
Performance Evaluation of Link-Based Cache Coherence Schemes

H�akan Nilsson and Per Stenstr�om

Department of Computer Engineering, Lund University

P.O. Box 118, S-221 00 Lund, Sweden

Abstract

Large-scale shared-memory multiprocessors rely on

private coherent caches by using directory-based proto-

cols. Directory-based protocols preserve network band-

width by reducing the number of consistency actions.

A critical issue becomes how they maintain state in-

formation about the set of caches and how they reduce

read and write latencies. These tradeo�s are studied

in this paper.

We study two link-based approaches, called tree-

based and linear-list protocols, and contrast their per-

formance and implementation cost to that of a full-

map protocol. Using program-driven simulation and

a set of three benchmark programs, we �nd that tree-

based and linear-list protocols (e.g. IEEE P1596 SCI)

perform almost as well as full-map protocols but to a

considerably lower implementation cost. However, if

the sharing set is large, linear-list schemes may suf-

fer because of the large write latency while tree-based

protocols still perform well.

1 Introduction

Shared-memory multiprocessors o�er a
exible and

powerful programming model. However, scaling such

computers to a large number of processors has shown

to be di�cult mainly due to the contention and the la-

tency associated with their memory systems. To cope

with these problems, a uni�ed approach has been to

use caches in conjunction with a directory-based cache

coherence protocol implemented in hardware [14].

The objective of directory-based cache coherence

protocols is to reduce memory system contention by

exclusively sending point-to-point messages to those

caches that share a copy of a memory block { the

sharing set. In limited directory protocol [5], exact

information is maintained only when the sharing set

is less or equal to the number of pointers. However,

when the sharing set is large, limited directory-based

protocols perform poorly due to broadcast, pointer re-

placement, or software overhead, that is intrinsic to

this class of protocols. Instead, in this paper we focus

on the performance and implementation tradeo�s of

three protocols that maintain exact information about

the sharing set but that di�er considerably in hard-

ware complexity { full-map, linear-list, and tree-based

protocols.

In full-map directory schemes [4, 13] the cache

pointers are represented by a bit vector containing N

bits, where N is the number of caches. Since a bit vec-

tor is associated with each memory block, the result-

ing implementation cost for the directory is unaccept-

able for multiprocessors containing several hundreds

of caches.

For large system con�gurations, say 1024 nodes, re-

searchers have explored other approaches to reduce

the implementation cost of the directories. In link-

based protocols the hardware cost is reduced by orga-

nizing the caches that have a copy of a memory block

into a link structure such as a linear list or a tree.

IEEE P1596, known as the Scalable Coherent Inter-

face (SCI) [9], associates two cache pointers with each

cache line. All the caches that share a memory block

form a double-linked list. Unfortunately, the SCI in-

curs a severe performance penalty in handling write

operations because the invalidation or update mes-

sages have to traverse the list of caches resulting in

a write latency of O(n), given n caches.

In an earlier work [11], we have proposed a new

directory-based cache coherence protocol called the

Scalable Tree Protocol (STP). The STP arranges the

caches sharing the same memory block in a tree struc-

ture. It has a slightly higher implementation cost than

the SCI. Thanks to the fact that the sharing set is ar-

ranged in a tree-structure, the write latency in the

STP is O(logn). A critical issue in the design of tree-

based cache coherence protocols is how to reduce read

and write latencies.

In this paper we investigate the intrinsic perfor-

mance tradeo�s of full-map, linear-list, and tree-based

protocols. The performance evaluation is based on

program-driven simulation and three parallel bench-

mark applications. One benchmark is an algorithm

kernel for the solution of a system of linear equations.

The other two benchmarks are taken from the Stan-

ford SPLASH benchmark suite [12].

We show that the read-latency is the same for the

three protocols. The write latency for linear-list and

tree-based protocols is competitive with a full-map

protocol for applications where a small number of

caches share the same memory block or when the ra-

tio of communication and computation is small. But

if the number of caches that share the same block is

large, a linear-list protocol su�ers because of the time

it takes to traverse the list of caches. Our tree-based

protocol is competitive with a full-map protocol even

in this case. Our study suggests that since linear-list

and tree-based protocols are less expensive to imple-

ment than full-map protocols, they are more appro-

priate for large system con�gurations.

The organization of the rest of the paper is as fol-

lows. In Section 2 we present the organization and

the consistency actions of the three protocols investi-

gated. The simulation environment, the architecture

models, and the benchmark programs are described

in Section 3. In Section 4 we present the simulation

results. Finally, we conclude our results in Section 5.

