
The Scalable Tree Protocol { A Cache Coherence Approach

for Large-Scale Multiprocessors

H�akan Nilsson and Per Stenstr�om

Department of Computer Engineering, Lund University

P.O. Box 118, S-221 00 Lund, Sweden

Abstract

The problem of cache coherence in large-scale

shared memory multiprocessors has been addressed us-

ing directory-schemes. Two problems arise when the

number of processors increases; the network latency

increases and the implementation cost must be kept

acceptable.

In this paper we present a tree-based cache coher-

ence protocol called the Scalable Tree Protocol (STP).

We show that it can be implemented at a reasonable

implementation cost and that the write latency is loga-

rithmic to the size of the sharing set. How to maintain

an optimal tree structure and how to handle replace-

ments e�ciently are critical issues we address for this

type of protocol. Finally we compare the performance

of the STP with the SCI (IEEE standard P1596) by

considering a classical matrix-oriented algorithm tar-

geted for large-scale parallel processing. We especially

show that the STP manages to reduce the execution

time considerably by reducing the write latency.

1 Introduction

Shared memory multiprocessors o�er a
exible and

powerful programming model. However, scaling such

computers to a large number of processors has shown

to be di�cult mainly due to the contention and the

latency associated with their memory systems. A uni-

�ed approach to cope with these problems has been to

use caches in conjunction with a directory-based cache

coherence protocol implemented in hardware [9].

The objective of directory-based cache coherence

protocols is to reduce memory system contention by

exclusively sending point-to-point messages to those

caches that share a copy of one memory block. This

is achieved by associating the same number of cache

pointers as the number of caches with each directory

entry. In full-map directory schemes [3, 8] the cache

pointers are represented by a bit vector containing N

bits, where N is the number of caches. Since one bit

vector is associated with each memory block, the re-

sulting implementation cost for the directory is un-

acceptable for multiprocessors containing several hun-

dreds of caches. Consequently, researchers have ex-

plored other approaches to reduce the implementation

cost of the directories.

One approach to reduce the implementation cost is

to use a limited number of cache pointers per mem-

ory block. Since each pointer requires log

2

N bits, the

memory overhead for each memory block is i log

2

N

bits, assuming i cache pointers. For applications

where the number of processors that share data, the

sharing set, is less or equal to i, the performance of

such limited-directory schemes is identical to full-map

directories. When the sharing set exceeds the available

number of cache pointers, three strategies have been

proposed. For Dir

i

NB schemes [1], cache-pointer re-

placements take place when the size of the sharing set

exceeds i. As a result, the latency is increased because

of an increased cache-miss rate. Dir

i

B schemes [1]

broadcast consistency messages when the directory

runs out of pointers for the memory block, resulting

in excessive network tra�c which increases contention.

LimitLESS [4] emulates a full-map directory in soft-

ware when the directory runs out of pointers which

reduces processor utilization. In summary, we note

that for applications where the sharing set is large

compared to the available number of cache pointers,

limited-directory schemes result in poor performance

in one way or the other.

To reduce performance degradation for applications

with large sharing sets, the challenge is to arrange the

directory in such a way that (i) it has a su�cient num-

ber of cache pointers, (ii) it has an acceptable imple-

mentation cost, and (iii) it handles consistency actions

in an e�cient way. The IEEE P1596, known as the

Scalable Coherent Interface (SCI) [6], is a promising

example of such a protocol. The SCI associates two

cache pointers with each cache line. All caches sharing

a memory block form a double-linked list. Thus, only

2 log

2

N bits are associated with each cache block. Ap-

parently, it never runs out of cache pointers and it of-

fers an acceptable implementation cost for large-scale

multiprocessors. Unfortunately, however, the SCI in-

curs a severe performance penalty in handling write

operations. Upon a write request to a memory block

cached in n caches, the invalidation or update message

has to traverse the list of caches. Thus, the latency

incurred by write operations is O(n). Consequently,

the write latency can have a detrimental e�ect on the

performance of parallel applications with large sharing

sets.

