
363

An Adaptive Update-Based Cache Coherence Protocol
for Reduction of Miss Rate and Traffic

Håkan Nilsson and Per Stenström

Department of Computer Engineering, Lund University
P.O. Box 118, S-221 00 LUND, Sweden

Abstract. Although directory-based write-invalidate cache coherence protocols
have a potential to improve the performance of large-scale multiprocessors,
coherence misses limit the processor utilization. Therefore, so called competi-
tive-update protocols — hybrid protocols between write-invalidate and write-
update — have been considered as a means to reduce the coherence miss rate
and have been shown to be a better coherence policy for a wide range of applica-
tions. Unfortunately such protocols may cause high traffic peeks for applications
with extensive use of migratory objects. These traffic peeks can offset the per-
formance gain of a reduced miss rate if the network bandwidth is not sufficient.

We propose in this study to extend a competitive-update protocol with a pre-
viously published adaptive mechanism that can dynamically detect migratory
objects and reduce the coherence traffic they cause. Detailed architectural simu-
lations based on five scientific and engineering applications show that this adap-
tive protocol can outperform a write-invalidate protocol by reducing the miss
rate and bandwidth need by as much as 71% and 26%, respectively.

1 Introduction

Using private caches in conjunction with a directory-based cache coherence protocol is
a unified approach to reduce memory system latencies in large-scale multiprocessors
[9]. Several cache coherence protocols have been proposed in the literature, both
write-invalidate and write-update protocols.

Pure write-update protocols are not appropriate since they may incur a severe per-
formance degradation as compared to write-invalidate protocols as a result of heavy
network traffic. However, a previous study [6] has shown that acompetitive-update
protocol, a hybrid between write-invalidate and write-update protocols, outperforms
write-invalidate protocols under relaxed memory consistency models [3] for a wide
range of applications because of a lower miss rate. The idea of the competitive-update
protocol is very simple. Instead of invalidating a copy of the block at the first write by
another processor, the copy is updated. However, if the local processor does not access
the copy it is invalidated after a number of global updates determined by acompetitive
threshold. As a result, only those copies regularly accessed are updated.

Although competitive-update protocols have better performance they can be sub-
optimal for coherence maintenance ofmigratory objects [4]. The reason is that migra-
tory objects are often accessed in a read-modify-write manner by each processor in
turn, i.e., a processor first reads the shared block and then updates the other copies of
the block, then another processor reads and updates the block. Thus, the block will

In Parallel Architectures and Languages Europe (PARLE), pages 363-374, July 1994

364

migrate between caches. For a competitive-update protocol, there is a risk that updates
are sent to caches whose processors will not access the block until it has been invali-
dated due to the competitive threshold. This cause unnecessary traffic that may
increase the read penalty, i.e., the time the processors must stall due to cache misses,
for networks with insufficient bandwidths. Therefore, write-invalidate is a better pol-
icy for migratory blocks.

To reduce the traffic of competitive-update protocols, and still maintain a low miss
rate, we propose in this work to extend them with a previously published mechanism
[2, 11] that dynamically detects memory blocks exhibiting migratory sharing. Such
blocks are handled with read-exclusive requests to avoid unnecessary network traffic,
while all other blocks are handled according to the competitive-update policy.

Based on a detailed architectural simulation study using five parallel applications
from the SPLASH benchmark suite [8] we find that competitive-update protocols
extended with a simple migratory detection mechanism can reduce the read miss rate
by as much as 71% as compared to a write-invalidate protocol. Our experimental
results also show that the bandwidth requirements of the applications can be reduced
by 26% as compared to a write-invalidate protocol for applications exhibiting migra-
tory sharing. The read miss rate and traffic reductions can also help reducing the read
penalty by 42% as compared to a write-invalidate protocol.

The rest of the paper is organized as follows. As a background, we begin in the
next section by defining what migratory sharing is and how previously proposed cache
coherence policies act with respect to migratory sharing. This serves as a motivation
for the adaptive protocol we propose in Section 3. We move on to the experimental
evaluation in Sections 4 and 5 starting with the experimental methodology, the detailed
architectural assumptions, and the benchmark programs used in Section 4 and the
experimental results in Section 5. Finally, we conclude the study in Section 6.