2 Directory-based protocols

In this section we present the organization and con-

sistency actions of the three protocols we have stud-

ied. To compare the protocols in a consistent man-

ner, we begin with the assumptions we have used to

study the intrinsic performance di�erences between

full-map, linear-list, and tree-based protocols in Sec-

tion 2.1. In Sections 2.2{2.4, we outline the three pro-

tocols we experimentally evaluate in Section 4. We es-

pecially focus on the read and write latency di�erences

associated with the protocol actions. In Section 2.2 we

describe a full-map protocol based on the presence
ag

protocol originally proposed by Censier and Feautrier

[4]. In Section 2.3 we present the linear-list protocol,

based on the IEEE P1596 standard (SCI), and in Sec-

tion 2.4 we present our tree-based protocol, the STP.

2.1 Framework for comparison

To compare the protocols in a consistent manner we

have made a set of basic assumptions regarding their

implementations that in some cases may di�er from

the assumptions made in the literature.

First, we assume that they all maintain consistency

using a write-invalidate protocol [14]. Second, we con-

sider two di�erent memory models; sequential con-

sistency [10] and weak ordering [6]. Our implemen-

tation of sequential consistency is conservative { the

processor stalls on every access to shared data until

the access is completed. Under weak ordering write

operations can be pipelined between synchronization

points. Thus, all write latency can be hidden except

for the write operations that are pending when a syn-

chronization operation is encountered. Finally, we as-

sume that memory is kept up-to-date for clean blocks.

When more than one cache has a copy of the block,

a read request can be serviced by the corresponding

memory module since the block kept there is clean

1

.

In the next three sections we focus on the read and

write latency encountered by the three protocols. In

this study we assume in�nite caches. As a result, we

do not focus on how block replacements are handled.

We discuss the e�ect of replacements in Section 5.

2.2 Full-map protocols

In directory-based cache coherence protocols, the

information of which caches that share the same mem-

ory block is distributed across the processing nodes.

The sharing information is used to reduce network

tra�c and memory contention by exclusively sending

invalidation messages only to those caches that share

the same block.

In full-map protocols [4, 13] the sharing information

is stored in a bit vector of length N, where N is the

number of caches in the system. The full-map protocol

we simulate has one bit vector of length N associated

with each memory block, see Figure 1. The bit vectors

are located in the memory module. There is also a

modi�ed bit, marked m in Figure 1, associated with

each block to indicate if the memory block is dirty.

A cache that reads the block sends a read request

to the memory. The memory sets the bit associated

with the reading cache. If the block is clean, the re-

quested block is returned to the cache in two network

traversals. Otherwise, the memory requests a write-

back operation from the cache that keeps the dirty

block which takes another two network traversals.

When a write is issued to a globally shared block,

the cache sends a write request to the memory. The

memory sends invalidation messages to all caches

whose bits are set in the bit vector by serially issuing

invalidation messages to the network. The invalida-

tion messages are then propagated in parallel through

1

In the SCI, for example, the memory is not kept up-to-date

and a longer read-latency is encountered [9].

Memory module

X: Data

DataX: DataX: DataX:

Cache 0 Cache 1 Cache 2 Cache N−1Cache N−2

1 1 10 0m

Figure 1: The organization of a full-map protocol

where three caches share variable X.

the network. The caches reply with invalidation ac-

knowledgement messages. When the memory has re-

ceived acknowledgement messages from all the caches

in the sharing set, it sends a write acknowledgement

message to the writing cache. The memory also sets

a modi�ed bit associated with the memory block, not

shown in Figure 1. The writing cache has now an ex-

clusive copy and subsequent write operations can be

handled locally by the cache.

In summary, we note that a cache miss to a clean

block is serviced by two network traversals; to a dirty

block in four network traversals; and invalidations

propagate in parallel through the network to all caches

that share the block and thus incur a write latency of

O(1). As for the implementation cost, full-map proto-

cols associate N bits with each memory block.

2.3 Linear-list protocols

Linear-list protocols, such as the SCI, maintain the

sharing set in a linear list as shown in Figure 2. The

basic mechanism of the linear-list protocol is the two

pointers (log

2

N bits each) that are associated with

each cache line. They are used to point at the prede-

cessor and the successor cache in the list. Moreover,

one pointer is associated with each memory block to

point at the head of the list. We now review the con-

sistency actions associated with the linear-list protocol

which is based on the SCI protocol with some modi�-

cations according to Section 2.1.

A cache that reads a block will be linked into the

list as the new head of the list in the following way.

The reading cache sends a read request to the mem-

ory. First, if the list is empty, the memory establishes

a pointer and supplies data in two network traversals.