In this paper we present the design and evaluation

of a new directory-based cache coherence protocol,

called the Scalable Tree Protocol (STP). The STP ar-

ranges the caches in the sharing set of a memory block

in a tree structure. Like the SCI, the STP never runs

out of cache pointers. Although the STP has a slightly

higher implementation cost than the SCI, it only asso-

ciates (3+K) log

2

N bits with each cache block, where

K is the fan-out of the tree. Thanks to the fact that

the sharing set is arranged in a tree-structure the write

latency is O(log

K

n) instead of O(n). A critical issue

in the design of tree-based cache coherence protocols

is how to reduce read and write latencies. The design

of the STP shows that it is possible to achieve a small

read latency by exploiting parallelism in the algorithm

that establishes the tree structure. Moreover, our pro-

tocol guarantees a logarithmic write latency by always

maintaining an optimal tree structure.

The organization of the rest of the paper is as fol-

lows. In Section 2, as a background, we present the

organization and the coherence protocol of the Scal-

able Coherent Interface. We use an example parallel

application to build intuition into the performance is-

sues introduced by the linear-list approach taken by

the SCI. In Section 3, we present the STP coherence

protocol. We especially focus on how the protocol

maintains an optimal tree structure and how replace-

ments are handled. We compare the implementation

cost and the performance of the SCI and the STP in

Section 4. Finally, in Section 5, we conclude the re-

sults.

2 Background

The motivationbehind our work is to design a cache

coherence protocol that achieves a high performance

and an acceptable implementation cost for multipro-

cessors with several hundreds to thousands of proces-

sors targeted to applications with large sharing sets.

The IEEE P1596 standard, known as the SCI [6],

has similar objectives. The linear-list structure results

in an acceptable implementation cost. Unfortunately,

the linear-list approach results in performance degra-

dation due to the write latency that is incurred by the

list structure. In this section, we begin with reviewing

the cache coherence protocol of the SCI in Section 2.1.

Then we illustrate how the write latency can impact

severely on the performance of applications with large

sharing sets by considering a classical matrix-oriented

algorithm for parallel processing in Section 2.2.

2.1 The SCI { A linear-list protocol

Linear-list protocols, such as the SCI, maintain the

sharing set in a linear list as shown in Figure 1. The

basic mechanism of the SCI protocol is two pointers

that are associated with each cache line. They point

at the predecessor and the successor cache in the list.

Moreover, one pointer is associated with each memory

block to point at the head of the list. We now review

the consistency actions associated with the SCI pro-

tocol.

Memory

Cache 1 Cache 2 Cache n

NULL
NULL

2log N

2log N 2log N 2log N

Figure 1: n caches sharing a copy of a memory block

according to the SCI protocol.

A cache that reads a block will be linked into the

list as the new head of the list in the following way.

The reading cache sends a read request to the memory.

If the list is empty, the memory establishes a pointer

to the reading cache and supplies the cache with data.

Otherwise, the memory returns the pointer to the old

head of the list and modi�es its pointer to point at the

reading cache. The reading cache updates its succes-

sor pointer to point at the old head and sends a new

request to the old head of the list. The old head re-

turns the requested block and updates its predecessor

pointer to point at the reading cache, which now is

the new head.

The SCI protocol maintains consistency by a write-

invalidate protocol, i.e. invalidation messages are sent

to all caches belonging to the sharing set. Conse-

quently, if the cache associated with the writing pro-

cessor has the only copy in the system, the write op-

eration can proceed locally. Otherwise, the follow-

ing actions take place. The cache associated with the

writing processor is taken out of the list and is put

as the head of the list. Then it sends an invalidation

message to its successor. When a cache gets an in-

validation message, it removes itself from the list and

returns the identity of its successor to its predecessor.

When all caches are removed from the list, the write

operation is completed. Since the invalidation must

traverse n caches, given that n caches share the same

block, the time for a write operation to be completed

is O(n).

Possibly, a cache block needs to be replaced when

handling a cache miss. The replacement operation is

e�ciently supported by the double-linked list. The

cache that replaces a shared block sends the identi�er

of its predecessor to its successor and the identi�er

of its successor to its predecessor. The cache is now

removed from the list.

