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Abstract

In both hardware-only and software-only directory protocols, i.e., protocols where the direc-
tory is managed by software handlers invoked on the compute processor, the performance is
often limited by memory access stall times. To increase the performance, several latency tol-
erating and reducing techniques have been proposed and shown effective in the context of
hardware-only directory protocols. However, in the context of software-only directory proto-
cols, the efficiency of a technique depends not only on how effective it is as seen by the local
processor, but also on how it impacts the software handler execution overhead in the node
where a memory block is allocated.

Based on architectural simulations and case studies of three latency tolerating and reduc-
ing techniques, we find that prefetching can degrade the performance of software-only direc-
tory protocols due to too many useless prefetches, i.e., the software handler overhead
increases more than the read stall time is reduced. Further, even though a relaxed memory
consistency model hides all write latency also for software-only directory protocols, the soft-
ware handler overhead is virtually unaffected and now constitutes a larger portion of the total
execution time. Overall, latency tolerating techniques for software-only directory protocols
must be chosen with more care than for hardware-only directory protocols.

1  Introduction

Private caches and a directory-based cache coherence protocol implemented in hardware, also

called ahardware-only directory protocol, constitute an important approach to achieve high per-

formance in shared-memory multiprocessors. However, during the last few years several other

approaches have been proposed in order to reduce the hardware complexity and/or increase the

protocol flexibility by migrating parts of the coherence protocol to software [1, 5, 7, 13, 17, 18,

24]. In so calledsoftware-only directory protocols[5], the management of the directory is

migrated from a hard-wired memory controller to software handlers executed on the compute pro-

cessor. As a result, the hardware complexity can be reduced at the expense of slightly lower per-

formance; between 60% and 86% of the hardware-only protocol performance has been reported

in [13].

In both hardware-only and software-only directory protocols, performance is often limited by

processor stall times resulting frommemory access latencies. To reduce the processor stall times,

and thus increase the performance, severallatency tolerating and reducing techniques have been
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proposed and evaluated in the context of hardware-only directory protocols [8, 10, 12, 16, 22, 26].

In addition to the processor stall times, the invocation of software handlers on the compute pro-

cessor in software-only directory protocols can prolong the execution time in two ways. First, the

handler latency might end up on the memory access path and thus delay the memory access

latency seen by the requesting processor. In [13, 14], we propose strategies and techniques to

remove or hide the handler latency from the memory access path for read misses. Second, the

handler latency also burdens the compute processor in the home node, i.e., the node where a

memory block is allocated. Unfortunately, the latter protocol execution overhead, referred to asp-

time, was found to have very limited possibilities to be overlapped by other processor stall times

[13]. Therefore, p-time has a fundamental, and possibly large, impact on the effectiveness of

latency tolerating and reducing techniques in software-only directory protocols.

To illustrate the problem let us consider prefetching, a latency tolerating technique shown to

be effective in hardware-only directory protocols [9, 22]. By using special prefetch requests, data

is brought into the cache prior to its use, thus reducing the read stall time as well as the number of

global read miss requests. However, some prefetch requests are useless because the prediction of

which block to prefetch is not perfect or a prefetched block might be evicted from the cache

before the processor accesses it. In software-only directory protocols this can be a severe problem

since each useless prefetchincreases p-time without reducing the read stall time. As a result, a

high number of useless prefetches might even increase p-time so much that the read stall time

reduction is outweighed. By contrast, consider increasing the block size instead. A larger block

size can potentially reduce both the number of cache misses and the read stall time. In contrast to

prefetching, the number of coherence interrupts is also reduced which results in areduced p-time.

As we have discussed, the effectiveness of latency tolerating and reducing techniques depends

on how such techniques impact p-time. They can be divided into three classes depending on

whether p-timeincreases, decreases, or is invariant when the technique is applied. First, tech-

niques that increase p-time are expected to be relatively more efficient in hardware-only than in

software-only directory protocols. Second, we expect the performance difference between hard-

ware-only and software-only directory protocols to decrease when techniques that reduce p-time

are used. Finally, for techniques where p-time is invariant, p-time will contribute relatively more

to the total execution time given that the stall times are equally reduced in both hardware-only

and software-only directory protocols. Therefore, we expect the performance difference between

hardware-only and software-only directory protocols to increase for such techniques.

In this paper we study these effects by considering three latency tolerating and reducing tech-

niques and compare the performance of hardware-only and software-only directory protocols

under each of these techniques. We have chosen hardware-basedadaptive sequential prefetching

[10], migratory optimization [8, 26], a technique that dynamically detects migratory data blocks
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and optimizes their coherence protocol actions, andrelease consistency [12] as example tech-

niques that increase, reduce, and do not affect p-time, respectively.