Second, if the block is dirty, the memory requests the

dirty cache to write back the block. Consequently,

data is returned after four network traversals. Finally,

if the block is shared it supplies the data and in addi-

tion a pointer to the cache that is the old head of the

Memory

Cache 1 Cache 2 Cache n

NULL
NULL

2log N

2log N 2log N 2log N

Figure 2: n caches sharing a copy of a memory block

according to the linear-list protocol (from Nilsson and

Stenstr�om [11]).

list. The memory also modi�es its pointer to point

at the reading cache. The reading cache updates its

successor pointer to point at the old head and sends a

new request to the old head of the list. The old head

updates its predecessor pointer to point at the new

head. At this point, the read operation is completed.

On a write operation to a block that is shared by

other caches, the cache associated with the writing

processor sends a write request to the memory. The

memory then sends an invalidation message to the

head of the list. The list is invalidated cache by cache

in the following way. The head of the list sends an

invalidation to its successor. When a cache gets the

invalidation, it invalidates its copy, removes itself from

the list and returns the identity of its successor to the

head. When all caches are removed from the list, the

head invalidates its own copy and sends an acknowl-

edgement message to the memory. The memory then

sends a write acknowledgement message to the writ-

ing cache. The write operation is completed when the

writing cache gets the write acknowledgement mes-

sage. Since the invalidation must traverse n caches,

given that the size of the sharing set is n, the time for

a write operation to be completed is O(n).

In summary, we note that like the full-map proto-

col a cache miss to a clean block is serviced by two

network traversals and to a dirty block in four net-

work traversals. Finally, invalidations propagate se-

quentially through the linear list. Linear-list protocols

thus incur a write latency of O(n), given n copies. As

for the implementation cost, linear-list protocols asso-

ciate 2 log

2

N bits with each cache line.

2.4 STP { A tree-based protocol

In this section, we outline the consistency actions

of the Scalable Tree Protocol (STP) and the support

mechanisms associated with it. A complete descrip-

tion of the protocol is found in [11].

In the STP, K subtrees are associated with each

cache line, see Figure 3 where K = 2. The STP always

guarantees an optimal tree structure. With an optimal

tree we mean that level i is completely �lled before

caches are inserted at level i+1, as shown in Figure 3.

A new cache that reads a memory block is inserted

in the tree as a leaf at the lowest level. The tree is

optimal even if a replacement is done [11].

M

Last

Root

FatherFather

Pre

Suc

Suc

Pre

1

2 3

Son[0] Son[1]

NULL

Son[0] Son[1]Son[0] Son[1]

Father

NULL NULLNULLNULL

Figure 3: Three caches have read a memory block and

all the pointers are set correctly (from Nilsson and

Stenstr�om [11]).

In [11] we showed that the overhead is 3 log

2

N bits

for one memory block and (3 +K) log

2

N bits for one

cache line.

Figure 3 shows a tree when three caches have read

the block and all pointers are established. The Pre

and Suc pointers form a linear list and the Son and

Father pointers create a tree. The linear list is used

during a block replacement to make sure that the tree

is still optimal after the replacement operation. The

digits inside the nodes denote the order in which the

caches have fetched the block from memory.

We use the notation according to Table 1 to distin-

guish between di�erent caches and memory modules

involved in a coherence operation.

2.4.1 Global read operations

We show which actions are taken for read requests to

clean blocks shared by other caches. Figure 4 shows

which messages are sent when the seventh cache reads

the shared memory block. First C

rd

sends a Read-

Request to the memory, M, and then M responds with

a Data message to C

rd

. The Data message contains

a copy of the memory block and the identity of C

L

.

Note that the processor can continue after the data

transaction. In other words, all actions taken to link

the cache into the tree has a potential to be over-

lapped by local computation. The reading cache will

Notation Description

C

rd

The cache performing a global read.

C

w

The cache performing a global write.

C

rm

The cache performing a block

replacement.

C

L

The cache that fetched the memory

block most recently.

C

F

The cache which becomes father to

the next cache issuing a global read.

C

R

The cache in the top of the tree,

the root.

M The memory containing the

shared block.

Table 1: The notations used for caches involved in a

coherence operation.

M

1

43

2

NewSon+Ack

2 3

4 5 6 7
5 6

Crd

CF

CL

Data

NewSuc + Ack

1

ReadReq

Root

Last

Figure 4: The seventh cache is reading the memory

block (from Nilsson and Stenstr�om [11]).

be inserted as son of C

F

and successor of C

L

in the

following way. C

rd

noti�es C

L

of its new successor

by the message NewSuc. After C

L

has acknowledged

NewSuc C

rd

noti�es C

F

of its new son by the message

NewSon. C

rd

is completely linked into the tree when

C

F

has acknowledged the NewSon message. The next

cache reading the block becomes another subtree to

C

F

, if C

F

can have another subtree. Otherwise the

next cache becomes a subtree to the successor of C

F

.