2 Cache Coherence Protocols and Migratory Sharing

In this section we first present our architectural framework. Then we discuss migratory
sharing and how a write-invalidate protocol can be optimized for this type of access
pattern. Finally, we briefly describe how the competitive-update protocol works and its
performance limitations with respect to migratory objects.

2.1 The Architectural Framework

Our architectural framework is a cache coherent non-uniform memory access (CC-
NUMA) architecture with a directory-based cache coherence protocol. The architec-
ture consists of a number of processor nodes interconnected by a mesh network.

Each processor node consists of a processor with private caches, a local portion of
the shared memory, and the network interface control, all connected by a local bus.
Global cache coherence is supported by a directory-based full-map protocol [5]; each
memory block associates a presence-flag vector indicating which nodes have a copy of
the block. We refer to the node where the page containing the block is allocated as
home, local as the node from which the request originated, and finallyremote as any
other node involved in a coherence action.

365

In a CC-NUMA multiprocessor the processor stall times due to completion of
memory accesses limit the performance of the whole system and stem mainly from
two reasons; the read stall time arises from cache misses while the write stall time
arises when propagating new values to remote copies upon processor writes. Previous
studies have shown that it is possible to hide all write latency, and thus remove all
write stall time, by using a relaxed memory consistency model, e.g., Release Consis-
tency (RC) [3], and sufficient amount of buffering in the local node. This has been
shown possible both under write-invalidate protocols [3] and under competitive-
update protocols [6]. In order to achieve high performance we assume in this study the
Release Consistency model.

2.2 Migratory Sharing and Write-Invalidate Protocols

Gupta and Weber classify data objects based on the access pattern they exhibit in [4].
Migratory data objects are manipulated by many processors but only a single proces-
sor at any given time. In parallel programs such objects are not unusual, e.g., data
structures that are accessed in critical sections and high-level language statements such
asI:=I+1 exhibit migratory sharing.

A way of formally defining migratory sharing is as a sequence of read-modify-
write actions by alternating processors on a data object [11]. The global reference
stream to a migratory object can then be described by the following regular expres-
sion:

... (Ri) (Ri)* (W i) (Ri | Wi)* (Rj) (Rj)* (W j) (Rj | Wj)*... (1)

where Ri and Wi represent a read access and a write access, respectively, by pro-
cessori, ‘*’ denotes zero or more occurrences of the preceding string, and ‘|’ denotes
the logical OR-operation.

Write-invalidate protocols rely on invalidation of remote copies to maintain
coherence among cached copies of a shared memory block. In a write-invalidate proto-
col, the regular expression (1) results in the following coherence actions: If the block is
not present in cachei, Ri results in a read-miss request and the block is loaded into
cachei in a shared state. Upon the write request Wi to the block, the copy in memory is
invalidated and cachei receives an exclusive (dirty) copy of the block.

When a subsequent processorj reads the block (Rj) a cache miss is encountered
and a read-miss request is forwarded to cachei which has the exclusive copy. Cachei
sends a copy to cachej and the block becomes shared again. Later, when processorj
modifies the block (Wj) the modification results in asingle invalidation message sent
to cachei. An optimization is to merge the read-miss request and invalidation request
into a single read-exclusive request. Two previous papers have studied thismigratory
optimization [2, 11]. In both papers migratory blocks are dynamically detected by the
hardware and are handled by read-exclusive requests instead of separate read-miss and
invalidation requests. This optimization reduces the network traffic because all single
invalidations to migratory blocks are removed. However, the coherence miss rate is
unaffected.

In [11], they found that a write-invalidate protocol extended with the migratory
detection mechanism can reduce the number of global write requests by 96% for appli-

366

cations exhibiting migratory sharing. As a result, the network traffic is reduced by
more than 20% for the studied applications with migratory sharing.