To evaluate the relative performance between hardware-only and software-only directory pro-

tocols for each of the three techniques we use architectural simulations of a detailed multiproces-

sor model and four applications from the SPLASH benchmark suite [25]. We find that adaptive

sequential prefetching, a technique that increases p-time, often actuallydegrades the performance

of software-only directory protocols due to a large p-time overhead. By contrast, adaptive sequen-

tial prefetching increases the performance for hardware-only directory protocols. Further, we find

that the migratory optimization technique, which reduces p-time, has a potential to boost the rela-

tive performance of software-only directory protocols as compared to hardware-only directory

protocols. Finally, release consistency, which does virtually not affect p-time, usually increases

the relative performance difference between software-only and hardware-only directory proto-

cols.

We begin in the next section to describe our baseline architecture. Based on this architecture,

we discuss the expected performance effects of latency tolerating and reducing techniques in Sec-

tion 3. Then, in Section 4 we present the experimental environment that our results in Section 5

are derived from. Finally, in Section 6 we discuss and generalize our findings before we conclude

the study in Section 7.

2  The Baseline Architecture and the Coherence Protocol

In this section we describe our baseline architecture by only providing enough information to

understand the performance effects of the latency tolerating and reducing techniques we discuss

in the next section. Later, in Section 4, we present our architectural assumptions when we

describe the simulation methodology.

Our baseline architecture is a sequentially consistent cache-coherent NUMA architecture

where a number of processor nodes are connected by a network. Each node consists of a proces-

sor with its cache hierarchy, a memory module, a local bus, and a network interface connecting

the processor node to the network as shown in Figure 1.

Figure 1: An overview of the assumed CC-NUMA architecture.
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To understand the effects latency tolerating and reducing techniques have on the execution

time, a basic understanding of how the cache coherence protocol works is essential. The cache

coherence protocol is a write-invalidate protocol with a full-map directory [4], i.e., for each mem-

ory block a presence flag vector is used to indicate which nodes having a copy of the block. When

describing the coherence actions of the protocol we will refer to the nodes involved as follows;

home is the node where the page containing the block is allocated,local is the node where a

request originates from, and finally,remote is any other node involved in a coherence action. The

coherence protocol actions are as follows.

A processor read that misses in the cache, initiates a read miss request which is sent to home.

If the block isclean in home, i.e., an updated copy exists, home responds with a block copy to

local and updates the directory. Otherwise, if the block isdirty in home, i.e., a remote cache has

an exclusive and possibly modified copy, home issues a write-back request to remote; remote

updates home; and finally, home forwards a block copy to local, updates the directory, and the

block ends up clean in home.

A processor write to a non-exclusive block in the cache, results in an ownership request sent

to home. Home inspects the directory and sends explicit invalidations to the other caches with a

block copy. Each cache receiving an invalidation, responds with an acknowledgment to home.

When home has collected all acknowledgments, it grants ownership to local and the block ends

up as dirty in home. During the time write-back requests and invalidations are pending, the block

is in a transient state ‘busy’ and read and write requests to the block have to be retried.

In hardware-only directory protocols, the memory protocol engine consists of three parts

implemented in hardware: a memory controller, a directory, and a state memory. The controller is

responsible for processing incoming coherence requests, take correct actions depending on the

state of the memory block, and also manage the directory. By contrast, in a software-only direc-

tory protocol, the management of the directory is migrated from the complex hard-wired control-

ler to software handlers executed on the compute processor. These handlers are responsible for

processing coherence requests and managing the directory which now is stored in main memory

and not in a special hardware directory. Unfortunately, this migration has a cost. Upon each

coherence request, the processor is interrupted in order to execute a software handler, thus inter-

fering with the application execution which possibly prolongs the total execution time of the

application. In Section 4 we describe in detail how a processor node for software-only directory

protocols is organized.

In [13], we proposed several strategies to reduce the number of processor interrupts for read

requests and we assume the most aggressive one in this study. This aggressive strategy has hard-

ware support for request forwarding from home to remote for read miss requests to dirty blocks

and also supports data block transfers to local in parallel with the processor interrupt for directory
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updates. Moreover, read misses to blocks allocated in the local node do not interrupt the processor

as proposed in [14].

The memory protocol-engine in home has a central role in our coherence protocol. The imple-

mentation of this protocol-engine differs between hardware-only and software-only directory pro-

tocols; in the latter case the processor is interrupted on each coherence request to home. As we

will see in the next section, this fact has a fundamental effect on the relative performance between

hardware-only and software-only directory protocols under latency tolerating and reducing tech-

niques.