To what extent the write latency impacts the per-

formance of a parallel algorithm depends on whether

the architecture allows multiple outstanding memory

requests. The write latency can be overlapped by

other write operations and computation provided that

the application relies on a relaxed memory consistency

model such as the weakly ordered model proposed by

Dubois et al. in [5]. Under the weakly ordered model

shared memory operations may overlap as long as all

outstanding memory operations have been completed

at the synchronization points. The implication of this

is that if the distance between two synchronizations is

small, the time for a write operation to be completed

may have a signi�cant impact on the execution time.

We shall substantiate this issue in the next section.

2.2 An example parallel algorithm

In this section we review a classical generic

paradigm to implement parallel algorithms for the so-

lution of a linear system of N equations by iterations.

For simplicity, we omit the convergence criterion and

focus on the shared read-write memory references gen-

erated by the algorithm. This particular generic algo-

rithm is chosen to illustrate the problem of coherence

actions to data structures with large sharing sets. Our

purpose is to address the problem of how to support

such sharing behaviors for large-scale multiprocessors.

Consider the following set of linear equations:

x

i+1

=

~

Ax

i

+ b

where x

i+1

; x

i

, and b are vectors of size N and

~

A is a

matrix of size N � N . Suppose that each iteration

(the calculation of vector x

i+1

) is performed by N

processors, where each processor calculates one vector

element. The code for one iteration of the algorithm

is shown in Figure 2.

par for J := 1 to N do

begin

XTEMP[J] := B[J];

for K := 1 to N do

XTEMP[J] := XTEMP[J] +

A[J,K] * X[K]; | read(X[K])

end;

barrier sync;

par for J := 1 to N do

X[J] := XTEMP[J]; | write(X[J])

barrier sync;

Figure 2: An example parallel algorithm for an itera-

tive solution of a linear system of equations.

N processes are initiated by the par for statement.

Each process calculates a new value which is stored in

XTEMP. The last parallel loop in the iteration copies

back the elements of XTEMP to vector X. This re-

quires a barrier synchronization.

In order to understand the impact of cache coher-

ence actions on the execution time for the algorithm,

we speci�cally consider the read and write operations

to vector X. These are marked in Figure 2. For sim-

plicity reasons, we assume that the block size is exactly

one vector element which thus eliminates the issue of

false sharing.

Now recall the consistency actions taken by the SCI

protocol reviewed in the previous section. The �rst

parallel for-loop creates a list of size N for each vec-

tor element. The second parallel for-loop purges (in-

validates) all lists. Under the weakly ordered model,

which is one of the most relaxed memory consistency

models, the correctness of the above program requires

that all write operations from a processor have been

completed before the processor can access a synchro-

nization variable. The implications of this is that the

time to execute the above program depends on the

write-latency time. The write-latency time is O(N)

in the SCI protocol. As a result, the execution time

will grow with the size of the sharing set. In the next

section, we consider the cache coherence protocol of

the Scalable Tree Protocol. By arranging the caches

belonging to the sharing set in a tree, instead of a lin-

ear list, we will show that the write latencies can be

logarithmic to the size of the sharing set.

3 The consistency actions of the Scal-

able Tree Protocol

In this section, we present the coherence actions of

the Scalable Tree Protocol, the STP, and the support

mechanisms associated with it. We begin with describ-

ing the necessary pointers needed to maintain an op-

timal tree structure in Section 3.1. In Section 3.2{3.4,

we describe the coherence actions taken on processor

read and write operations, and block replacements.

We especially show that (i) the read latency is better

in the STP than in the SCI by exploiting parallelism in

the coherence algorithm, (ii) the write latency is log-

arithmic by always maintaining an optimal tree, and

(iii) replacements of blocks associated with caches in

the middle of the tree are handled in a constant time.

3.1 Main structure and state memory

The Scalable Tree Protocol maintains an optimal

tree structure for all caches that share a memory block.

The fan-out of the tree is K, i.e. each node has K

pointers to its subtrees, see Figure 3. A write op-

eration can be implemented by an invalidation-based

or update-based protocol. We describe the coherence

actions required for an invalidation-based protocol.

M

Last

Root

FatherFather

Pre

Suc

Suc

Pre

1

2 3

Son[0] Son[1]

NULL

Son[0] Son[1]Son[0] Son[1]

Father

NULL NULLNULLNULL

Figure 3: Three caches have read a memory block and

all the pointers are set correctly.

