault-Proneness of New and Modified Code
– An Industrial Case

 251

4. Results

4.1 Question 1: FAULTS

The first question regarded the number of faults per class that can be
found in the new and in the modified classes. Table 1 summarizes our
findings.

Table 1. Average number of faults per modified and per new class in the respective
systems. Values in brackets describe standard deviations. Statistical sig.
says if the difference between New and Modified classes is statistically
significant (i.e., if, at 0.05 level, we can reject the hypothesis that, on
average, New and Modified classes have the same number of faults).

 System
A1

System
 A2

System
 B1

System
 B2

Avg. FAULTSNew 0.36
(0.83)

0.32
(0.74)

0.07
(0.30)

0.47
(1.19)

Avg. FAULTSModified
0.62

(1.47)
0.58

(1.44)
0.14

(0.51)
0.46

(0.88)
Statistical sig. no no no no

New

Modified

FAULTSAvg
FAULTSAvg
.

.
 1.73 1.84 1.93 0.99

From Table 1 we can see that in most of our systems an average
modified class had almost twice as many faults as an average new class
(see Table 1, last row). The only exception was System B2 in which the
average number of faults was similar in both new and modified classes.
However, in neither of our systems the difference was statistically
significant at the 0.05 level.

4.2 Question 2: DENSITY

The second question regarded the difference in fault densities of new
and modified classes. Table 2 summarizes our findings.

From Table 2 we can see that fault densities of new and modified
classes were very similar. In the last row of Table 2 all values are rather
close to 1, which suggests a similar average fault density of new and
modified classes. In all studied releases, the statistical analysis
indicated that the hypothesis about the equality of means could not
have been rejected.

Paper VIII

 252

Table 2. Average fault densities of new and modified classes in the respective
systems. Values in brackets describe standard deviations. Statistical sig.
says if the difference between New and Modified classes is statistically
significant (i.e., if, at 0.05 level, we can reject the hypothesis that New and
Modified classes have the same fault densities).

 System
A1

System
A2

System
B1

System
B2

Avg. DENSITYNew 0.59
(1.65)

1.23
(3.57)

0.24
(1.37)

0.74
(1.95)

Avg. DENSITYModified
0.76

(1.90)
1.33

(4.56)
0.22

(0.93)
0.70

(1.70)
Statistical sig. no no no no

New

Modified

Avg
Avg

DENSITY.
DENSITY. 1.29 1.08 0.90 0.96

4.3 Question 3: RISK

Our last question regarded the difference in the risk of introducing a
fault if writing a line of code in the new class as compared to writing
the line of code in the modified class. The results are summarized in
Table 3.

Table 3. Average risk connected with introducing line of code into new and into
modified classes in the respective systems. Values in brackets describe
standard deviations. Statistical sig. says if the difference between New and
Modified classes is statistically significant (i.e., if, at 0.05 level, we can
reject the hypothesis that writing the same amount of code leads to
introducing, on average, the same amount of faults in New and Modified
classes).

 System
A1

System
A2

System
B1

System
B2

Avg. RISKNew 0.59
(1.65)

1.23
(3.57)

0.24
(1.37)

0.74
(1.95)

Avg. RISKModified
23.60
(92.5)

24.31
(106.40)

11.12
(85.28)

17.71
(87.72)

Statistical sig. yes yes no yes

New

Modified

Avg
Avg

RISK.
RISK.

 40.00 19.75 46.50 24.03

Comparing the Fault-Proneness of New and Modified Code
– An Industrial Case

 253

Table 3 suggests that the risk associated with introducing a code line
into a modified class is significantly higher than the risk associated
with introducing a code line into a new class. The last row from Table 3
clearly indicates that a codeline introduced or modified in an already
existing class is about 20-40 times more likely to result in a fault, as
compared to a codeline written in a new class. In most cases, our
statistical analysis supports this finding. Only in System B1 we could
not reject the hypothesis that the risk is similar in both cases. It is
interesting, because the risk ratio (the last row in Table 3) is actually
the highest in case of System B1.

5. Discussion

When comparing our results with the results obtained by other
researchers we can observe some differences. One general conclusion
from the studies reported in [6-8] (see Section 2 for details) is that new
code units are at least as fault-prone as modified ones. In the studies
reported in [6, 8] the new code units are explicitly considered more
fault-prone than reused ones. In [7], the authors consider the fault-
proneness of new code units to be similar to the fault-proneness of code
units that existed in the previous releases of the system. However, the
results concerning the average number of faults per code unit reported
by them actually show that, on average, reused code units have less
faults per file.

Since the studies described above consider the number of faults per
code unit as a measure of fault-proneness, they should be compared to
our results concerning the FAULTS metric (see Section 4.1). Our
results are closest to the results obtained by [7], in the sense that we do
not consider the number of faults per code unit significantly different in
new and modified classes. However, even though the difference
between new and modified classes was not statistically significant, the
higher average number of faults per class in modified classes in three
out of four of our systems indicate that the modified classes are at least
as fault-prone as the new ones.

The results concerning the DENSITY metric are hard to compare with
other studies, as the other studies do not quote relevant values
explicitly. The only study we can refer to is the study described in [6],
from which we can deduce that new code units have about twice as
high fault densities as the new ones. This was not confirmed by our
findings. We found that the average fault-densities in new and in
modified classes are very similar.

Paper VIII

 254

Our last metric, i.e., the RISK metric, was introduced by us in this
study, so we can not compare our findings with any results from the
literature. Our results concerning the RISK metric indicate that the risk
connected with writing/modifying a line of code in an already existing
class is significantly higher compared to the risk connected with writing
a line of code in the new class. In the cases we examined in this study
the line of code written/modified in an existing class was 20 to 40 times
more likely to result in a fault than the line of code written in a new
class.

The differences in our results obtained for the DENSITY and for the
RISK metrics suggest that, on average, in our systems the modifications
of the classes were rather small, i.e., the size of modification was much
smaller than the size of the modified class. The average size of
modification can be roughly quantified as a couple of percent of the
size of class. As a basis for this quantification we use the information
that the DENSITY of new and modified classes is roughly the same,
while RISK is 20 to 40 times as high in the modified classes as in new
ones. Since RISK has the same value as DENSITY for the new classes
this relation (20 to 40 times) also roughly describes the average
difference in size between the size of modification and the size of an
entire class in modified classes. According to our results for FAULTS
and DENSITY metrics, such a small modification of the class resulted
in as many faults as we would expect if the same class was written from
scratch.

Obviously, one can reasonably argue that not all faults found in
modified code are the result of a modification itself, some of them can
be “inherited” with the code. In general, we agree with such a
statement. However, such “inherited faults” should be also present in
the fully reused, unmodified code. Since we know that among the
reused code the fault-proneness of unmodified code is significantly
smaller compared to the fault-proneness of modified code [4, 8] (see
Section 2 for details), we see the actual modification as a factor that
affects the fault-proneness of modified classes mostly. It is, however,
an interesting issue for further investigation.

One practical conclusion from our study is that it seems not useful,
from an efficiency perspective, to concentrate fault detection or fault
prevention activities specifically on the new or on the modified code if
the cost of such activities is either constant or if it is proportional to the
size of the class. In both cases the efficiency of fault detection is likely
to be rather similar. However, if the cost of such an activity is related to
the size of the modification then we clearly suggest focusing on the

Comparing the Fault-Proneness of New and Modified Code
– An Industrial Case

 255

modified code, as this is likely to lead to detecting more faults within
given budget.

In practice, it may be sometimes hard to know exactly what the actual
cost model is. Our three cases (constant, related to the size of class, and
related to the size of modification) are somewhat extreme. However, as
we see it, they can still be useful in a decision making process. For
example, we asked our industrial partner about the cost of performing a
code-walkthrough. Code-walkthroughs essentially focus on the
written/modified code. Our interviewees said that neither of our cost
models was fully correct, because it was rarely so that it was enough to
look only at modified code. However, they said that in case of code-
walkthroughs the RISK metric is much more relevant and closer to
reality than DENSITY metric. It is so, because it never happens that an
entire modified class is covered during a code-walkthrough. Based on
this information, and our findings, we could suggest them focusing
their code-walkthroughs mostly on the modified code.