2.3 Competitive-Update Protocols and Migratory Sharing

In competitive-update protocols coherence is maintained by update messages rather
than invalidation messages. Upon a write request, update messages are sent to all
caches sharing the same memory block. In contrast to write-update protocols, acom-
petitive threshold, C, is used to locally invalidate copies that are not accessed by the
local processor between a number of updates, i.e., when a copy has been updatedC
times it is invalidated and the update messages to it ceases. A counter per cache line
indicates the number of external updates since the last local access to the block. The
network traffic is reduced as compared to a write-update protocol since only those cop-
ies regularly accessed are updated. More details on how competitive-update protocols
are implemented and a detailed performance evaluation are found in [6]. However, we
give a brief description of the protocol and some of the main results below.

On a local access to a block that resides in the cache, the counter associated with
the block is preset toC. If a cache miss occurs, the block is fetched from memory,
loaded into the cache, and the counter is preset toC. When the cache receives an
update message from another processor, the cache controller checks the counter asso-
ciated with the block. If the counter is zero the block is invalidated and an acknowl-
edgment is returned to home indicating that the cache does not have a copy anymore,
i.e., the updates to this cache ceases. Otherwise, the counter is decremented, the cache
copy is updated, and an acknowledgment is sent to home indicating that the cache
block is still valid.

The performance evaluation in [6] shows that competitive-update protocols can
reduce the read penalty by 46% as compared to write-invalidate protocols, mainly as a
result of a highly reduced number of coherence misses (up to 76% lower). The higher
number of global writes under competitive-update protocols was shown not to offset
the reduced read penalty under Release Consistency, assuming a mesh network as in
the Stanford DASH multiprocessor [5].

Unfortunately, competitive-update protocols work suboptimally for migratory
blocks since cached copies are often updated without any local access, and thus they
are invalidated. This results in unnecessary network traffic. For networks with insuffi-
cient bandwidth, contention may offset the benefits of the competitive-update protocol.
To address this problem we propose in this study to extend the competitive-update pro-
tocol with a previously published migratory detection mechanism [11]. One would
expect that such an extended protocol would reduce the traffic caused by blocks exhib-
iting migratory sharing, while still maintaining the same low coherence miss rate as in
the competitive-update protocol for blocks that do not exhibit migratory sharing.

3 The Proposed Adaptive Protocol

In this section we identify the hardware mechanisms and the protocol extensions that
incorporate themigratory detection mechanism into the competitive-update protocol,
starting with a high-level view of the previously published detection mechanism [11].

367

3.1 A High-Level View of the Migratory Detection Mechanism

In order to identify migratory blocks, ourmigratory detection mechanism — which is
conceptually the same as in [11] — detects the sequence Wi Rj Wj and classifies a
memory block as migratory when Wj occurs. In [11], Stenströmet al. distinguish
between migratory blocks and ordinary blocks, i.e., those blocks that do not exhibit
migratory sharing. In their study, cache coherence for ordinary blocks is maintained by
a write-invalidate protocol. If all blocks are classified as ordinary by default, home
must detect when a block starts to be migratory. By letting home keep track of the pro-
cessor that most recently modified the block, i.e.,i, the block is classified as migratory
when home receives a global write from processorj given that the following two
requirements are fulfilled:

Condition 1 (Migratory detection for write-invalidate protocols)

1 j ≠ i; the processor that issues the write request is not the same as the
processor that most recently issued a write request to the block.

2 The number of block copies is exactly two.

The hardware requirement is onelast-writer pointer (LW) of size log2 N bits, givenN
caches in the system, associated with each memory block to keep track of the identity
of the processor that last modified the block and a bit denoting whether the memory
block is migratory or not. For full-map protocols the number of copies can be derived
from the content of the presence-flag vector.

The detection mechanism described above is not directly applicable to a competi-
tive-update protocol because in a competitive-update protocol it is not sufficient to
know the number of block copies; a copy of the block may exist in a cache, although
the local processor has not accessed it since the last modification by another processor.
We therefore reformulate Condition 1 in the next section to serve as a basis for how the
detection mechanism is adjusted to fit the competitive-update protocol.