C

rd

is now the new C

L

.

In summary we note that, like the full-map and

the linear-list protocols, a cache miss to a clean block

is serviced by two network traversals and to a dirty

block in four network traversals. However, some addi-

tional network traversals are needed to establish the

tree structure. The tree construction can be partly

overlapped by computation.

2.4.2 Global write operations

The write operation starts with a write request mes-

sage, WriteReq, from C

w

to the memory, see Fig-

ure 5. The memory receives the write request, stores

the identity of C

w

in the WritePending pointer, and

sends a CheckLast message to C

L

. C

L

responds with

LastOk when it is completely linked into the tree. The

memory starts to invalidate all copies when LastOk is

received. This is shown in Figure 5 by an invalida-

tion message, Inv, sent from M. Note that the time

to construct the tree may show up as an increased

write latency. The e�ect of this is investigated ex-

perimentally in Section 4. When a cache receives an

invalidation message, it �rst looks if it has any sub-

trees. If the cache has subtrees, it sends an invalida-

tion message to each of them. Then the cache waits

for an invalidation acknowledgement message, IAck,

from each subtree. When the cache has received in-

validation acknowledgement from all its subtrees, it

invalidates its own copy of the block, and sends an

invalidation acknowledgement upwards to its father.

If the cache does not have any subtrees, it invalidates

its own copy of the block and sends an invalidation

acknowledgement message to its father at once.

CheckLast

5
Inv

M

Last

R
oot

1

2 3

WriteReq

WriteAck

1

2

4

3
LastOk5

8

6 6

7

Cw

Inv

Inv

IAck

IAck IAck

WritePending

Figure 5: A general view of a global write operation

(from Nilsson and Stenstr�om [11]).

When the memory receives an invalidationacknowl-

edgement message, it knows that the whole tree is

invalidated and can send a write acknowledgement

message, WriteAck, to C

w

. When C

w

receives the

WriteAck message it knows that the write is glob-

ally performed and C

w

has the only valid copy of the

memory block. The memory block is marked modi-

�ed in the memory. Subsequent write operations by

C

w

can be performed locally until another cache reads

the block.

In summary, we note that invalidations propagate

in parallel through the tree structure. Unlike full-map

and linear-list protocols, tree-based protocols thus in-

cur a write latency of O(log n), given n copies.

In this section we have described the protocol ac-

tions and the implementation cost for full-map, tree-

based, and linear-list protocols. As far as the imple-

mentation cost is concerned, full-map protocols have

the largest state memory overhead followed by the

STP and the linear-list protocols. As for the latency

penalty, we note that the read latency as seen by the

issuing processor is the same for all protocols. How-

ever for tree-based protocols, it takes additional time

to link the cache into the tree. The question is whether

these actions can be overlapped by computation. As

far as the write latency is concerned, we note that

full-map protocols have a potential to propagate in-

validations in parallel through the network and thus

incur a write latency of O(1) as opposed to tree-based

and linear-list protocols that incur a write latency of

O(logn) and O(n) respectively. In the following two

sections, we experimentally study these performance

tradeo�s.

3 Experimental methodology

This section presents the simulation environment,

architectural models, and the benchmark applications

we use to make a quantitative comparison between

full-map, linear-list, and tree-based protocols.

3.1 Simulation environment

We use a simulated multiprocessor environment to

study the behavior of parallel applications under the

three di�erent cache coherence protocols. The simula-

tion environment consists of two parts: (i) a functional

simulator that executes the parallel applications and

(ii) the three memory system simulators for full-map,

linear-list, and tree-based protocols.

We have used the CacheMire testbench [3], which

is a program-driven simulator based on a SPARC pro-

cessor simulator. The parallel applications running

on top of the simulator are written using the parmacs

macros from Argonne National Laboratory [1]. The

application programs are compiled using gcc 2.0 with

the -O2 switch turned on. The generated binary code

is executed by the functional simulator. The func-

tional simulator generates a sequence of memory refer-

ences which is passed to the memory system simulator.

The sequence of references are accurately interleaved

since the processor simulator executes the instructions

one by one. A global clock is incremented after each

processor cycle and takes into account the contention

and latency in the memory system.