The findings from our study, especially those concerning the RISK
metric, may be also used in the project planning phase. Since it seems
that it is much more risky to modify classes than to write new ones, one
possible preventive measure can be to assign more experienced
developers to tasks requiring class modification.

Theoretically, also some architectural decisions can be impacted by our
findings concerning the RISK metric, e.g., to avoid class modification
when introducing new functionality. On the other hand, we are aware
that a line of code written in an already existing class is, on average,
likely to deliver more functionality than a line of code in the new class.
How to make trade-offs between these two ways of implementing
functionality is an interesting research question.

High RISK values obtained for modified classes clearly suggest that
class modification is a difficult task. One possible explanation of this
phenomenon can be that, in practice, it is difficult to fully understand
all interdependencies within the class and, therefore, it is difficult to
modify a class without introducing faults. It would be interesting to see
to what extent our findings concerning the risk of modifying existing
code are affected by the fact that the studied systems were developed in
the object-oriented technology. Modifying a class can be considered
more risky than e.g., modifying a library of functions, since,
potentially, we can violate some internal assumptions in the class and,
in this way, cause faulty behavior of the entire class. Modification of
class code is a strongly discouraged practice (see e.g., Open-Close
principle [5]). However, this high risk connected with modifying a

Paper VIII

 256

class, as compared to modifying e.g., a library of functions, is only a
hypothesis, which we could not verify in this study.

Another interesting research question is connected with the fact that in
Table 3 the standard deviation values for RISK for modified classes are
much greater than those for new classes. This indicates that the
dispersion of RISK measures is large, i.e., that there is a large
variability in the risk of modifying particular classes. An interesting
topic for further investigation would be finding a method for
identifying classes that are especially risky to modify, i.e., with
especially high RISK values. We tried to correlate high RISK values
with some basic class and modification characteristics, e.g., class size,
modification size, relative modification size (size of modification
divided by the size of class) but we obtained rather low correlation
values (Spearman correlation coefficient was positive but always below
0.3). This indicates low applicability of these measures for predicting
RISK metric.

6. Conclusions

The goal of this study was to compare the fault-proneness of new and
modified code. We identified three different perspectives on fault-
proneness, which we later used to compare the fault proneness of new
and modified classes from two consecutive releases of two large
systems produced by Ericsson.

The first perspective, which we identified, relates the fault-proneness of
the class to the number of faults that were found in the class. The
second perspective associates the fault-proneness of the class with its
fault density. In the third perspective the fault-proneness is measured as
the number of faults found in the class divided by the amount of code
that was actually written or modified in the class. Therefore, when
comparing the fault-proneness of new and modified classes from this
third perspective we compared how risky the class modifications were,
as compared to writing new classes.

We found that there is no difference between the number of faults per
class in new and in modified classes. On average, the modified classes
had more faults, but the difference was not statistically significant.
There was also no statistically significant difference between the fault
densities in new and modified classes. Our results are different from the
results reported by other researchers in this area. Usually they reported
that new code had more faults and higher fault densities compared to
modified code.

Comparing the Fault-Proneness of New and Modified Code
– An Industrial Case

 257

We found, however, a large and statistically significant difference
between the risk of introducing a fault into the class when writing a
codeline in a new class compared to writing/modifying a codeline in an
existing class. We quantified this risk as 20 to 40 times as high in
modified classes as in new ones. This shows that class modification is a
risky and fault-prone task. This appears to be the most interesting and
novel finding of our study, since we could not find any related work for
this kind of measure.

Finally, we presented a number of practical conclusions that can be
drawn from our study. The major conclusion is that the large risk
connected with modifying existing classes suggests that special
attention should be put on the tasks that require class modification. For
example, the number of quality assurance activities that concentrates on
reviewing the modification itself (e.g., code-walkthroughs) can be
increased. However, it seems not useful to focus activities that aim at
analyzing an entire class, e.g., testing, specifically on the modified
code, as it is not likely to lead to finding more faults than if such
activities were focused on the new classes. The same applies to
focusing testing specifically on new classes – it is also not likely to
bring any better results compared to focusing testing on modified
classes.

7. Acknowledgements

The authors would like to thank Ericsson for providing us with the data
for the study and The Collaborative Software Development Laboratory,
University of Hawaii, USA (http://csdl.ics.hawaii.edu/) for the LOCC
application.

This work was partly funded by The Knowledge Foundation in Sweden
under a research grant for the project "Blekinge - Engineering Software
Qualities (BESQ)" (http://www.bth.se/besq).

8. References

[1] A.D. Aczel and J. Sounderpandian, Complete business statistics,
McGraw-Hill, Boston, Mass., (2006).

[2] B. Boehm and V.R. Basili, Software Defect Reduction Top 10 List.
Computer, 34 (2001), 135-137.

Paper VIII

 258

[3] L.C. Briand, J. Wust, S.V. Ikonomovski, and L. H., Investigating
quality factors in object-oriented designs: an industrial case study.
Proc. of the 1999 Int'l Conf. on Software Eng., (1999), 345-354.

[4] T.M. Khoshgoftaar, E.B. Allen, R. Halstead, G.P. Trio, and R.M. Flass,
Using process history to predict software quality. Computer, 31 (1998),
66-73.

[5] B. Meyer, Object-oriented software construction, Prentice Hall, Upper
Saddle River, N.J., (1997).

[6] T.J. Ostrand, E.J. Weyuker, and R.M. Bell, Predicting the Location and
Number of Faults in Large Software Systems. IEEE Transactions on
Software Engineering, 31 (2005), 340-355.

[7] M. Pighin and A. Marzona, An empirical analysis of fault persistence
through software releases. Proceedings of the International Symposium
on Empirical Software Engineering, (2003), 206-212.

[8] R.W. Selby, Empirically based analysis of failures in software systems.
IEEE Transactions on Reliability, 39 (1990), 444-454.

[9] F. Shull, V. Basili, B. Boehm, A.W. Brown, P. Costa, M. Lindvall, D.
Port, I. Rus, R. Tesoriero, and M. Zelkowitz, What we have learned
about fighting defects. Software Metrics, 2002. Proceedings. Eighth
IEEE Symposium on, (2002), 249-258.

[10] U.o.H. The Collaborative Software Development Laboratory, USA,
LOCC Project Homepage, http://csdl.ics.hawaii.edu/Tools/LOCC/.
(2005), The Collaborative Software Development Laboratory,
University of Hawaii, USA. The Collaborative Software Development
Laboratory, University of Hawaii, USA.

[11] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and A.
Wesslen, Experimentation in software engineering: an introduction,
Kluwer, Boston, (2000).

Comparing the Fault-Proneness of New and Modified Code
– An Industrial Case

 259

Introduction

Paper I

Paper II

Paper III

Paper IV

Paper V

Paper VI

Paper VII

Paper VIII

Paper IX

From Traditional to Streamline
Development – Opportunities and
Challenges

Piotr Tomaszewski, Patrik Berander, Lars-Ola Damm

To be submitted to a journal.

Abstract

Traditional software development processes have shown to be
inappropriate for markets where it is necessary to quickly respond to
changing customer needs. Therefore, a number of modern development
processes that attempt to improve customer responsiveness have been
developed. One such modern process is Streamline Development, a
process developed by and for Ericsson AB. This paper presents an
early evaluation of the suitability of Streamline Development for
Ericsson. The evaluation was performed by finding positive and
negative aspects of introducing Streamline Development, as well as
identifying issues to address if implementing the new process. The data
regarding the impact of introducing Streamline Development was
collected in a series of interviews and then structured using a
modification of Force Field Analysis.