3.2 A Competitive-Update Protocol with the Migratory Detection Mechanism

Given sequence (1) from Section 2.2, the migratory detection mechanism classifies the
sequence as migratory when processorj issues the write request (Wj). At this point,
there may exist an arbitrary number of copies, but at least two. Therefore, as a base for
the detection algorithm, we reformulate requirement 2 in Condition 1:

Condition 2 (Migratory detection for competitive-update protocols)

1 j ≠ i; the processor that issues the write request is not the same as the
processor that most recently issued a write request to the block.

2 Processorsi andj are the only ones that may have read from the
block since the write from processori.

Requirement 1 is the same for competitive-update protocols as for write-invalidate
protocols. Therefore, we associate alast-writer pointer (LW) with each memory block
also in this case. The LW pointer is updated on each global write request. As for
requirement 2, however, the algorithm detects whether processor i and processorj are
the only ones that have read the block since the write from processori by letting home

368

ask all caches with a copy whether their processors have read the block since they
detected the write from processor i. By checking the counter associated with the block,
each cache locally decides whether or not the processor has read the block after the last
write by another processor. However, since the counter is also preset when the local
processor writes to the block, an additional state is needed to determine whether the
last update came from another processor or not. Home keeps track of migratory and
ordinary memory blocks by a new stable state for memory blocks and a new transient
state.

When a processor,i, writes to a block that no other processor has updated since
the last read byi, the block is deemed as a potentially migratory block. As we see to
the left in Fig. 1, a MigrWr message is sent to home instead of an ordinary global
write. Home checks whether (LW =i). If (LW = i) the write is treated as an ordinary
write. Otherwise, the memory block in home agrees that the block is potentially migra-
tory and sends out MigrInv messages to those caches sharing the block. A cachek
responds to MigrInv in two ways; (i)k agrees that the block is migratory (MOk) if pro-
cessork has not read the block since the last update or if the last global update origi-
nated fromk, or (ii) k disagrees (MNotOk) if the processor has read but not written to
the block since the last update by another processor. Home classifies the block as
migratory iff all acknowledgments are MOk. Then, exclusive ownership is given to
local by MWrAck. By contrast, if at least one cache responds with MNotOk, the block
is still classified as ordinary and a WrAck is sent to local.

Read-miss requests to migratory blocks are handled according to the right part of
Fig. 1. Local issues a GRd, as for ordinary blocks. Home knows that the block is
migratory and requests (MRdI) remote to send its exclusive copy back to home and
invalidate its own copy. Remote responds with UMemI to home, which forwards an
exclusive copy to local by the Migratory message.

Like the protocol in [11], a new cache state calledMigrating is needed to detect
when a block discontinues to be migratory. For migratory blocks, home only sees read-
miss requests and no write requests, i.e., home only sees the reference sequence Ri Rj
Rk. As a result, home can not detect whether a processor has modified the block
between two subsequent read-miss requests. To solve this problem, a migratory block
is loaded into the cache in state Migrating upon a read-miss. When the local processor
modifies the block the state changes to Exclusive without any global actions. Later,
when remote receives MRdI from home, it decides whether the block is still migratory
or not. If the block is in state Exclusive, it remains migratory and UMemI is sent to
home. By contrast, if the block is in state Migrating, i.e., the processor has not modi-

H

L

MigrInv

MOk/WrAck/

MigrWr

MWrAck MNotOk

1

4 3

2

Fig. 1. Coherence actions for detection of migratory blocks (left) and
coherence actions for read misses to migratory blocks (right).

H

L

MRdI

NoMig/Data/

GRd

Migratory UMemI

1

4 3

2

R

369

fied it, when MRdI arrives, the block is no longer migratory. Remote sends NoMig to
home and keeps a shared copy of the block. Home reclassifies the block as ordinary
and Data is sent to local. Finally, the block is loaded into the cache as shared.