We show in the subsequent sections that the pro-

tocol always guarantees an optimal tree. Level i in an

optimal tree is completely �lled before caches are in-

serted at level i+ 1. A new cache that reads a shared

memory block is inserted in the tree as a leaf at the

lowest level. We also show that the optimal tree struc-

ture is consistent even if a cache in the middle of the

tree performs a block replacement.

To get a feeling for the overhead in implementation

complexity of the STP, we brie
y describe the di�erent

pointers associated with a memory block and a cache

line, see Figure 3. The pointers are more extensively

explained when the di�erent operations are described

in subsequent sections. Each memory block uses three

pointers called Root, Last and WritePending. Root

points at the root of the tree, Last points at the cache

that fetched the memory block most recently, and

WritePending (not shown in Figure 3) points at the

cache with a pending write request. Since each pointer

is log

2

N bits, the overhead for a memory block is:

3 log

2

N bits (1)

Each cache line uses 3 + K pointers, called Father,

Son[0..K-1], Pre, and Suc, to maintain the tree struc-

ture. Father points at the father to the cache.

Son[0..K-1] point at the K subtrees of the cache. Pre

and Suc point at the caches that fetched the shared

memory block before and after the cache, respectively.

Thus, the state memory overhead for a cache line is:

(3 +K) log

2

N bits (2)

In addition there is a small constant number of state

bits associated with each memory block and each

cache line

1

.

We use the notation according to Table 1 to distin-

guish between di�erent caches and memory modules

involved in a consistency operation. This notation is

used throughout the paper.

In Figures 3{6 we assume a tree with fan-out K =

2, but the algorithms work correctly for any fan-out.

The digits inside the nodes denote the order in which

the caches have fetched the block from the memory.

The digits on the message arrows denote in which

order the messages are sent. For an example, look at

Figure 5. Three caches have read the shared memory

block from the memory and cache number two issues

a write request. The messages WriteReq, CheckLast

and LastOk are sent in sequence. When invalidations

start to propagate in the tree, they can be sent in

parallel as shown by the invalidation messages sent by

the root node.

A cache line containing the shared memory block is

called a node. Figure 3 shows a tree when three caches

have read the block and all pointers are set correctly.

1

Such state bits are needed in all cache coherence protocols.

Notation Description

C

rd

The cache performing a global read.

C

w

The cache performing a global write.

C

rm

The cache performing a block

replacement.

C

L

The cache that fetched the memory

block most recently.

C

F

The cache which becomes father to

the next cache issuing a global read.

C

R

The cache in the top of the tree,

the root.

M The memory containing the

shared block.

Table 1: The notations used for caches involved in a

coherence operation.

The Pre and Suc pointers form a linear list, and the

Father and Son pointers create a tree. The linear list

is used during block replacement to make sure that the

tree is still optimal after the replacement operation.

3.2 Consistency actions for global read

operations

When a cache reads a shared memory block, two

situations are possible. First, the memory has a valid

copy of the block and can satisfy the read request at

once. Second, another cache has an exclusive copy of

the block and the memory has to be updated before

it can satisfy the read request. In the �rst situation,

there is two di�erent cases when serving a read re-

quest: (1) no cache has read the memory block and

(2) at least one cache has already read the block.

We have followed two guide lines when we designed

the protocol for read operations. First, we want to

keep the tree optimal and second, we want the memory

to send data to C

rd

(see Table 1), to achieve that

the processor gets the data and continues as soon as

possible.

Case 1: C

rd

sends a ReadReq message to the mem-

ory, M. M responds with the message Data which con-

tains the requested block. C

rd

is C

R

, C

F

, and C

L

after

the operation.

Case 2: Figure 4 shows which messages are sent

when the seventh cache reads the shared memory

block. When C

rd

sends a ReadReq message (1) to

M, M responds with a Data message (2) to C

rd

. The

Data message contains a copy of the memory block

and the identity of C

L

. Note that the processor can

continue after the data transaction. In other words,

all actions taken to link the cache into the tree can be

M

1

43

2

NewSon+Ack

2 3

4 5 6 7
5 6

Crd

CF

CL

Data

NewSuc + Ack

1

ReadReq

Root

Last

Figure 4: The seventh cache reads the memory block.

overlapped by local computation.