3  Execution Time Effects of Latency Tolerating and Reducing Techniques

To understand the effects latency tolerating and reducing techniques have on program execution

time, we start in this section to develop a simple execution time model. Based on this model, we

reason about the expected performance effects of three latency tolerating and reducing techniques

which differ in the way they impact the protocol execution overhead and the total execution time.

Then, in Section 5 we evaluate how well our expectations match the simulation results.

3.1  A Simple Execution Time Model

As a basis for the rest of the paper, we use a simple model of the execution time of a parallel

application. This model allows us to reason about various effects that latency tolerating and

reducing techniques have on the execution time components. In Figure 2, we show how the exe-

cution time of a parallel application can be decomposed for hardware-only and software-only

directory protocols, i.e., the left and the right bars of Figure 2, respectively. We first discuss each

of the bars and then, at the end of this section, we comment on the relative size of the bars.

The execution time components under a hardware-only directory protocol are shown in the

left bar of Figure 2. The bottom part, denotedBhw, corresponds to the busy time or the processor

utilization, i.e., the time the processors execute application code. The next part corresponds to the

read stall time, denotedRhw, which is the time the processors are stalled due to read misses in the

caches. Further, the part denotedWhw corresponds to the write stall time, i.e., the time the proces-

sors are stalled waiting for ownership requests to complete. Finally, the top part of the bar corre-

sponds to the synchronization stall time, denotedShw, which is the time the processors wait for,

e.g., locks and barriers. The total execution time under a hardware-only directory protocol,

denotedEhw, is the sum of the different components we have described, i.e.,Ehw = Bhw + Rhw +

Whw + Shw.

The right bar in Figure 2 shows the execution time breakdown of a parallel application under

a software-only directory protocol. We find that also under a software-only protocol the execution

time consists of busy time,Bsw, read stall time,Rsw, write stall time,Wsw, and synchronization

stall time,Ssw. However, in addition to the other stall times, overhead due to protocol execution,

denotedPsw in Figure 2, shows up in a software-only directory protocol. This protocol execution
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overhead arises from the fact that each coherence request to home interrupts the compute proces-

sor in the home node. When a software handler is invoked, the execution of it may be overlapped

with other stall times and does not disturb the application execution. Otherwise, the handler exe-

cution is only partly, or in the worst case not at all, overlapped with other stall times. In this latter

case, the handler execution prolongs the total execution time of the application. The sum of han-

dler execution times that are not overlapped with other stall times is referred to asp-time and

denotedPsw in Figure 2. In [13], we found very limited possibilities to overlap protocol execution

with other stall times, and to simplify the reasoning in this section, we assume that the protocol

execution cannot be overlapped at all with other stall times. The total execution time under a soft-

ware-only directory protocol, denotedEsw, is the sum of the busy time, all stall times, and p-time,

i.e.,Esw = Bsw + Rsw + Wsw + Ssw + Psw.

In this paper we will focus on the relative performance between hardware-only and software-

only directory protocols. More specifically, we are interested in how the relative performance

changes as we apply different latency tolerating and reducing techniques. Therefore, we use the

execution time ratio, ETR, between hardware-only and software-only directory protocols as our

primary measure of the relative performance. We define ETR as follows:

We close this section by commenting on the relative sizes of the stall times under hardware-

only and software-only directory protocols. In this study, we do not use any applications with

dynamic load balancing that might affect the busy time, and thereforeBhw = Bsw for all applica-

tions. In [13], we showed that by using efficient strategies for data forwarding, the read stall time

under a software-only directory protocol is essentially the same as in a hardware-only directory

protocol. Therefore, we assume in this section thatRhw = Rsw. By contrast, we found in [13] that

the write stall time and the synchronization overhead were significantly higher in a software-only

directory than in a hardware-only directory protocol, i.e.,Whw < Wsw andShw < Ssw. As a result,

ETR will be larger than one for the baseline systems;ETR values between 1.16 and 1.68 were

reported in [13].

Figure 2: Execution time breakdown for hardware-only (left)
and software-only (right) directory protocols.
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3.2  Prefetching — A Technique that Increases the Protocol Execution Overhead

Prefetching is a latency tolerating technique that have been proposed and evaluated, both as a

software controlled technique [3, 19, 21] and as a hardware-based technique [6, 10]. We start with

the general characteristics of prefetching and then specifically discuss the scheme used in this

study. Further, in this study we only consider non-binding, read-shared prefetching, i.e., the block

is fetched in a shared mode, but we will discuss other forms of prefetching as well in Section 6.