In summary, the extra hardware needed to detect migratory blocks beyond what is
already there to support the competitive-update protocol is one pointer associated with
each memory block and one extra bit associated with each cache block. The competi-
tive-update protocol is extended with two memory states and one local cache state.

3.3 An Enhanced Adaptive Protocol

In applications with false sharing between two processors, a problem can arise in the
adaptive protocol described in Section 3.2. Consider the following reference sequence
to a block, where a block is alternatively accessed by processori andj:

... (Ri) (Wi) (Rj) (Ri) (Wj) (Ri) (Rj) (Wi)... (2)

The above sequence is detected as migratory at the time processor j issues Wj. How-
ever, the subsequent read access by processori results in a read-exclusive copy of the
block which then leads to a cache miss by processorj (Rj) that would have been
avoided under a write-invalidate protocol. Thus an increased number of misses can
occur. We have observed this anomaly of the migratory detection mechanism for one
of the applications we experimentally study (Ocean).

Our approach to mitigate the problem is to resort to competitive-update mode
when exactly two processors share a block. To do this alast-last-writer pointer,
referred to as LLW, is associated with each memory block in addition to the previous
LW pointer. When the LW pointer is updated with a new value, the old value of LW is
moved to the LLW pointer. In order to classify a block as migratory, the processor that
currently modifies the block, sayi, must not be any of the last two ones that modified
the block, i.e., (i ≠ LW) and (i ≠ LLW).

4 Experimental Methodology

In this section, we present the simulation framework in which we have studied the
effectiveness of the adaptive protocol according to Section 3. The simulation models
are built on top of the CacheMire Test Bench [1]; a program-driven simulator and a
programming environment. The simulator consists of two parts: a functional simulator
of multiple SPARC processors and an architectural simulator. The functional simulator
issues memory references, and the architectural simulator delays the processors
according to its timing model. Thus, the same interleaving of memory references is
obtained as in the target systems we model. We model 16 processing nodes connected
by a mesh network.

The organization of a processor node is shown in Fig. 2. The two-level cache hier-
archy we simulate consists of a first-level cache (FLC) and a second-level cache (SLC)
with associated write-buffers (16 entries each). The FLC is a 2 Kbyte write-through
on-chip cache whereas the SLC is an infinite copy-back cache. Both caches are direct-
mapped with a line size of 16 bytes and full inclusion is supported. The SLC is lockup-
free [10] whereas the FLC is blocking and has an invalidation pin so a block can be

370

invalidated from outside the processor. All coherence actions associated with the sys-
tem-level cache coherence protocol are handled by the SLC and by the memory con-
troller. Acquire and release requests are supported by a queue-based lock mechanism
similar to the one implemented in the DASH multiprocessor [5]. The page size is 4
Kbyte and the pages are allocated to memory modules in a round-robin fashion.

As for the timing model, we consider SPARC processors and their FLCs clocked
at 100 MHz (1 pclock= 10 ns). The SLC is assumed to be implemented by static RAM
with an access time of 30 ns. The SLC and its write buffer are connected to the net-
work interface control and the local memory module by a 128-bit wide split transac-
tion bus clocked at 33 MHz. Thus, it takes 30 ns to arbitrate for the bus and 30 ns to
transfer a request or a block. Furthermore, the memory is assumed to be implemented
by dynamic RAM with an access time of 90 ns including buffering.

We simulate a system containing 16 nodes interconnected by a 4-by-4 wormhole
routed synchronous mesh with a flit size of 64 bits. To especially look at how the adap-
tive protocol manages to reduce network contention, we assume a conservative mesh
implementation that is clocked at 33 MHz. We correctly model contention for all parts
in the system. With these assumptions it takes 1, 4, and 28 pclocks to satisfy a proces-
sor read request from the FLC, the SLC, and from the local memory, respectively. A
read miss serviced in home and remote takes 100 and 196 pclocks, respectively,
assuming a contention-free system. (In our simulations, however, requests normally
take a longer time as a result of contention.)