Next we consider the actions taken to link the cache

into the tree. C

rd

will later become the new C

L

. C

rd

is inserted as son of C

F

and successor of C

L

in the

following way. C

rd

�rst sends a message, NewSuc (2),

to C

L

and sets its Pre pointer to point at C

L

. C

L

receives NewSuc, sets its Suc pointer to point at C

rd

and sends Ack (4) to C

rd

. The identity of C

F

is stored

in C

L

and Ack contains the identity of C

F

. Then C

rd

sends a new message, NewSon (5), to C

F

and sets

its Father pointer to point at C

F

. C

F

inserts C

rd

as

a subtree and sends Ack (6) back to C

rd

. The next

cache reading the block becomes another subtree to

C

F

. If C

F

can not have another subtree, the next

cache is inserted as a subtree to the successor of C

F

.

In Figure 4 is the next reading cache inserted under

cache number 4.

We keep the tree optimal by placing a maximal

number of subtrees under a node before we place sub-

trees under another node. The next node to store

subtrees is the successor of the node we just �lled.

A list of caches waiting to link themselves into the

tree can occur, since the linking is done one cache

at the time. To speed up the tree creation time, a

LinkIn message is sent from C

F

to the cache waiting

after C

rd

. The LinkIn message contains the identity

of the new C

F

. Without the LinkIn messages the tree

creation takes O(2n) time, given n caches waiting to

link themselves into the tree. The tree creation takes

only O(n) time when using the LinkIn messages.

3.3 Consistency actions for global write

operations

The instantiation of the tree-based protocol we de-

scribe maintains consistency using an invalidation-

based protocol under the weakly ordered model [5].

A write request invalidates all copies of the shared

memory block. Write requests by the same processor

can be pipelined. However, at a synchronization point

the processor stalls until all outstanding write requests

have been acknowledged. Figure 5 shows how cache

number 2 issues a global write request and how the

write operation is performed.

CheckLast

5
Inv

M

Last

R
oot

1

2 3

WriteReq

WriteAck

1

2

4

3
LastOk5

8

6 6

7

Cw

Inv

Inv

IAck

IAck IAck

WritePending

Figure 5: A general view of a global write operation.

The write operation starts with a WriteReq mes-

sage (1) from C

w

to M, see Figure 5. M receives the

WriteReq, stores the identity of C

w

in the WritePend-

ing pointer in M and sends a CheckLast message (2)

to C

L

. Since C

L

read the memory block most recently,

it must be linked into the tree before the invalidation

messages start to propagate in the tree. C

L

responds

with a LastOk message (3) to M. If C

L

is linked into

the tree, it sends LastOk at once. Otherwise, C

L

waits

until it is linked into the tree before it sends the Las-

tOk message.

When M receives LastOk, it starts to invalidate all

copies of the block. This is shown in Figure 5 by an

Inv message (4) sent fromM. When a cache receives an

Inv message, it �rst looks whether it has any subtrees.

If the cache has subtrees, it sends an Inv message (5)

to each of them. Then the cache waits for an IAck

message (6) from each subtree. When the cache has

received IAck from all its subtrees, it invalidates its

own copy of the block, and sends an IAck message (7)

upwards to its father. If the cache does not have any

subtrees, it invalidates its copy of the block and sends

an IAck message to its father at once.

When M receives an IAck message, it knows that

the whole tree is invalidated and can then send a

WriteAck message (8) to C

w

. C

w

is the only cache

in the tree and is both C

L

and C

R

. When C

w

re-

ceives the WriteAck message it knows that the write

is globally performed, and C

w

has the only valid copy

of the memory block. Subsequent writes by C

w

can be

performed locally until another cache reads the block.

3.4 Consistency actions for block replace-

ments

The design of the consistency actions taken on a

block replacement has followed two guide lines. First,

we want to keep the tree optimal even if a cache in the

middle of the tree performs the replacement. This is

done by moving C

L

to the place in the tree where C

rm

(the cache that replaces its copy) is. Second, we want

a constant replacement time. New global read and

write operations are not allowed to be served during

the block replacement. The motivation is that the

pointers in the tree may be inconsistent during the

operation. We have three cases:

1. There is only one cache in the tree.

2. There are at least two caches in the tree and C

L

does the replacement.