The memory system simulator takes care of refer-

ences to shared data; instruction fetches and private

data references are assumed to hit in the processor

cache. We also assume that synchronization accesses

are handled in a single processor cycle. The reason is

twofold. First, we are not interested in having a par-

ticular synchronization scheme to in
uence the per-

formance results, and second, the synchronization ac-

cesses in the applications we study are rare (as shown

in Table 3).

3.2 Architecture models

The architecture consists of a number of process-

ing nodes connected by an in�nite-bandwidth network

with constant latency time. A processing node con-

sists of a processor, a cache, a local bus arbitrated

using round-robin, and a part of the shared (local)

memory, see Figure 6. Contention occurs if several

functional units want to access the local bus at the

same time. This contention is modeled correctly by

the in�nite bu�ers connected to the local bus. We

Local Bus

Local
Memory

Cache

Processor

Interconnection Network

Memory
System
Simulator

Functional
SimulatorShared

Memory
References

Tnet

Tbus

Tcache Tproc
Tmem

Figure 6: The organization of a processing node and

the architecture parameters for each functional unit.

use in�nite caches and write bu�ers in our simulator.

Note that the linear-list protocol has a greater advan-

tage of the in�nite write bu�ers than the other two

protocols. We simulate a small con�guration of 16

processing nodes. The block size is 16 bytes and the

branching-factor is K = 2 for the STP.

The shared memory is distributed across the mem-

ory modules in a �ne-grain interleaved fashion to avoid

in
uence of the memory allocation strategy according

to the scheme in RP3 [2].

We now focus on the latency times of memory re-

quests in our architecture. To do this in a consistent

manner we have de�ned a set of architecture param-

eters that are used to construct latency times for all

the three cache coherence protocols. Table 2 sum-

marizes these architecture parameters and lists the la-

tency numbers, assuming a processor clock cycle time

of 10 ns.

Architecture Notation Latency

Parameter (pclocks)

Cache Access Time T

cache

1

Cache Fill and Restart T

proc

6

Local Bus Time T

bus

4

Network Latency T

net

100

Memory Access Time T

mem

15

Table 2: The architecture parameters for each func-

tional unit counted in processor clock cycles (1 pclock

= 10 ns).

3.3 Benchmark programs

To understand the relative performance bene�ts of

the di�erent cache coherence protocols we use a vari-

ety of scienti�c and engineering parallel applications.

First, we use a parallel algorithm for the solution of a

linear system of N equations by iteration, called Solve.

Second, we use two of the SPLASH benchmarks [12]

to get insight into the performance of the protocols

when executing larger applications.

Statistics acquisition starts when the parallel sec-

tion of the application is entered, because the initial-

ization part is expected to be negligible for full-scale

runs.

3.3.1 Solve

In this section we review a classical generic parallel al-

gorithm for the solution of a linear system of N equa-

tions by iteration. For simplicity, we omit the con-

vergence criterion and focus on the shared read-write

memory references generated by the algorithm. This

particular generic algorithm is chosen to illustrate the

problem of coherence actions to data structures with

large sharing sets. Our purpose is to address the prob-

lem of how to support such sharing behaviors for large-

scale multiprocessors.

Consider the following set of linear equations:

x

i+1

=

~

Ax

i

+ b

where x

i+1

; x

i

, and b are vectors of size N and

~

A is

a matrix of size N � N . Suppose that each iteration

(the calculation of vector x

i+1

) is performed by P pro-

cessors, where each processor calculates N=P vector

elements. The code for one iteration of the algorithm

is shown in Figure 7.

par for J := 1 to N do

begin

XTEMP[J] := B[J];

for K := 1 to N do

XTEMP[J] := XTEMP[J] +

A[J,K] * X[K]; | read(X[K])

end;

barrier sync;

par for J := 1 to N do

X[J] := XTEMP[J]; | write(X[J])

barrier sync;

Figure 7: Solve, an example of a parallel algorithm for

iterative solution of a linear system of equations.

P processes are initiated by the par for statement.

Each process calculates N=P = Delta new values

which are stored in XTEMP. In the last parallel loop

in the iteration each processor copies Delta elements

of XTEMP back to the vector X.

In order to understand the impact of cache coher-

ence actions on the execution time for the algorithm

we focus on the read and write operations to vector

X. These are marked in Figure 7. We use Solve in two

di�erent versions. In the �rst version, referred to as

Solve1, we only consider the read and write accesses to

the shared vector X. First, the vector X is distributed

to all the caches. Then, each processor updates a part

of the vector. Note that in Solve1 there is no com-

putation at all. In the second version, referred to as

Solve2, we execute all the additions and the multipli-

cations just as Figure 7 shows. In our simulations we

use a vector size of N = 256 elements, i.e Delta = 16

elements for 16 processors.