In order to understand the relative performance of the adaptive protocol, we use
five scientific and engineering applications. Four of them are taken from the SPLASH
suite (MP3D, Water, Cholesky, and PTHOR) [8]. The fifth application (Ocean) has
been provided to us from Steven Woo of Stanford University. All programs are written
in C using the ANL macros to express parallelism and compiled withgcc version 2.1
(optimization level-O2).

MP3D was run with 10 000 particles for 10 time steps. Cholesky used the
bcsstk14 matrix. Water was run with 288 molecules for 4 time steps. PTHOR used
the RISC circuit and was run for 1000 time steps. Finally, Ocean used a 128x128 grid
with the tolerance factor set to 10-7. Previous studies [4, 11] have shown that MP3D,
Cholesky, and Water have a high degree of migratory objects, while PTHOR and
Ocean have many producer-consumer objects.

FLC SLCP

First-level
write buffer

Second-level
write buffer

First-level
cache

Second-level
cache

Local bus

Fig. 2. The organization of a processor node.

FLWB SLWB

Standard

Memory module

Network
interface
control

microprocessor

371

5 Experimental Results

In this section we evaluate performance of the enhanced adaptive protocol described in
Section 3.3, henceforth referred to as AD+. A previous study [6] showed that a com-
petitive-update protocol reduces both the read penalty and the execution time as com-
pared to a write-invalidate protocol for a wide range of applications assuming a 100
MHz mesh. However, for the 33 MHz mesh we use in this study, a competitive-update
protocol may suffer from a higher network traffic.

In Fig. 3 the normalized execution times of the write-invalidate (WI), the compet-
itive-update (CU), and the enhanced adaptive (AD+) protocols are presented for the
five applications under study. Three bars are associated with each application and cor-
respond to WI, CU, and AD+, respectively. Each vertical bar is divided into four sec-
tions that correspond to (from the bottom to the top): the busy time (or processor
utilization), the processor stall time due to read misses, the processor stall time to per-
form acquire requests, and the processor stall time due to a full first-level write buffer.
Note that there is no write stall time since we use Release Consistency. In our measure-
ments, we have assumed a competitive threshold of 4.

Comparing WI and CU, we observe in Fig. 3 that both MP3D and Cholesky have
longer read stall times under CU than under WI, mainly as a result of network conten-
tion. In Table 1, the bandwidth requirements for each application is presented, calcu-
lated as the network traffic divided by the execution time and normalized to the
bandwidth requirement of WI for each application. We observe that WI requires less
bandwidth than CU for all applications. The large number of unnecessary updates to
migratory objects results in a dramatic difference in the bandwidth needed for MP3D
and Cholesky. For MP3D we see that CU requires 51% more bandwidth than WI and
for Cholesky CU requires 86% more bandwidth than WI.

In Fig. 3, we also observe that for PTHOR the acquire stall time is significantly
higher under CU than under WI. This effect arises because PTHOR exhibits conten-
tion for critical sections, i.e., at the time a lock is released there is already another pro-
cessor waiting to get the lock. The higher rate of global write actions under CU delays
the issuance of a release, which as a secondary effect delays the processors waiting for
the lock. The adaptive protocol we propose can reduce both these problems as we will
show next.

||0
|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

|120

|130

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

100

123

90
100

109
99 100

94 99 100
108 105 100

83 80

Buffer Stall

Acquire Stall

Read Stall

Busy Time

MP3D Cholesky Water PTHOR Ocean
WI CU AD+ WI CU AD+ WI CU AD+ WI CU AD+ WI CU AD+

Fig. 3. Normalized execution times for WI, CU, and AD+.