3. There are at least two caches in the tree and a

random cache, not C

L

, does the replacement.

Case 1: There are two situations when only one

cache has a copy of the shared memory block. First,

the only copy of the block is consistent with the block

in memory. Second, the cache has an exclusive copy

which is inconsistent with the memory. In the �rst

situation C

rm

only needs to notify M that C

rm

has

invalidated its copy and the only copy is in M. In the

second situation C

rm

must copy the block back to M

before it is purged from the cache. When M con�rms

the update, C

rm

invalidates its copy of the block.

Case 2: There are at least two caches in the tree

and C

L

does a block replacement, see Figure 6. The

operation starts with a ReplaceReq message from C

rm

to M. M responds with a ReplacePermission message

to C

rm

and disallows new global read and write oper-

ations until the block replacement is �nished.

When ReplacePermission arrives to C

rm

, C

rm

sends two messages in parallel. The �rst, SetLast,

is sent to the cache pointed at by C

rm

's Pre pointer.

This cache responds with an Ack message and becomes

the new C

L

. The second, RemoveSon, is sent to the

father to C

rm

. The father responds with an Ack mes-

sage and becomes the new C

F

.

When C

rm

has received both the Ack messages,

C

rm

is allowed to use the cache line for a new memory

M
1

2 3

4

L
ast

Root

ReplacePermission
2

3 4

5 3 4

1

ReplaceReady

Crm

RemoveSon+Ack

ReplaceReq

SetLast+Ack

Figure 6: The Last cache, C

L

, in the tree performs a

block replacement.

block. At the same time, C

rm

sends a ReplaceReady

message to M. The ReplaceReady message contains

the identity of the new C

L

. New global read and write

operations to the block are permitted when M receives

the ReplaceReady message.

Case 3: There are at least two caches in the tree

and a random cache, not C

L

, does the replacement,

see Figure 7. C

rm

sends a ReplaceReq message to M.

ReplaceReq contains the state memory (the pointers)

of the cache line in C

rm

. M responds with a Repla-

cePermission message to C

rm

and disallows new global

read and write operations until the block replacement

is �nished. C

rm

is allowed to use the cache line for

a new memory block when it receives ReplacePermis-

sion. When M sends ReplacePermission, it sends a

Move message to C

L

. The Move message means that

C

L

moves itself to the place in the tree where C

rm

is.

On a move, C

L

�rst removes itself from its place

in the tree the same way as in case 2. C

L

then in-

forms all the caches that surround C

rm

in the tree so

they know they shall point at C

L

instead of C

rm

. The

caches informed are all the sons of C

rm

, C

rm

's Father,

and the caches pointed at by the Pre and Suc point-

ers. Each of these caches sends an acknowledgement

to informC

L

when all the pointers are established. C

L

then sends a ReplaceReady message to M. M knows

by this message that the replacement is done and new

global read and write operations to the memory block

are allowed.

4 Comparison of the STP and the SCI

In this section we analyze the implementation cost

and the performance of a tree-based protocol, the STP,

M

1

2 3

4

1
2ReplacePermission

Move

2

3 4

5 6

NewF+Ack

NewSon+Ack

NewSuc+Ack

SetLast+Ack

NewPre+Ack

ReplaceReady

RemoveSon+Ack

3 4

NewF+Ack
55 6 6

5

5

5 6

6

6

7

C
rm

CL

CRReplaceReq

Figure 7: Node 2, in the middle of the tree, performs

a block replacement.

and a linear-list protocol, the SCI. First, we investi-

gate the implementation cost for the protocols. And

second, we give performance results for the protocols

in terms of execution time for the example algorithm

described in Section 2. We also discuss the network

tra�c the protocols generate.

4.1 Implementation cost

In this section we discuss the state memory over-

head in the STP for each cache line and for each mem-

ory block. We also compare the state memory over-

head for a cache line in the STP, with the state mem-

ory overhead for a cache line in the SCI.