Paper IX

 264

From Traditional to Streamline Development – Opportunities and Challenges

 265

1. Introduction

Today’s competitive business environment in the software domain has
resulted in a situation where it is no longer enough to develop systems
with adequate functionality, quality and price to remain competitive.
Nowadays, it is becoming increasingly important to quickly respond to
changing customer and market demands. In the last years, it has
become evident that traditional software development processes do not
handle this new situation very well [1, 3-5, 11, 17]. The reason for this
is that traditional processes tend to have rather long life cycles and do
not deliver the actual customer value (i.e. the working system) until late
in the process [8]. Additionally, traditional processes are not very good
at coping with changing requirements and, at the same time, due to
their long duration they are especially exposed to changing market
demands. Changing requirements are a source of significant amount of
rework necessary to adapt the system to the new requirements [15].
Such rework caused by changing requirements is one of the most
important productivity bottlenecks in large projects (see Paper I and
Paper II). These drawbacks of the traditional processes are a problem in
a business environment where changing user needs occur and
organizations need to find ways to deal with them.

To address the problems presented above, research and practice within
the software domain have switched focus from such traditional
processes to processes that favor customer responsiveness [15]. In these
emerging processes, the system (or parts of the system) is usually
available early in the development process. This makes it possible to
meet customer needs faster and deliver value to the customers earlier.
Frequent releases enable early customer feedback, which results in a
customer getting more involved in the entire development process.
This, in turn, makes it possible to detect and address changing needs of
customers much earlier and thus improves customer responsiveness and
reduces the risk of waste caused by implementing inadequate
functionality.

The challenges with traditional processes and the potential in the
emerging processes have been recognized by Ericsson AB, one of the
major software developers of telecommunication systems in the world.
Currently, Ericsson’s systems are developed in a rather traditional style,
in large projects that have long life cycles (often more than a year). As
an effect of this, Ericsson has experienced similar problems as the ones
presented above. To address these problems, a new in-house developed
process called Streamline Development (SD) has been suggested.

Paper IX

 266

This paper presents a study performed at Ericsson that was planned as
one of the activities aiming at an early evaluation of SD applicability
for replacing current development practices. The goal of this study was
to identify benefits and drawbacks of SD as the development process to
be used at Ericsson, as well as changes that are required to prepare the
organization and products for successful implementation of SD. The
study was performed in two Product Development Units (PDUs) at
Ericsson. The information regarding the impact of introducing SD was
collected by interviewing persons representing the roles that would be
affected by a change to SD. To structure the data collected in the
interviews, a modified version of Force Field Analysis [6] was used.

 The paper is structured as follows: Section 2 presents the current
development process used at Ericsson, as well as the SD. Section 3
describes related research. Section 4 describes the methods used in this
study. Section 5 focuses the results. Section 6 discusses the findings
and Section 7 concludes the work.

2. Ericsson AB and their development processes

Ericsson AB is an ISO 9001:2000 certified company in Sweden.
Ericsson is one of the global market leaders within the
telecommunications domain and sells systems to a market with
basically all mobile operators as potential customers. In order to give
some background regarding the work practices at Ericsson Section 2.1
presents a description of the traditional development process that is
currently used at Ericsson. In addition, the major problems Ericsson is
facing due to the use of this process are presented. Section 2.2 presents
the suggested new way of developing software, i.e., Streamline
Development (SD) and describes the ways in which it is supposed to
overcome the problems of the traditional development process
described in Section 2.1. The process descriptions presented in the
following sections are simplified since the main intention is to
underline the major differences between the processes rather than
describe them in detail.

2.1 Traditional development process

Figure 1 presents a simplified visualization of how the software is
developed currently at Ericsson. Normally, products are developed in a
number of consecutive releases. The product releases are developed in
large, long–lasting (from one to two years), projects with the scope
defined upfront. The scope is set by selecting a number of requirements
from the requirements repository. These requirements are refined into a

From Traditional to Streamline Development – Opportunities and Challenges

 267

requirement specification that should cover an entire project. Based on
this requirement specification, a new version of the system is developed
and released to the customers.

Figure 1. Traditional development process at Ericsson (one main product release).

Due to the length of the projects, it often happens that customers’ needs
change when the project is still ongoing. This means that some of the
requirements specified in the beginning become obsolete. Therefore,
some requirements need to be added, some need to be changed, and
some need to be deleted to better match the customer expectations.
When a change in needs is identified, a Change Request (CR) is filed
(see Figure 1). A CR describes an alteration from the original
requirement baseline (the changes are handled similarly to what is
described in [7]). This may imply that an “original” requirement that
has already been implemented must be either re-implemented or thrown
away depending on the kind of CR. In either case, CRs are a source of
waste in the project.

The description above primarily concerns projects aiming for a broad
market launch. However, it is also common that specific customers
initiate requirements that should not be included in the main release
(and hence not in a main project) for some reason. Such requirements
are denoted as Customer adaptation requests in Figure 1. They are

Paper IX

 268

usually urgent and must be addressed quickly. When a decision is made
to meet such customer specific requirements a customer adaptation
project is started and the requested functionality is implemented into
the system. Upon completion of such a project, the product is released
to the ordering customer but it is not integrated with the main product
and therefore has to be maintained as a separate product branch (see
Figure 1).

One of the main problems Ericsson has with the process described
above is the high cost of handling CRs. As mentioned above, CRs are a
source of waste and rework. Due to the long lead-times CRs are
relatively common in the current projects at Ericsson. Therefore, CR
handling accounts for a significant part of project cost, decreases
productivity and increases project lead-time. In addition, long lead-
times decrease the company’s competitiveness by lowering customer
responsiveness. Another problem faced in traditional projects at
Ericsson is the cost of handling customer adaptations. Each such
adaptation has to be maintained almost as a separate product, which
makes them very expensive.

2.2 Streamline Development Process

Streamline Development (SD) is presented in Figure 2. In SD, the
projects will be significantly smaller and shorter (at most 3 months
long) than in the traditional process described in Section 2.1. This
obviously means that the scope of each project will be reduced. A
project in SD is initiated when there is a development team available
and when there are a suitable number of highly prioritized requirements
that can be combined into a requirements package (based on that they
fit well together, etc.). The size of such a requirements package is
limited by the project length – it should be possible to implement the
requirements from the package within the project boundaries, i.e., in
less than 3 months.

When developing according to SD, there will always be one (and only
one) version of the product at any point of time. When a development
project is completed, its outcome is integrated with the current baseline,
i.e., the current system version (see Figure 2). Such integration creates
a new baseline that the next project will be integrated with. After
integration it should be possible to release the system to the customers.
Customer adaptation projects are handled in the same as any other
projects, i.e., they are integrated into the main product (see Project B in
Figure 2). This means that only one latest system version needs to be
maintained. However, even though each project produces a new system
version that potentially can be released, it does not have to be released

From Traditional to Streamline Development – Opportunities and Challenges

 269

to the market. Therefore, in Figure 2, some of the system versions are
marked as “potential releases”, which means that they can be released
but do not have to be. Such a separation between development and
release is a clear difference from the traditional development, where the
aim of the project was to release a new version of the system to the
market.

Figure 2. Streamline Development process

SD is supposed to address a number of shortcomings of the traditional
development described in Section 2.1. Since SD-projects are much
shorter than traditional projects, they are less exposed to the risk of
changing market demands. Hence, the system developed in such
projects is likely to be delivered to the customers before the market
demands change. This should reduce the risk of waste due to re-
implementation or throw-away. If market demands change, a new
project will be started to adapt the current system to the new needs. SD
also deals with the problem of the high cost connected with maintaining
customer adaptations. In SD, customer adaptations will be integrated
into the main product, which should reduce the cost connected with
maintaining separate product branches.

Paper IX

 270

3. Related work

Streamline Development aligns well with other modern development
practices (e.g., incremental development, evolutionary development,
extreme programming). There are a lot of studies [3-5, 11, 13, 17] that
discuss advantages and disadvantages of such modern development
practices in relation to more traditional software development
processes. However, no such studies have reported about SD, for the
simple reason that SD is an internally developed process at Ericsson.
Nevertheless, several studies reported describe processes that are
similar to SD (e.g., processes that focus on customer responsiveness,
elimination of rework). Therefore, findings and conclusions from such
studies are interesting to investigate and compare with the findings
from the study presented in this paper.