372

We observe by comparing the execution times for AD+ and WI that overall, AD+
manages to outperform WI for all applications but one (PTHOR). The execution times
have decreased under AD+ by between 1% and 20%. For MP3D and Cholesky the
main reason is that the read penalty has been reduced by 11% and 4%, respectively,
thanks to lower contention in the network. Furthermore, the read penalty is reduced by
22% for PTHOR under AD+ as compared to WI. However, the acquire stall time under
AD+ is 21% longer than under WI because of contention for locks. The highest read
penalty reduction is achieved for Ocean where AD+ cuts 42% of the read penalty as
compared to WI. For Ocean, AD+ also reduces the acquire stall time by 23% as com-
pared to WI. In Ocean, the counters in the barriers exhibit migratory sharing. The
fewer global write actions under AD+ result in a shorter release issuance time. As a
result, the acquire stall time is reduced if another processor waits for the lock. Remark-
ably, although Water exhibits substantial migratory sharing, there is virtually no differ-
ence in performance between WI and AD+. The reason is that the bandwidth
requirement for Water is very low which means that the read penalty is not affected by
network contention under WI.

In Table 1, we also show the read miss rates decomposed in the cold and coher-
ence miss components for each application. The read miss rates are the number of pro-
cessor reads that miss in both the FLC and the SLC divided by the number of
processor reads. As expected, for MP3D the miss rates of AD+ are almost the same as
under WI. The miss rates for Cholesky and Water are 7% and 11% lower, respectively,
under AD+ than under WI even though most data objects are migratory. However,
there are some objects that are not migratory. Those objects resort to competitive-
update, and thus, an overall lower coherence miss rate is encountered. For applications
with marginal migratory sharing (PTHOR and Ocean) the read miss rates are reduced
under AD+ by 38% and 71%, respectively, as compared to WI. Hence, AD+ has pre-
served the low read miss rates of CU for applications with little or no migratory shar-
ing.

As for the traffic reduction by AD+, we see in Table 1 that the bandwidth require-
ments for AD+ is significantly reduced as compared to WI, and even more as com-
pared to CU, for MP3D, Cholesky, and Water. For these applications the bandwidth
requirements are reduced by between 10% and 26% as compared to WI. Comparing
AD+ and CU we find that the bandwidth requirements are reduced by between 51%

Table 1: Read miss rates and normalized bandwidth requirements of the applications.

Application

Read miss rates in percentage
(Cold + Coherence)

Normalized bandwidth
requirements (WI = 100%)

WI CU AD+ CU AD+

MP3D 2.4 + 13.0 2.4 + 11.1 2.4 + 12.7 151% 74%

Cholesky 1.5 + 0.43 1.4 + 0.37 1.4 + 0.40 186% 90%

Water 0.07 + 1.2 0.07 + 0.98 0.07 + 1.0 197% 74%

PTHOR 3.3 + 3.6 3.0 + 0.95 3.0 + 1.3 121% 116%

Ocean 0.04 + 0.73 0.04 + 0.18 0.04 + 0.18 149% 156%

373

and 62%. As expected, the bandwidth requirements are almost the same under AD+
and CU for applications with little or no migratory sharing (PTHOR and Ocean).

We have also evaluated the benefits of AD+ as compared to the basic adaptive
protocol described in Section 3.2, henceforth referred to as AD, which uses a single
LW pointer per memory block. The only application where AD and AD+ differ in per-
formance is Ocean, which has a non-negligible degree of false sharing. Simulation
results show that AD has 38% higher read penalty and 136% more read misses than
AD+. As a result, the execution time is 15% longer under AD than under AD+. A
more thorough analysis is presented in [7].

To summarize, AD+ appears to be a better default policy than WI and CU because
it handles migratory blocks according to the read-exclusive strategy provided by the
migratory detection mechanism which helps reducing traffic. Like competitive-update
protocols, AD+ handles producer-consumer sharing (such as in Ocean and PTHOR) in
competitive-update mode and helps reducing the coherence miss rate for such blocks.

6 Concluding Remarks

To improve the performance of competitive-update protocols, we have proposed to
extend them with a previously published migratory detection mechanism [11] that
dynamically detects migratory blocks and handles them with read-exclusive requests.
As a result, all global write actions for migratory blocks are eliminated. In addition, the
migratory detection mechanism is extended to detect when exactly two processors
modify the same memory block alternately, e.g., as a result of false sharing. By detect-
ing this sharing behavior, the adaptive protocol resorts to competitive-update mode
and reduces the coherence miss rate accordingly. We have also shown that the migra-
tory detection mechanism adds only marginal complexity to the competitive-update
protocol.