3.3.2 SPLASH benchmarks

We use two of the applications in the SPLASH [12]

benchmark suite. The �rst application is MP3D which

is a particle-based wind tunnel simulator. There are

two types of data structures in MP3D. First, there is

a space array containing the information of how the

simulated 3-dimensional space look like. The space

array is also used to determine collision partners for

the molecules. The second data structure is the parti-

cle array which holds the molecules and records their

positions and their velocities. The particles are stati-

cally allocated to the processors. The data set we use

is 10000 particles simulated for 10 time steps.

The second application we use is Water. Water

simulates the evolution of a system of water molecules.

The main data structure is a large array of records

which stores the state of each molecule. During each

time step the interactions between the molecules is

calculated. The molecules is statically assigned to the

processors. We run Water with 288 molecules for 4

time steps.

4 Experimental results

In this section we present the experimental results

we obtained executing our applications on the three

di�erent memory system simulators. We begin with

some general characteristics of the applications in Sec-

tion 4.1. Then we discuss the performance results for

applications with large sharing sets and applications

with small sharing sets in Section 4.2 and 4.3 respec-

tively.

4.1 Application behavior

The behavior of the parallel applications is summa-

rized in Table 3. The fraction of instruction references

is relative to all references. The fraction of private

data references and shared data references is relative

to all data references.

MP3D has a large portion of shared writes and this

in
uences severely on the execution time as we show

in Section 4.3. Although both Solve and Water has a

small fraction of shared writes they have very di�er-

ent behavior. A write operation in Solve invalidates as

many copies as there are caches in the system. In Wa-

ter, almost all write operations only need to invalidate

one copy. This di�erence in invalidation pattern in
u-

ences signi�cantly on the behavior of the applications

as we will see.

4.2 Applications with large sharing sets

Figure 8 shows the relative performance between

full-map, the STP, and the linear-list protocol under

Application Instructions Private data Shared data Synchronizations

read write read write (Test&Set)

(x1.000.000) (x1.000.000) (x1.000.000) (x1.000.000) (x1.000)

Solve1 0.038(74.4%) 0.004(34.3%) 0.004(31.9%) 0.004(31.8%) 0.256(2.0%) 32

Solve2 1.8(84.9%) 0.20(60.0%) 0.07(20.0%) 0.066(19.9%) 0.256(0.08%) 32

MP3D 14.7(72.8%) 1.18(21.3%) 0.55(10.0%) 2.33(42.2%) 1460(26.4%) 2478

Water 618.4(64.1%) 202.1(58.4%) 88.0(25.4%) 51.9(15.0%) 4019(1.2%) 424176

Table 3: The memory accesses divided into di�erent groups according to their type.

sequential consistency (sc) [10]. Note that the pro-

cessor must stall for the full write latency in our im-

plementation. As expected, we see that the full-map

busy time

read latency

write latency: wo

write latency: scfull-map STP linear-list
0.00

50.00

100.00

150.00

200.00

Figure 8: The busy time, read latency, and write la-

tency for Solve1.

protocol outperforms both the STP and the linear-list

protocol because it is more successful in reducing the

write latency. For the linear-list protocol the write

latency is substantial.

The stick diagrams of Figure 8 are broken down

into four sections. The bottom section is the busy

time which is determined by measuring the execution

time on an ideal memory system where each memory

reference takes a single cycle. The middle section is

the processor stall time due to cache misses or read

penalty, and the two topmost sections are the penalty

due to outstanding write operations. From this, we see

that the di�erence in performance stems from how well

the protocols manage to reduce write latency{the read

latency is handled equally well by all the protocols as

expected.

Relaxed consistency models are known to be capa-

ble of hiding most of the write latency [7]. There-

fore, we investigated whether it makes sense to con-

sider more aggressive directory-based protocols than

linear-list protocols under weak ordering (wo) [6]. The

relative performance between the three protocols un-

der weak ordering is shown in Figure 8 by removing

the topmost section. The STP now performs worse

than the other protocols. The reason for this is that

the penalty due to tree construction cannot be hid-

den completely. The reason why this e�ect shows up

at all is that the communication to computation ratio

for Solve1 is very high. In Solve1, we have removed

all computation by only considering reads and writes.

This can be seen from the bottom section (processor

busy time) which is very small.

To study a more realistic ratio of communication to

computation, we introduced the multiplications and

additions associated with the algorithm in Figure 7.