One characteristic of SD is the ability to release more often than in
traditional processes. The advantages of early and frequent releases are
often discussed in the context of incremental software development. An
interesting overview of the findings concerning advantages of using
incremental approaches is presented by Benediktsson and Dalcher [1].
They argue that incremental software development provides early
return on investment to the customers, assures closer fit to the real
customer needs, decreases the risk of rework by involving customers
early in the development process, decreases the reliance on specialist
personnel, lowers the dependency on external deliverables, allows
better informed decision making and better understanding of trade-offs,
reduces maintenance cost, and enables better resource management.

Another list of advantages of using incremental approach is presented
by Graham [4]. The advantages are divided into two groups;
advantages for developers and for customers. Among the benefits for
developers Graham presents improved team morale, reduced
maintenance, reduced risk, easier control of over-engineering,
facilitated measurement of productivity, rapid feedback on the
correctness of estimations, and a reduced cost of change requests
handling. As advantages for customers Graham [4] presents early
availability of products, increased confidence in developer, better
software quality, longer software lifetime, more flexible options,
increased user acceptance, increased system assimilation, increased
understanding of requirements and ability of software to meet real, not
frozen needs. Apart from advantages, Graham [4] also presents a list of
problems connected with incremental development. The list is largely
based on [13]. The problems are divided into hardware related
problems, life cycle problems, management problems, and

From Traditional to Streamline Development – Opportunities and Challenges

 271

financial/contractual problems. In this paper, the life cycle and
management problems are of primary interest, and hence focus is put
on these. Problems related to the life cycle concern problems with the
requirements specification of increments, design integrity, a need for
additional testing, and high cost of configuration management.
Management problems, on the other hand, regard problems with: co-
ordination of teams, controlling releases of increments, and
prioritization and scheduling of increments as well as problems with
introducing certain “cultural changes” in the organization.

In [9], Middleton discusses the advantages of lean software
development. Lean software development is somewhat similar to SD,
as it focuses on short cycles between specifying requirements and
producing software. By using lean software development, Middleton
[9] showed that it has a positive impact on quality of software.
However, he also observed that introducing practices like lean software
development into organizations that have traditional processes often
requires changes in the organization. Such changes are required since
traditional “vertical” hierarchy may not apply to the new way of
working where closer and more “horizontal” collaboration between
roles may be required. Such change may require further changes, e.g.,
changes in role responsibilities, promotional patterns, etc.

There are also empirical studies that attempt to quantify the gains from
using modern development approaches rather than traditional ones. In
[3], Dalcher at al. present an experiment in which a number of teams
developed similar systems using different processes. In this study, the
teams used a traditional approach, incremental development,
evolutionary development, and extreme programming. The results
showed that the use of modern approaches (i.e., incremental
development, evolutionary development, and extreme programming)
lowered lead-time and improved productivity. Further, there are several
“success stories” [5, 11, 17] reported in relation to implementation of
modern development practices, similar to SD. These claim that such
practices increased customer satisfaction from the product [5, 17],
improved product quality [5, 11], and decreased cost [5].

There are also studies reporting about situations where an organization
has a working traditional process and considers moving towards a
modern process. For example, Boehm and Turner[2] identified barriers,
both perceived and actual, that must be considered when introducing
agile processes in the place of traditional ones. These barriers are
divided into development process conflicts, business process conflicts
and people conflicts. When discussing development process conflicts
the authors mention that applying agile processes to legacy systems

Paper IX

 272

might not always be easy. For example, refactoring, which is a key
practice in agile development, is usually very difficult in legacy
systems [2]. Among business process issues the authors mention issues
connected with human resources (e.g., different positions and different
competence may be needed), project progress measurement (e.g.,
traditional milestones may not always be applicable for agile
development), and process standard ratings (e.g., introducing agile
processes may affect the rating of a company with respect to certain
standards, like ISO or CMMI) [2]. Finally, when investigating people
conflicts, the authors [2] mention issues connected with change
management (e.g., usually there is some resistance to change among the
staff) as well as some logistical issues (e.g., many agile practices
require teams to be collocated).[2]

4. Method

This goal of study was an early evaluation of SD applicability for
replacing the traditional development process currently used at Ericsson
(see Section 2.1 for information concerning the current development
practices at Ericsson and Section 2.2 for the description of SD). The
main analysis method used in this study was Force Field Analysis
(FFA), which is an analysis method used in early evaluations of change
suggestions [6]. The FFA method is described in more detail in Section
4.1. The information regarding the impact of SD introduction was
collected by performing a number of interviews with persons that
represent those roles in the company that will be affected by
introducing SD. The findings from the interviews were later post-
processed and structured using FFA by the researchers performing this
study. More detailed information regarding the data collection and
analysis can be found in Section 4.2.

4.1 Force Field Analysis

Force Field Analysis (FFA) is a method for identifying issues that
should be taken into account when deciding if to implement a strategic
change [6]. FFA is performed by identifying and categorizing data
about a change according to the following key factors [6]:

- Pushing factors: aspects of the current situation that would aid
implementation of the change (e.g., enthusiastic staff)

- Resisting factors: aspects of the current situation that would resist
the implementation of the change (e.g., lack of management support)

- New Additions: additions that must be in place to make the change
possible (e.g., new tools must be acquired)

From Traditional to Streamline Development – Opportunities and Challenges

 273

By balancing the Pushing factors and the New Additions with the
Resisting factors (as presented in Figure 3), FFA makes it possible to
evaluate how successful the implementation of the change is likely to
be.

Figure 3. Force Field Analysis

In the study presented in this paper, FFA had to be modified slightly
since the aim with the study was not to evaluate the probability of
success of the change implementation but rather the change (i.e., the
SD introduction) itself. Therefore, the definitions of the three factors
taken into account in FFA were slightly modified:

- Pushing factors: the advantages of SD. Things that would improve
after introducing SD (e.g., customer responsiveness would improve).

- Resisting factors: threats connected with introducing SD, i.e., things
that would worsen if introducing SD (e.g., the quality of the
architecture would deteriorate).

- Required changes: Issues that must be resolved and problems that
must be overcome before the SD can be implemented (e.g., new
competence must be acquired).

By balancing Pushing and Resisting factors it is possible to make an
informed decision if the change is worth introducing or not. The
information about the Required changes makes it possible to assess the
cost of introducing the new processes and to identify issues that must
be resolved before the new process can be introduced.

4.2 Data collection and analysis

Before the study, a meeting with two department managers from two
Product Development Units (PDUs) at Ericsson was arranged. One of
these managers was responsible for the evaluation and potential

Paper IX

 274

implementation of SD at his PDU, while the other manager was a
representative from the management team at the other PDU. During this
meeting it was decided that the opinions regarding benefits and
drawbacks of SD as well as opinions about changes that are required
for successful implementation of SD (i.e., data necessary for FFA)
should be collected by performing interviews. Further, the following
questions were addressed during the meeting to clarify the scope of the
evaluation:

- From which perspectives should the evaluation be done? – a number
of different evaluation perspectives can potentially be identified,
e.g., product perspective, organization perspective but also some
role-related perspective like development or marketing perspective.
The reason for discussing this issue was to find out which
perspectives are of interest for people making decisions about
introducing SD.

- Who should be involved in the evaluation? – it was important to
identify roles that should be interviewed at each PDU in order to
capture the aspects of interest. Persons representing these roles were
the main source of information in this study.

During the meeting the following perspectives were found important by
the managers:

- Organizational perspective – when introducing a new development
process (such as SD), it is common that the organization must
change. This means that it is not only the size of the project, the
order of things done, etc. that must change but also work
responsibilities, resource utilization, and so forth. Further, it might
be so that SD is more applicable for some PDUs and less for other.
To capture these issues the interviews were performed at two
different PDUs and questions regarding applicability of SD for each
of them were asked.

- Product perspective - products may have to change due to the
different way of developing the software. Since Ericsson has a
product portfolio with products with different characteristics,
potentially some of these products are more suited than others for
development with SD. To capture such issues, questions concerning
the applicability of SD for different products were included.