Based on program-driven simulations of a detailed multiprocessor architectural
model, we have shown that for competitive-update protocols it is possible to reduce
the read miss rates and the bandwidth requirements by as much as 71% and 26%,
respectively, as compared to a write-invalidate protocol by detecting migratory data
objects. Although the architecture assumed in this study is a CC-NUMA with a mesh
network, the detection mechanism is applicable also to bus-based systems where a low
traffic rate is more important than in CC-NUMA architectures with mesh networks.

In this study we simulated a system with only 16 processors. As we scale the sys-
tem to a larger number of processors, we expect the latencies to be longer and it will be
more important to keep the network bandwidth requirements at a low level. Therefore
we believe that the benefits of our adaptive protocol increases with the system size,
especially for applications that exhibit migratory sharing. The study of cache invalida-
tion patterns by Gupta and Weber [4] shows that migratory sharing is independent of
system size, at least in the range 8 to 32 processors which they use in their study.

This study shows that by adding a simple mechanism for detection of migratory
sharing the network traffic under competitive-update protocols is significantly
reduced, and as a result, such adaptive competitive-update protocols are shown to out-
perform write-invalidate protocols for networks with low bandwidths.

374

Acknowledgment

We would like to thank Lars Jönsson for implementing the basic adaptive protocol in
our simulator as a part of his Master’s thesis. This work was supported by the Swedish
National Board for Industrial and Technical Development (Nutek) under the contract
number 9001797.

References

1. M. Brorsson, F. Dahlgren, H. Nilsson, and P. Stenström, “The CacheMire Test Bench — A
Flexible and Effective Approach for Simulation of Multiprocessors”, InProceedings of the
26th Annual Simulation Symposium, pp. 41-49, March 1993

2. A.L. Cox and R.J. Fowler, “Adaptive Cache Coherency for Detecting Migratory Shared
Data”, InProceedings of the 20th International Symposium on Computer Architecture, pp.
98-108, May 1993

3. K. Gharachorloo, A. Gupta, and J. Hennessy, “Performance Evaluation of Memory Con-
sistency Models for Shared-Memory Multiprocessors”, InProceedings of ASPLOS IV, pp.
245-257, April 1991

4. A. Gupta and W-D. Weber, “Cache Invalidation Patterns in Shared-Memory Multiproces-
sors”,IEEE Transaction on Computers, 41(7), pp. 794-810, July 1992

5. D. Lenoski, J. Laudon, K. Gharachorloo, W-D. Weber, A. Gupta, J. Hennessy, M. Horow-
itz, and M. Lam, “The Stanford DASH Multiprocessor”,IEEE Computer, 25(3):63-79,
March 1992

6. H. Nilsson, P. Stenström, and M. Dubois, “Implementation and Evaluation of Update-
Based Cache Protocols Under Relaxed Memory Consistency Models”, Technical Report,
Dept. of Computer Engineering, Lund University, Sweden, July 1993

7. H. Nilsson and P. Stenström, “Evaluation of Adaptive Update-Based Cache Protocols”,
Technical Report, Dept. of Computer Engineering, Lund University, Sweden, March 1994

8. J-P. Singh, W-D. Weber, and A. Gupta. “SPLASH: Stanford parallel applications for
shared-memory”, Computer Architecture News, 20(1):5-44, March 1992

9. P. Stenström, “A Survey of Cache Coherence Schemes for Multiprocessors”, IEEE Com-
puter, 23(6):12-24, June 1990

10. P. Stenström, F. Dahlgren, and L. Lundberg, “A Lockup-free Multiprocessor Cache
Design”, InProceeding of 1991 International Conference on Parallel Processing, Vol. I,
pp. 246-250, August 1991

11. P. Stenström, M. Brorsson, and L. Sandberg, “An Adaptive Cache Coherence Protocol
Optimized for Migratory Sharing”, InProceedings of the 20th International Symposium on
Computer Architecture, pp. 109-118, May 1993