The state memory overhead for a cache line, relative

to the size of the cache line, is found in Table 2. In the

table we assume N = 1024 caches. The size of the state

memory for amemory block is found in Equation 1 and

the size of the state memory for a cache line is found

in Equation 2, see Section 3.1.

The SCI has two pointers associated with each

cache line. The pointers are 16 bits long in the IEEE

standard, but here we assume that they are log

2

N

bits long. The overhead for a cache line, relative to

the size of the cache line, is found in Table 2. We

notice that the SCI has a lower implementation cost

than the STP, but the implementation cost for the

Block size SCI STP

(bytes) K = 2 K = 3 K = 4

8 0.31 0.78 0.94 1.09

16 0.16 0.39 0.47 0.55

32 0.08 0.20 0.23 0.27

64 0.04 0.10 0.12 0.14

Table 2: The state memory overhead for a cache line,

assuming N = 1024.

STP seems also quite acceptable. For example, as-

suming 32 bytes memory blocks the SCI results in 8%

state memory overhead and the STP results in 20%

overhead if K = 2. The IEEE standard speci�es the

block size to 64 bytes.

4.2 Performance comparison

In this section we evaluate the performance of the

STP and a linear-list protocol through program-driven

simulation. The linear-list protocol we simulate is very

similar to the SCI. The only di�erence is that in our

linear-list protocol the memory is kept up-to-date if

more than one copy exists. In the SCI the memory is

only updated when no cache has a copy of the memory

block. The read latency is reduced with 50% if the

memory is kept up-to-date (further explained in [7]).

We use the algorithm from Section 2 as a workload,

see Figure 2. The motivation for this choice is that

the algorithm stresses the e�ciency of the protocol

implementations in several respects. In the �rst phase,

the read phase, there is no copy of the vector X. In the

second phase, the write phase, all copies of the vector

X are purged. Therefore, the implementation of global

read and write operations will be particularly stressed.

The memory block size is 16 bytes and each processor

calculates 4 elements (1 block) of the vector X.

First, we look at the execution time for the algo-

rithm. Second, we look at the network tra�c gener-

ated by the two protocols. The simulation environ-

ment is based on the CacheMire test bench [2] which

is a multiprocessor simulator based on a SPARC pro-

cessor simulator. The parallel applications running

on top of the simulator are written using the parmacs

macros from Argonne National Laboratory. We do

not account for the implementation and performance

aspects of the barrier synchronizations. The method-

ology we use is extensively explained in [7], where

we perform an extensive evaluation of tree-based and

linear-list protocols and contrast their performance

with a full-map protocol.

We simulate a multiprocessor architecture with 16

processing nodes connected by an in�nite bandwidth

network. Each processing node consists of a processor,

an in�nite cache, a part of the shared memory, and a

local bus. The cache line size is 16 bytes. The simula-

tions are done assuming the weakly ordered model [5].

For the STP, the fan-out of the tree, K, is 2. We make

the following assumptions about the architecture:

� The network latency between two nodes is 100

processor clock cycles (pclocks, 1 pclock = 10 ns).

� The cache access time is 1 pclock.

� The memory access time is 15 pclocks.

� The transition time on the local bus is 4 pclocks.

The results from the simulation is shown in Fig-

ure 8. The execution time is split into three parts.

The lower part is the busy time, i.e. the time the pro-

cessors perform useful work. The middle part is the

time added due to read latency, i.e. processor stall

time due to cache misses. The upper part is the time

added due to write latency, i.e. the time the proces-

sors wait at synchronization points for pending writes

to be completed. Although the weakly ordered model

busy-time

read-latency

write-latency

STP linear-list
0.00

20.00

40.00

60.00

80.00

100.00

120.00

Figure 8: Normalized execution time for the example

algorithm.

can hide most of the write latency, we still see a 15%

longer execution time for the linear-list protocol than

for the STP. This di�erence will become larger when

the number of processors increases.

The STP generates 35% more network tra�c than

the linear-list protocol does (see Table 3). This larger

amount of tra�c is acceptable since our belief is that

increasing the network bandwidth is easier than de-

creasing the network latency. Therefore, it is more

appropriate to focus on decreasing the latencies in the

memory system.