The managers suggested interviewing all roles that will be affected by
introducing SD since this was the only way to provide the holistic
picture of the change. This means that a sample representing the major
roles in the two PDUs was needed. The following roles were
recommended to be included in the interviews:

From Traditional to Streamline Development – Opportunities and Challenges

 275

- Operative Product Managers – persons that can be considered as
customers' spokespersons in a project. Their major role is to decide
what should be done to meet customer needs.

- System Managers – persons responsible for refining requirements
and deciding how the requirements can be implemented in the
system.

- Designers – persons responsible for the designing and implementing
the system.

- Testers – persons responsible for verifying that the product works
properly and according to its specification [12].

- Project Managers – persons holding the overall responsibility for a
project. Project Managers plan, direct, and integrate the work efforts
in order to achieve the project's goals [10].

- Configuration Managers – persons responsible for build
environments, product and document storage systems, creation of
deliverable products from developed code and documents, and for
managing changes.

In total, 12 interviews were performed (six roles from each of the two
PDUs) during which 27 persons were interviewed. Each interview was
scheduled for two hours. At each of these interviews, the following
persons participated:

- persons representing one role at one of the PDUs (usually two to
three persons)

- two researchers, one led the interview and one acted as a secretary

By using this setting, it was possible to get role and PDU specific
discussions at the same time. Further, by having more than one person
from each role, it was possible to get discussions between the
interviewees. The discussions were facilitated by the fact that the
interviewees were familiar with each other. By having two researchers
present, (one interview leader and one secretary responsible for taking
notes), it was possible to keep a good flow of the conversations at the
same time as the necessary information was collected.

As the study was meant as exploratory, a certain degree of freedom was
given to the interviewers to enable them to ask follow-up questions
when some new issues popped-up, to reformulate some of the
questions, or to change the order in which questions were asked.
Hence, the interviews can be classified as semi-structured [14]. Another
option was to use unstructured interviews, which are very common in
exploratory studies [14]. However, at the time of the study the topic
was largely discussed in the company and some people were very
opinionated. By using purely unstructured interviews, there could be a

Paper IX

 276

risk that the conversations would focus only on positive or negative
aspects of the case. This could have led to collecting only partial
information about the studied situation. By adding some structure to the
interviews and asking questions that forced the interviewees to focus on
different aspects, this risk was reduced.

After each interview, the secretary post-processed the information
collected and prepared the final result of the interview. During this
process, the information was validated and potential repetitions and
ambiguities were removed. As a final validation, the person leading the
interview went trough the result and discussed potential discrepancies
in views with the secretary. If any discrepancies were found, the issue
was discussed until consensus was reached. To facilitate the analysis,
the statements describing the opinions of the interviewees were
collected in a spreadsheet. This spreadsheet was later used to make the
classification of the data easier in the analysis part explained below.

The final grouping of all the identified factors according to FFA (i.e.,
into Pushing factors, Resisting factors, and Required changes) was
done jointly by the researchers involved in the study during a
consensus meeting. The major purpose of this activity was to present
the data in a usable form so that the findings can be useful for the
decision makers at Ericsson. However, some problems were
experienced when doing this. First of all, it was problematic to get a
good picture of the factors due to the size of the data set (about 300
statements representing opinions of the interviewees regarding the
introduction of SD were collected). Another problem was that the
opinions were stated at different levels of abstraction, which made them
hard to compare. To address these problems the similar statements were
grouped and presented on the comparable abstraction level during a
consensus meeting.

5. Results

This section presents the most important results of the study. It must be
clear that the statements presented in this section are based on the
opinions of the interviewees about the potential introduction and usage
of SD, i.e., they are not any actual experiences with SD as SD has not
yet been implemented. The results presented in this section represent
the main findings and are presented according to the classification
presented in Section 4.1, i.e., as Pushing factors (Section 5.1), Resisting
factors (Section 5.2), and Required changes (Section 5.3).

From Traditional to Streamline Development – Opportunities and Challenges

 277

5.1 Pushing factors

The Pushing factors are the positive effects of introducing SD. They are
summarized in Table 1.

Table 1. Summary of Pushing factors of SD. See Section 5.1 for details regarding
each of the factors.

Factor Description
Increased
motivation of
the staff

Shorter projects and immediate feedback will let
everyone involved in the development process
see the results of their work faster.

Improved
productivity

Shorter projects tend to have more stable scope
because they are less exposed to the risk of
changing market demands. Stable scope
minimizes the waste since not that much rework
must be done to adapt the system to new
requirements.

Increased
customer
responsiveness

SD makes it possible to release new versions of
the system more frequently and hence respond to
new customer demands quickly.

Simplified
maintenance

In SD there will be only one version of the
system produced with no branching for customer
adaptations. That will minimize the number of
maintained system versions and, therefore,
minimize the cost of maintenance.

Improved
communication

Projects will be performed by smaller teams.
Small team size makes it possible to have more
frequent and efficient communication between
all team members.

Increased
competence
level

Fast feedback will facilitate personal
development. Project-related competence will
improve due to frequent projects.

Improved
controllability
of the project

Due to smaller project size and scope it will be
easier to control the project but also to perform
estimations and predictions concerning the
project.

A common view among the interviewees was that introducing SD
would result in increased motivation of the staff involved in the
software development. As major reason for that, the interviewees
mentioned the positive impact of short projects. In short projects, the
end of a project is more “tangible” and thereby people will be more
motivated. Another motivating aspect of short projects, according to the

Paper IX

 278

interviewees, is that short projects provide almost immediate feedback
and make it possible to quickly see the results of their own work.

The interviewees shared an opinion that smaller projects will lead to
higher productivity. The reason for increased productivity was the fact
that short projects are less exposed to the risk of changing
requirements. The change of requirements commonly involves waste
because already performed work has to be re-made (or removed) to
meet changed requirements. According to the interviewees, the more
stable scope in small projects minimizes the risk of waste (and hence
unnecessary work) and therefore, leads to higher productivity.

Interviewees also mentioned that SD can give a competitive advantage,
because it will increase the customer responsiveness by delivering the
products to the customers fast. The short time between “ordering”
functionality and getting it should be very attractive from Ericsson’s
customers’ perspective. The customers are interested in getting new
systems with new features fast because these systems often give them
an advantage over their competitors.

Another positive aspect of introducing SD is connected with the idea of
producing only one version of the system and incorporating customer
adaptations into the main product. The interviewees shared the opinion
that this should simplify the maintenance and reduce its cost. Currently,
many product branches have to be maintained (e.g., for each customer
adaptation), which is very expensive.

Further, SD should also improve the communication within the
projects. The development teams will be smaller and the
communication within the teams will be easier and more frequent.
Therefore, relatively more time can be spent on producing the system
than on control and synchronization between development team
members. According to the interviewees, the risk of costly
misunderstandings (e.g., misunderstandings concerning requirements)
will also decrease since the collaboration between different roles will
be closer as a result of improved communication.

Due to the improved communication within projects and closer co-
operation between different roles, the overall competence level should
increase since team members will have more chances to learn from
each other. The learning process will be further facilitated by small
projects. In small projects the time between requirement specification,
implementation and testing will be short, which will provide instant
feedback to all roles. This will promote and facilitate personal
improvement; the competence of individuals should increase because of

From Traditional to Streamline Development – Opportunities and Challenges

 279

quick feedback on the quality of their work. Additionally, the projects
will be more frequent and the personnel will do their tasks more often.
Thus the overall competence related to performing a project should also
increase.

The respondents also believed that SD should improve the
controllability of the projects, mainly because of the reduced size of the
projects and better communication within them. Small projects make it
possible to make more correct predictions and estimations regarding
their lead-time and cost. It is also easier to obtain and maintain an
overall picture of what is happening in the project and, therefore, it is
also easier to monitor progress.

5.2 Resisting factors

The Resisting factors are the effects of introducing SD that, according
to the interviewees, will have a negative impact on software
development at Ericsson. They are summarized in Table 2.

The interviewees often mentioned problems with assuring the quality
of the systems as possible drawbacks if introducing SD. Since SD puts
a lot of pressure on keeping the projects short, the interviewees saw a
risk that quality assurance may suffer. The interviewees also perceived
SD as a very “feature oriented” process – the small projects’ primary
goal will be to deliver the functionality as quickly as possible. This
attitude may promote short term thinking because of which long term
goals, like maintaining the quality of the systems, may suffer.