In Table 4, we see the relative performance between

the protocols for this case. As can be seen, the linear-

full-map STP linear-list

Busy time 90.1% 90.1% 90.1%

Read latency 8.7% 8.7% 8.7%

Write latency(wo) 0.3% 1.0% 2.4%

Write latency(sc) 0.9% 2.9% 7.1%

Total time 100.0% 102.7% 108.3%

Table 4: The busy time, read latency, and write la-

tency for Solve2.

list protocol now performs slightly worse than the STP

under weak ordering. This is because of two factors:

(i) the tree construction can now be hidden by local

computation and (ii) the write latency is not com-

pletely hidden. To understand the latter, we consider

the possibilities for hiding write latency for the linear-

list protocol. The write latency is introduced in the

second for loop. The question whether the write la-

tency can be hidden or not will be determined by the

distance between the two barriers. When the proces-

sors reach the second barrier, there will be at least

one outstanding write operation which cannot be hid-

den. In general we expect the di�erence between the

STP and the linear-list protocol to be high if the dis-

tance between synchronizations is small or when the

distance between write operations and the succeeding

synchronization is small. Note also that we consider

an in�nitely sized write bu�er. If the write bu�er is

not su�ciently large the processor may have to stall

even though the consistency model allows it to con-

tinue. For the linear-list protocol this might be a prob-

lem. We therefore believe that the write-bu�er size is

a critical design parameter for linear-list protocols. In

these experiments we have used a small con�guration.

For large con�gurations, we expect the write latencies

to be higher for the linear-list protocol while the time

lost for tree construction is constant for the STP.

In summary, we have shown that for applications

with large sharing sets, the write latency for linear-list

protocols can be detrimental for performance as com-

pared to full-map and tree-based protocols. Full-map

protocols perform better than the STP, but the di�er-

ence is fairly small even for small branching factors for

the STP. We have also seen that the write latency can

impact the performance of linear-list protocols, also

under relaxed consistency models. A critical design

parameter for such protocols is the size of the write

bu�er. Finally, the tree construction for the STP can

be hidden given a reasonable ratio of communication

to computation.

4.3 Applications with small sharing sets

We executed MP3D and Water assuming weak or-

dering. In Table 5 we show the execution time for the

MP3D. There is no signi�cant di�erence in the exe-

cution time between the three protocols. The large

fraction of read latency comes from the fact that most

data objects in MP3D are migratory [8] which implies

that the data objects are only shared by two proces-

sors at the same time. The di�erence in write latencies

does not in
uence signi�cantly on the execution time

since the write operations almost always result in the

invalidation of only one copy.

full-map STP linear-list

Busy time 12.6% 12.6% 12.6%

Read latency 86.7% 86.7% 86.7%

Write latency 0.7% 5.0% 1.9%

Total time 100.0% 104.3% 101.2%

Table 5: The busy time, read latency, and write la-

tency for MP3D.

In Figure 9 we show the execution time for Water.

For Water, the execution time for the three protocols

is roughly the same. The execution time is 6% and 3%

longer for the STP and the linear-list protocol relative

to the execution time of the full-map protocol. The

ratio of communication and computation is smaller in

Water than in MP3D. Most data objects in Water are

busy time

read latency

write latency: wo

full-map STP linear-list
0.00

20.00

40.00

60.00

80.00

100.00

120.00

Figure 9: The busy time, read latency, and write la-

tency for Water.

also migratory objects [8], and as a result most writes

invalidate only one copy. The execution of MP3D and

Water shows that the STP performs slightly worse

than the other protocols. The reason is that the tree

construction cannot be hidden completely since the

migratory objects are updated through read-modify-

write operations. For example, in MP3D the particles

are read and written in the same C-statement (e.g.

Part->x += u;).

In summary, we note that for applications with

small sharing sets, similar to MP3D and Water, it is

insigni�cant which of the cache coherence protocols

the architecture support. In this case, the implemen-

tation cost is of greater importance. Link-based cache

coherence protocols constitute a promising approach

in this case.

5 Concluding remarks

In this paper we have evaluated the implementation

and performance tradeo�s between three directory-

based cache coherence protocols. The evaluation is

based on program-driven simulation and three bench-

mark programs. The protocols investigated are a full-

map, a tree-based, and a linear-list protocol.

Link-based protocols, such as the STP and the SCI,

show a signi�cantly lower implementation cost as com-

pared to full-map protocols. A drawback, however,

is their write latency which grows as O(logn) and

O(n) for tree-based and linear-list protocols, respec-

tively. We have shown that this latency is especially

pronounced for linear-list protocols under sequential

consistency even for small system con�gurations con-

taining only 16 caches. For large system con�gurations

the write latency is expected to be prohibitive. Note

that tree-based protocols can tolerate this latency by

using larger branching factors. In the experiments, we

assumed a branching-factor of 2.