Protocol Generated tra�c

STP 2140 messages

Linear-list 1568 messages

Table 3: The network tra�c generated for the proto-

cols when we execute the example algorithm.

5 Conclusions

In this paper we present the design and evaluation

of a new cache coherence protocol called the Scalable

Tree Protocol (STP). The STP is especially targeted

to large-scale multiprocessors containing hundreds to

thousands of processors and applications with large

sharing sets.

The objective of our study has been to �nd a cost-

e�ective approach to design a directory-based pro-

tocol. The SCI [6], which has a similar objective,

maintains the information of which caches sharing the

same memory block by organizing them into a linear

list. As a result, the memory overhead per cache line

is 2 log

2

N , assuming N caches. Unfortunately, the

linear-list approach results in a write latency which

grows as O(n), where n is the number of copies.

Our approach to obtain an acceptable implementa-

tion cost and to reduce the write latency is to arrange

the caches sharing a memory block in a tree structure.

This approach, the STP, results in a write latency of

O(log

K

n) and a memory overhead per cache line of

(3 + K) log

2

N bits, where K is the fan-out of the

tree. We �nd the slightly higher implementation cost

acceptable compared to the improved write latency.

Important challenges in the design of a tree-based

protocol are (i) to maintain an optimal tree structure

and (ii) to reduce read and write latencies. We show

that this is possible by exploiting parallelism between

the data-fetch actions and the actions taken to main-

tain the tree structure. Results from our program-

driven simulations demonstrate that the SCI has a

15% longer execution time than the STP for the exam-

ple algorithm. Even though our simulations use the

weakly ordered memory model [5], which e�ectively

hides write latency, the SCI performs worse than the

STP. We have conducted a more detailed performance

evaluation in [7]. There are also drawbacks with the

STP. First, replacements are more complicated than in

the SCI. Second, the STP generates 35%more network

tra�c than the SCI for the example algorithm. How-

ever, this is acceptable since high network bandwidth

seems easier to achieve than low latency in memory

systems targeted for large con�gurations.

This study suggests that the STP is more useful

than the SCI for machines targeted for parallel pro-

cessing using applications with large sharing sets.

Acknowledgements

This work was supported by the Swedish Na-

tional Board for Industrial and Technical Development

(Nutek) under the contract number 9001797.

References

[1] A. Agarwal, R. Simoni, J. Hennessy, and

M. Horowitz. An evaluation of directory schemes

for cache coherence. In Proc. of 15th International

Symposium on Computer Architecture, pages 280{

289, 1988.

[2] M. Brorsson, F. Dahlgren, H. Nilsson, and P. Sten-

str�om. The CacheMire Test Bench { A Flexible

and E�ective Approach for Simulation of Multi-

processors. Technical report, Dept. of Computer

Engineering, Lund University, Sweden, 1992.

[3] L. M. Censier and P. Feautrier. A New Solution to

Coherence Problems in Multicache Systems. IEEE

Transactions on Computers, C-27(12):1112{1118,

1978.

[4] D. Chaiken, J. Kubiatowicz, and A. Agarwal.

LimitLESS Directories: A Scalable Cache Coher-

ence Protocol. In Proc. of the ACM conference

ASPLOS-IV, pages 224{234, 1991.

[5] M. Dubois, C. Scheurich, and F. Briggs. Mem-

ory access bu�ering in multiprocessors. In Proc.

of 13th International Symposium on Computer Ar-

chitecture, pages 434{442, June 1986.

[6] IEEE. IEEE { P1596 Draft Document, Scalable

Coherent Interface Draft 2.0, March 1992.

[7] H. Nilsson and P. Stenstr�om. Performance Evalu-

ation of Link-Based Cache Coherence Schemes. In

Proc. of the 26st Hawaii International Conference

on System Sciences, January 1993. To appear.

[8] P. Stenstr�om. A Cache Consistency Protocol for

Multiprocessors with Multistage Networks. In

Proc. of 16th International Symposium on Com-

puter Architecture, pages 407{415, May 1989.

[9] P. Stenstr�om. A Survey of Cache Coherence

Schemes for Multiprocessors. IEEE Computer,

23(6):12{24, June 1990.