According to the interviewees, one of the major undesired
consequences of the “feature orientation” of SD may be architecture
deterioration. Since SD is feature oriented, architectural improvements
may be neglected when planning which requirements to implement thus
causing architecture deterioration. Another problem related to
architecture deterioration is that small projects are not appropriate for
implementing large architectural improvements. This may make it hard
to address architectural deterioration problem after introducing SD.

Some interviewees mentioned high maintenance cost as one of the
problems. This may sound as a paradox, because maintenance cost
decrease was mentioned as one of the positive aspects of introducing
SD (see Section 5.1 for details). However, some interviewees noticed
that another feature of SD, the ability to release very often, may lead to
a situation that there will be a large number of system releases present
in the market. Today a new version of the system is available, on
average, every year and a half. With 3 months projects, that

Paper IX

 280

additionally can be overlapping, a new version of a system can appear
much more often. Since customers are not always willing to update
their systems so frequently, there is a clear risk of having a large
number of releases out in the market that have to be maintained and
supported.

Table 2. The summary of Resisting factors of SD. See Section 5.2 for details
regarding each of the factors

Factor Description
Difficulty in
assuring
quality

SD suggests keeping projects short. Quality
assurance activities often tend to suffer when cutting
costs in the project.

Long-term
architecture
deterioration

The main focus of short projects is on adding
functionality in an efficient manner. That causes a
risk of taking short-cuts and forgetting about issues
like system architecture. Furthermore, such
architecture deterioration may be hard to address in
SD as large architectural changes will be hard to
introduce in small projects.

Increased
maintenance
cost

Frequent releases and lack of possibility to enforce
their installation on customers causes the risk of
having a number of releases in the market that must
be maintained.

Increased
backward
compatibility
cost

Doing frequent releases means that each new release
must support data migration from a large number of
previously released systems

Dependence
on
individuals

In small projects the dependence on the skills and
knowledge of individuals is large – there is a high
risk of loosing competence when loosing a team
member.

Applicability
to legacy
systems

SD must be supported by the architecture of a
system. Legacy systems were not architected with
SD in mind.

Old (legacy)
processes are
still used

Even though SD requires rather dramatic changes of
current processes, there might be a risk that
personnel is used to old ways of working, and
continues working in the old way with only slight
modifications.

Another problem with having many releases of systems present in the
market is the need of keeping backward compatibility when releasing a
new system version. For example, it happens that the database format
changes between different releases. In such a case, an installation

From Traditional to Streamline Development – Opportunities and Challenges

 281

program of the new release of the system has to perform data migration
to the new data format. Having many releases on the market would
mean that an installation program would need to support data migration
from a large number of database formats.

The interviewees shared an opinion that the dependence on individual
persons is a much larger problem in small projects compared to the
current large ones. The reason for that is that developer teams will be
smaller in SD and therefore, the consequences of someone dropping out
from a project are likely to be more severe. Such a loss would be very
difficult to compensate in a time of a short project.

Some of the interviewees were concerned about the applicability of SD
to already existing, large software systems. They argue that the system
architecture must support software development in a number of small
concurrent projects. Also the dependencies within the system must be
well understood to enable efficient project planning (projects should
not collide with each other). Such good knowledge of system structure
is often a problem in the case of legacy systems. Additionally, some SD
concepts also require certain support from the architecture. One
example can be the idea of integrating customer adaptations with the
main product. Such adaptations are usually made for one particular
customer and should not be accessible for other customers. This implies
that the architecture should provide means of switching on/off certain
functionalities. Since legacy systems were not architected with this SD
specific requirements in mind, there is a risk that their architecture is
not suitable for SD.

Apart from legacy systems the respondents also discussed legacy
processes. When changing to a new way of working, new processes
that will fit this new way of working must be developed as a
replacement for the old processes. Even though everyone agreed that
this is the way to introduce the change, several interviewees saw a clear
risk that it will be tempting to try to use currently existing processes in
SD. The old processes are not meant to be used in an environment like
with SD, which means that the usage of old processes may affect SD
negatively.

5.3 Required changes

Required changes are issues that, according to our interviewees, must
be tackled before introducing SD in order to make the introduction of
SD successful. The Required changes are summarized in Table 3.

Paper IX

 282

Table 3. The summary of Required changes connected with introducing SD. See
Section 5.3 for details regarding each of the factors.

Suggestion Description

Introduce
continuous
requirements
management

The inflow of new requirements is constant.
The requirements must be continuously
prioritized because project planning depends
on that. Also the requirements prioritization
depends on the current baseline (system
version). Therefore it must be updated every
time the baseline changes, i.e., every time a
new system version is released

Assure effective
pre-project
planning

A number of concurrent projects must be
coordinated so that there will be no collisions
between them. Also many things (e.g.,
allocation of some resources) that can now be
planned in the project will have to be planned
before project starts.

Increase the
efficiency of the
installation
procedure

Efficient installation procedure will make
testing more efficient. Also frequent releasing
and deployment will make the efficiency of the
installation process more important.

Increase testing
efficiency

Testing is likely to be one of the productivity
bottlenecks in SD. Therefore new methods for
improving the efficiency of testing will be
necessary.

Keep people in the
same product line

It will be important not to move people
between different products as in short projects
the learning effect will have large impact on
productivity.

Assure
understanding of
dependencies
within the systems

To enable coordination of small projects it is
important to fully understand the dependencies
between all components of the system. That
will make it possible to avoid collisions
between projects.

Improve
architecture

Some required architecture improvement work
needs to be performed before SD is introduced
to make the system architecture fit SD. It also
seems that it will be harder to address large
issues like architecture changes within SD.

When discussing the required changes connected with introducing SD,
most of the interviewees stressed the need of introducing continuous
requirements management. This means that requirements must be
packaged and prioritized so that it is always clear what a new small

From Traditional to Streamline Development – Opportunities and Challenges

 283

project should do. Packaging requirements means that it is necessary to
find chunks of requirements that fit well together and, at the same time,
are of suitable size to implement in the small projects. When having
such packages, it is important to continuously prioritize these in order
to always choose the requirements packages most suitable for
implementation (considering e.g. dependencies, cost, and market
window). This activity must be continuous as new requirements are
continuously incoming. Additionally, since requirements are usually
prioritized towards the current baseline (the characteristics of the
current system version) their prioritization should be updated every
time the baseline changes (i.e., when some new project is integrated). It
is important to do so because changing the baseline may actually
change the importance of a requirement.

The interviewees also pointed out that the effectiveness of pre-project
planning must be assured. When planning a new project it is necessary
to assure that there will be no clashes with other ongoing projects. This
planning must also take into account that some decisions must also be
made upfront, before the project starts. For example, if the project
requires an access to a customer site (e.g., for testing purposes) then
appropriate arrangements usually must be made well before starting the
project.

SD enables frequent releases of the new system versions. According to
the interviewees in their large telecommunication systems it will be
very important to assure an efficient installation procedure. If the
deployment on customer site is to be done more often, an inefficient
installation procedure may become a major cost. SD will also require
frequent installations in the test plant. Therefore, an efficient
installation will facilitate and decrease the cost connected with testing
of the systems.

In general, the respondents found it very important to increase testing
efficiency. They considered testing efficiency as one of the possible
productivity bottlenecks in SD. One major reason for that is that small
and frequent projects will mean that testing will be done more often but
there will be shorter time to do it. Since there is some overhead
connected with testing (e.g., regression testing must be repeated for
each system increment) the impact of testing on project cost is likely to
increase. Therefore, the requirements for testing efficiency will be
much higher in SD.

Since individual capabilities are likely to play larger role in small
projects (see Section 5.2), the interviewees found it very important to
keep people in the same product line. Moving people continuously

Paper IX

 284

between different products may result in that their learning process will
affect the overall project productivity negatively. One of the goals with
SD is to increase the overall productivity of software development by
having it done in small, efficient, and specialized teams of developers.
This advantage may be lost if people will be continuously moved from
one team to another, as it is done at the moment.