An important issue for the STP is the tree construc-

tion which can impact the write latency. We observed

that if the distance between a cache miss and a subse-

quent write operation is small, such as in read-modify-

write operations, the write operation may take longer

time due to the tree construction. We have seen that

this e�ect is fairly small and, more importantly { the

tree construction time is constant and independent of

the number of caches.

We did not address the impact of cache replace-

ments on the performance. As discussed in our pre-

vious work [11], replacements involve more actions

for tree-based protocols than for full-map and linear-

list protocols. As a result, if the replacement misses

dominate over coherence misses, the STP may su�er.

For COMA-architectures [15], where the replacement

miss rate is low, STP is a promising approach.

For applications where the sharing set is small, the

performance di�erence between the three protocols is

negligible. Since link-based protocols have a consider-

ably smaller implementation cost for large system con-

�gurations, we believe that they are preferable com-

pared to full-map protocols.

Acknowledgements

We want to thank Mats Brorsson and Fredrik

Dahlgren for providing feedback on an earlier draft of

this paper. This work was supported by the Swedish

National Board for Industrial and Technical Develop-

ment (Nutek) under the contract number 9001797.

References

[1] J. Boyle, R. Butler, T. Disz, B. Glickfeld, E. Lusk,

R. Overbeek, J. Patterson, and R. Stevens. Portable

Programs for Parallel Processors. Holt, Rinehart and

Winston, Inc., 1987.

[2] W.C. Brantly, K.P. McAuli�e, and J. Weiss. RP3

Processor-Memory Element. In Proc. of the 1985 In-

ternational Conference of Parallel Processing, pages

782{789, 1985.

[3] M. Brorsson, F. Dahlgren, H. Nilsson, and P. Sten-

str�om. The CacheMire Testbench { A Flexible and

E�ective Approach for Simulation of Multiprocessors.

Technical report, Dept. of Computer Engineering,

Lund University, Sweden, 1992.

[4] L. M. Censier and P. Feautrier. A New Solu-

tion to Coherence Problems in Multicache Systems.

IEEE Transactions on Computers, C-27(12):1112{

1118, 1978.

[5] D. Chaiken, J. Kubiatowicz, and A. Agarwal. Limit-

LESS Directories: A Scalable Cache Coherence Pro-

tocol. In Proc. of the ACM conference ASPLOS-IV,

pages 224{234, 1991.

[6] M. Dubois, C. Scheurich, and F. Briggs. Memory

access bu�ering in multiprocessors. In Proc. of 13th

International Symposium on Computer Architecture,

pages 434{442, June 1986.

[7] K. Gharachorloo, A. Gupta, and J. Hennessy. Per-

formance Evaluation of Memory Consistency Models

for Shared-Memory Multiprocessors. In Proc. of the

ACM conference ASPLOS-IV, pages 245{257, 1991.

[8] A. Gupta and W.-D. Weber. Cache Invalidation

Patterns in Shared-Memory Multiprocessors. IEEE

Transactions on Computers, 41(7):794{810, July

1992.

[9] IEEE. IEEE { P1596 Draft Document, Scalable Co-

herent Interface Draft 2.0, March 1992.

[10] L. Lamport. How to Make a Multiprocessor Com-

puter That Correctly Executes Multiprocess Pro-

grams. IEEE Transactions on Computers, C-28:690{

691, 1979.

[11] H. Nilsson and P. Stenstr�om. The Scalable Tree Pro-

tocol { A Cache Coherence Approach for Large-Scale

Multiprocessors. In Fourth IEEE Symposium on Par-

allel and Distributed Processing, December 1992. To

appear.

[12] J.P. Singh, W.-D. Weber, and A. Gupta. SPLASH:

Stanford Parallel Applications for Shared-Memory.

Computer Architecture News, 20(1):5{44, March

1992.

[13] P. Stenstr�om. A Cache Consistency Protocol for Mul-

tiprocessors with Multistage Networks. In Proc. of

16th International Symposium on Computer Architec-

ture, pages 407{415, May 1989.

[14] P. Stenstr�om. A Survey of Cache Coherence Schemes

for Multiprocessors. IEEE Computer, 23(6):12{24,

June 1990.

[15] P. Stenstr�om, T. Joe, and A. Gupta. Comparative

Performance Evaluation of Cache-Coherent NUMA

and COMA Architectures. In Proc. of 19th Interna-

tional Symposium on Computer Architecture, pages

80{91, May 1992.