The interviewees also found it important to fully understand the
dependencies between system components. They suggested creating an
anatomy plan [16] in which the interdependencies between different
system components would be described. Without the knowledge about
these interdependencies it is impossible to coordinate a number of
concurrent projects and ensure that they will not collide with each
other. The knowledge about interdependencies in the system is also
necessary for requirements prioritization and packaging, i.e.,
requirements affecting the same parts of the system should in most
cases be implemented together.

It is also very important to focus on architecture improvements before
implementing SD. Two reasons why this issue is important were
identified. First, one of the common opinions of our interviewees was
that SD requires support from the system architecture. The architecture
of the system must make it possible to perform concurrent development
projects and maintain a single system version. A second reason why
architectural issues are important to address before implementing SD is
that it apparently will be very hard to address these issues after SD is
introduced. “Feature orientation” and limited scope of short projects,
together with the necessity of maintaining one product version only,
will make it very difficult to address some large and fundamental
issues, like for example architecture change or improvement.

6. Discussion

In this section, a discussion concerning the study is presented. Section
6.1 focuses on the discussion of the major findings from this study. In
Section 6.2 the findings from this study are compared with the findings
of other researchers. Section 6.3 discusses different validity issues
connected with the study.

6.1 Discussion regarding the results

The goal of the study was to evaluate the applicability of SD at
Ericsson. Unfortunately, all details of this evaluation cannot be
revealed due to confidentiality reasons. However, as can be noticed in

From Traditional to Streamline Development – Opportunities and Challenges

 285

the discussions in previous sections, the overall attitude towards SD
was positive as there was a rather large agreement between the
interviewees when it comes to the positive effects of introducing SD.
These positive effects were very similar to the intentions of SD (see
Section 2.2), which indicates that SD is likely to achieve the goals it
was designed to achieve (e.g. improved customer responsiveness and
productivity). The fact that the interviewees were positive about the
new process is a good forecast for the success of the SD
implementation as staff’s resistance to change is often considered a
problem when new processes are introduced [2]. Additionally, by
looking at Resisting factors and Required changes, it can be seen that
many of the Required changes actually either address or at least reduce
the importance of some of the problems classified as Resisting factors.
For example, insufficient knowledge about legacy systems and their
architecture deficiencies were considered as one problem with applying
SD to legacy systems (see Section 5.2 for details). By suggesting an
anatomy plan and architecture improvement work before introducing
SD, the interviewees addressed this problem and minimized its impact.
Therefore, it seems that by taking some preventive actions the risks
described as Resisting factors can be reduced.

The analysis presented in this paper can be considered an early
evaluation or the first step in the evaluation of SD. The main focus was
to identify and classify factors that should be taken into account when
making the final decision regarding the introduction of SD. Some
general conclusions regarding the usefulness of SD can be drawn from
this study. They are, however, by no means sufficient for making the
final decision. Nevertheless, the study was considered useful from an
SD evaluation perspective by decision makers at Ericsson. It made it
possible to check if, in general terms, SD seems promising and if there
are no obvious obstacles for introducing it at Ericsson. Based on this
information, it was possible to decide if it makes sense to put more time
and effort into further development and evaluation of the SD idea. One
of the good things about performing evaluations in the way presented in
this study (see Section 4 for details regarding the method) is the limited
amount of time necessary to perform it. For the case study presented in
this paper, it took about 2 working weeks for 3 persons to perform
interviews, collect and analyze the data, and present the findings in a
usable form to the decision makers. Therefore, the low cost combined
with the effectiveness makes this evaluation method a useful tool in
early evaluations of new development processes.

As a natural next step in the evaluation of SD we suggest performing a
detailed cost-benefit analysis of introducing SD, in which the impact of
each of the Pushing factors, Resisting factors, and Required changes

Paper IX

 286

should be quantified. By balancing the benefits from introducing
Streamline Development (i.e., Pushing factors) with the costs
associated with risks (i.e., Resisting factors) and changes (i.e., Required
changes) it will be possible to make the final decision regarding the
introduction of SD. As it can be noticed, further analysis can be still
performed in the frame of Force Field Analysis. This indicates that
Force Field Analysis can be a very helpful analysis method in
evaluations of different change suggestions. In this study we
successfully used it in a process change evaluation but it seems to be
also applicable for an evaluation of any other changes e.g., technology
change.

6.2 Comparison with other studies

As indicated in Section 3, SD has many similarities with many other
modern software development practices. Therefore, it is interesting to
compare the results obtained in this study with the findings of other
researchers that evaluated such modern development processes and
compared them with more traditional ones. Not surprisingly, like many
others (e.g., [1, 5, 17]) the interviewees in this study also observed the
positive impact of increased customer responsiveness obtained by
introducing practices like SD. Similarly to Graham [4] the interviewees
also noticed that the cost connected with change request handling
should be reduced, mainly because the number of change requests
should decrease due to shorter projects. Another observation from
Graham [4] that was confirmed is the positive impact of shorter
projects on the motivation of the staff. A common conclusion in many
studies is that all these positive effects lead to higher productivity and
shorter lead time [3, 5]. The majority of our interviewees expressed that
they expect this also from SD. Also the negative effects of introducing
SD described in this study have been recognized in other studies. For
example, coordination problems and requirements prioritization
challenges are mentioned in [4]. Another problem recognized by other
researchers is the problem with applying new processes to legacy
systems [2], which was also identified in this study. The difficulty to
implement large and complex features in small projects, mentioned by
the interviewees, was also recognized in [11].

There are also findings reported by other researchers that were not fully
confirmed in this study. For example, many studies [5, 9, 11] discuss
the positive impact of modern practices on system’s quality. In this
study, on the other hand, the interviewees at Ericsson were concerned
about some quality issues, e.g., they stressed that the “feature
orientation” of SD may lead to the degradation of the architecture.
However, the differences may be explained by the fact that quality can

From Traditional to Streamline Development – Opportunities and Challenges

 287

be understood in different ways. In [5] the quality is defined in terms of
cost and customer satisfaction. Our interviewees actually also expected
this to improve. In [9, 11] the authors define quality in terms of defects.
This quality view, i.e., the impact of SD on the number of defects in
systems, was not mentioned by the interviewees and it is hence
impossible to say if this finding was verified or not.

Another issue reported by other researchers [1, 4] that is not fully
supported by our findings, is the reduction of maintenance cost. The
interviewees of this study argued that releasing the software frequently,
which is necessary to achieve customer responsiveness, can have
negative impact on the maintenance cost. This is because frequent
releases may result in many different system versions on the market
that have to be maintained (see Section 5.2 for details). On the other
hand, some interviewees actually agreed that maintenance costs would
decrease because only one branch of the product will exist. Therefore,
since it is hard to say which of these two issues will have a predominant
impact on the cost of maintenance, it is not possible to determine if the
maintenance cost will increase or decrease as a result of introducing
SD.
It can be observed that most studies in the area (see Section 3 for
examples) focus on a situation, in which a company can simply choose
between traditional and some new development method. In practice,
however, organizations most often have a traditional process already in
place. Such perspective may change the importance of different factors.
It also adds a new angle, the change implementation process, which
normally is not accounted for when simply comparing two different
development processes. At the same time, it is an important factor in
making an informed decision regarding a process change. In this study,
this factor was taken into account (in FFA this factor is represented by
Required changes). This is one of the strengths of the presented study.

6.3 Validity

This case study was performed in a concrete industrial setting.
Therefore, it may seem hard to generalize the findings to other
contexts. However, the actual findings from this study, i.e., Pushing
factors, Resisting factors, and Required changes, may be of interest for
other companies that consider moving from a traditional to a modern
approach where projects are shorter and releases are more frequent. For
example, it is highly likely that large fundamental changes, like
architectural changes, will be hard to address in small projects. Also
things like continuous management of requirements must always be in
place in order to make the best use of short projects and to reach a high
level of customer responsiveness. Even though the individual issues are

Paper IX

 288

likely to be of different importance for different companies, they can
still help them when identifying threats, opportunities and costs of
changing the development process. Also, it seems that the method used
for evaluation (see Section 4) seems to be useful in evaluations of new
development processes. Therefore, it can be seen as one of the
contributions of this paper that can be interesting for broader audience.
Another problem with this kind of studies is that statements, opinions,
judgments, etc. may be misinterpreted. However, all three researchers
have a long history of collaboration with Ericsson which means that all
three are knowledgeable in processes, company culture, etc. This fact
reduces the threat that things have been misinterpreted and hence
increases the likelihood that the correct issues actually are reported.
This experience from Ericsson was also very helpful when performing
interviews since the previous knowledge and experiences made
conversations easier and more effective.

7. Conclusions

The goal of this study was to perform an early evaluation of Streamline
Development’s applicability as a replacement of the current
development practices at Ericsson. Streamline Development is a new
process created at Ericsson AB with the main purpose of improving
customer responsiveness. The evaluation was conducted by
interviewing 27 persons from two Product Development Units at
Ericsson. The interviewees represented roles in the company that will
be affected by changing the development process. To analyze the
findings from these interviews, an adaptation of the Force Field
Analysis [6] method was suggested. In this method all the opinions
were classified as Pushing factors (issues that would improve if a new
process was introduced), Resisting factors (issues that would worsen if
a new process was introduced), or Required changes (changes that must
be made to prepare organization and products for a new development
process).

The overall conclusion from the study was that Streamline
Development seems promising. Its main goals (i.e., improvement of
customer responsiveness and productivity) were recognized as Pushing
factors, which indicates that they are likely to be achieved. On the other
hand, some issues were identified and classified as Resisting factors.
However, many of these were addressed by suggestions of Required
changes. This indicates that certain actions can be taken in order to
decrease the negative impact of those Resisting factors.

From Traditional to Streamline Development – Opportunities and Challenges

 289

An additional conclusion from this study concerned the method used to
evaluate Streamline Development (i.e., collect the opinions regarding
the new process by performing interviews and structure them using
Force Field Analysis). This method was found to be a very useful tool
for evaluating the applicability of Streamline Development. It provided
information that was considered valuable by decision makers at
Ericsson. Due to the relatively low cost of performing such evaluation,
it seems to be especially useful as a method for early evaluations of
new process ideas.

8. Acknowledgments

We would like to thank Wayne Strong for guiding us through the world
of strategy evaluations. We would also like to thank the managers and
the interviewees at Ericsson for their active participation in the study.

This work was partly funded by The Knowledge Foundation in Sweden
under a research grant for the project "Blekinge - Engineering Software
Qualities (BESQ)" (http://www.bth.se/besq).

9. References

[1] O. Benediktsson and D. Dalcher, Effort estimation in incremental
software development. Software, IEE Proceedings-, 150 (2003), 351-
358.

[2] B. Boehm and R. Turner, Management challenges to implementing
agile processes in traditional development organizations. IEEE
Software, 22 (2005), 30-40.

[3] D. Dalcher, O. Benediktsson, and H. Thorbergsson, Development life
cycle management: a multiproject experiment. Fibres and Optical
Passive Components, 2005. Proceedings of 2005 IEEE/LEOS
Workshop on, (2005), 289-296.

[4] D.R. Graham, Incremental development and delivery for large software
systems. Software Prototyping and Evolutionary Development, IEE
Colloquium on, (1992), 2/1-2/9.

[5] B.D. Jensen, A software reliability engineering success story. AT&T's
Definity PBX. Software Reliability Engineering, 1995. Proceedings.,
Sixth International Symposium on, (1995), 338-343.

[6] G. Johnson, K. Scholes, and R. Whittington, Exploring corporate
strategy, Financial Times Prentice Hall, Harlow, (2005).

[7] G. Kotonya and I. Sommerville, Requirements engineering: processes
and techniques, John Wiley, Chichester, (1998).

Paper IX

 290

[8] A. MacCormack, C.F. Kemerer, M. Cusumano, and B. Crandall, Trade-
offs between productivity and quality in selecting software
development practices. IEEE Software, 20 (2003), 78-85.

[9] P. Middleton, Lean software development: two case studies. Software
Quality Journal, 9 (2001), 241-252.

[10] J.M. Nicholas and J.M. Nicholas, Project management for business and
technology: principles and practice, Prentice Hall, Upper Saddle River,
N.J.; London, (2001).

[11] J.r. Niels, Putting it all in the trunk: incremental software development
in the FreeBSD open source project. Information Systems Journal, 11
(2001), 321-336.

[12] S.L. Pfleeger, Software engineering: theory and practice, Prentice Hall,
Upper Saddle River, (2001).

[13] F. Redmill, Incremental delivery-not all plain sailing (software
development). Software Prototyping and Evolutionary Development,
IEE Colloquium on, (1992), 6/1-6/6.

[14] C. Robson, Real world research: a resource for social scientists and
practitioner-researchers, Blackwell Publishers, Oxford, UK; Madden,
Mass., (2002).

[15] I. Sommerville, Software engineering, Addison-Wesley, Boston, Mass.,
(2004).

[16] L. Taxén and J. Lilliesköld, Manifesting shared affordances in system
development: The system anatomy, The 3rd International Conference
on Action in Language, Organisations and Information Systems,
Limerick, Ireland, (2005), 28-47.

[17] P. Tran and R. Galka, On incremental delivery with functionality.
Computers and Communications, 1991. Conference Proceedings.,
Tenth Annual International Phoenix Conference on, (1991), 369-375.

From Traditional to Streamline Development – Opportunities and Challenges

 291

ISSN 1653-2090

ISBN 91-7295-090-0

Software development productivity can be impro-
ved by introducing improvements in many areas. In
this thesis we investigate technology and process
driven productivity improvements, i.e., producti-
vity improvements that have sources in changes
of technologies or in changes in development pro-
cesses. The technology driven productivity impro-
vement discussed in this thesis is the change of
server platform from a standard general purpose
platform to a specialized fault-tolerant platform.
We discuss productivity implications of introdu-
cing such a platform as well as suggest ways of
making the platform introduction process cost
effi cient. The process changes, which we discuss
in this thesis, include improvements of fault de-
tection processes as well as changes of the entire
development process.

We analyze the implications of introducing new
technology by performing case studies, in which
we describe, analyse, and quantify the impact of
the new platform on software development pro-
ductivity. We show that there is a signifi cant pro-
ductivity decrease connected with introducing a
new platform. We also show that the initial low
productivity can be overcome by experience and
maturity. We suggest a number of improvements
for both the platform introduction process and
the mature development on the specialized plat-

form. Since some productivity decrease after
introducing new technology is to a large extent
unavoidable, we look for ways of minimizing it. We
show that it is possible to minimize it by introdu-
cing the specialized platform gradually. We present
an example of a hybrid architecture, which com-
bines the specialized and the standard platforms.
We show that such architecture is able to provide
good technical characteristics for a signifi cantly
lower cost as compared to developing the entire
application on the specialized platform.

As a process improvement suggestion we pro-
pose introducing fault prediction models with the
goal of increasing the effi ciency of fault detection.
We suggest and evaluate several such models
that are available at different stages of a software
development process. The models are evaluated
using data from a number of large software sys-
tems. Their predictions are also compared with
the predictions made by human experts. We show
that introducing our fault prediction models is li-
kely to result in an improvement of fault detection
effi ciency. Another process related productivity
improvement suggestion evaluated by us is the
change of the development process. We present
a case study in which we evaluate a new process
concept. One of the goals of that process is to
improve the company’s productivity.

ABSTRACT

2006:05

Blekinge Institute of Technology
Doctoral Dissertation Series No. 2006:05

School of Engineering

SOFTWARE DEVELOPMENT
PRODUCTIVITY
EVALUATION AND IMPROVEMENT FOR LARGE

INDUSTRIAL PROJECTS

Piotr Tomaszewski

S
O

F
T

W
A

R
E

 D
E

V
E

L
O

P
M

E
N

T
 P

R
O

D
U

C
T

IV
IT

Y
Piotr Tom

aszew
ski

2006:05

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