The goal of read-shared, non-binding prefetching is to bring data into the cache in advance so

the processor encounters a cache hit instead of a miss. The data is fetched in a shared state and is

still visible to the coherence protocol, as opposed to binding prefetching where data is loaded

directly into, e.g., a register. As a result, the data might be evicted from the cache, due to an inval-

idation or a replacement, before the processor accesses it. In this situation the processor still

encounters a miss and the prefetch wasuseless. Useless prefetches also originate from the fact

that the prefetch scheme might fetch blocks that the processor never accesses. All these useless

prefetches cause both unnecessary network traffic, and more important in this study, increase the

occupancy in the memory protocol engine of the home node. This occupancy is usually no prob-

lem in a hardware-only directory protocol since each prefetch occupies the controller only a short

amount of time. By contrast, in a software-only directory protocol this occupancy is directly

translated to protocol execution overhead in the home node, i.e., p-time increases.

When prefetching is applied to both hardware-only and software-only directory protocols, we

expectETR to increase for the following reason. Prefetching attacks and reduces the read stall

time, in the ideal case the read stall time is equally reduced in both hardware-only and software-

only directory protocols, i.e.,R’hw = R’sw< Rhw = Rsw. The write and synchronization stall times

may increase a little as a result of contention. However, the big difference between hardware-only

and software-only protocols is p-time, whichincreases as a result of useless prefetches, i.e.,Psw

increases. This increase in combination with the decreased read stall time makesPsw a relatively

larger part of the total execution time under software-only directory protocols. As a result, we

expectETR to increase when prefetching is used. In Section 5.1, we present simulation results for

prefetching and compare them with the expectations in this section.

Since useless prefetches are present to various degree in all prefetching schemes, we experi-

mentally consider only one scheme. In Section 6, we discuss how other prefetch schemes relate to

the one we have simulated. As an example of a prefetching scheme we have chosenadaptive

sequential prefetching [10]. While the implementation details are found in [10], we here concen-

trate on the behavioral aspects. In sequential prefetching a fixed number of consecutive blocks,K,

are prefetched for each cache miss the processor encounters. TheK prefetched blocks are those

directly following the missing block in the address space. However, the optimal number of blocks

to prefetch on each miss varies during the execution. In adaptive sequential prefetching this short-

coming is addressed. By measuring the number of useful prefetches, i.e., the number of
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prefetched block that the processor actually accesses before they are evicted from the cache, the

scheme tunes the value ofK according to the dynamic behavior of the application.

3.3  Migratory Optimization — A Technique that Reduces the Protocol Execution Overhead

In the previous section we discussed prefetching and found that the main obstacle of prefetching

in the context of software-only directory protocols was the increased p-time. Therefore, in this

section we will discuss a technique thatdecreases p-time when it is applied. We start by describ-

ing the technique and then the expected impact on theETR.

Migratory sharing [15] is a program behavior not uncommon in parallel applications, e.g.,

data accessed in critical sections and by short read-modify-write sequences such as “i=i+1”

exhibit migratory sharing. For example, consider the following scenario: First, one processor

reads a data block and then it modifies the block, i.e., it obtains exclusive ownership of the block.

Then, another processor reads and modifies the block in the same way, and thus, the block

migrates around among the processors. Note that migratory data blocks are referenced by only

one processor at the same time but by many processors in the long run.

In a system with a write-invalidate protocol each ‘migration’ of the block between two pro-

cessors incurs two global actions; first a read miss request and then an ownership request. In a

sequential consistent system, both these actions stall the processor resulting in both read and write

stall times. However, two independent studies [8, 26] came up with the same solution to detect

migratory blocks and optimize the coherence protocol for them. Thismigratory optimization

technique dynamically detects migratory blocks at the home node, which sees all read miss and

ownership requests, by recognizing two subsequent read-write sequences by two different proces-

sors. The coherence protocol then handles migratory blocks with a single read-exclusive request

instead of one read miss and one ownership request, thus avoiding the write stall.

The performance gain achieved by the migratory optimization technique is the removal of

global ownership requests for migratory blocks. As a result, both the write stall time and the occu-

pancy in the home node is reduced, i.e.,Whw, Wsw, andPsw in Figure 2 are reduced. The number

of ownership requests is equally reduced in the hardware-only and the software-only directory

protocol with this technique. However, each ownership request is more expensive, both in terms

of stall time and occupancy, in a software-only than in a hardware-only directory protocol and

therefore we expectWsw to decrease more thanWhw does. In addition, the migratory optimization

also reducesPsw which leads us to expectETR to decrease.

3.4  Release Consistency — A Technique that not Affects the Protocol Execution Overhead

Under sequential consistency, which is our default memory consistency model, the processor

stalls on each access to shared data in order to enforce a global order of accesses. This is a severe

restriction and can be relaxed. Under relaxed memory consistency models, ordering is only

enforced on special, hardware-recognizable synchronization primitives. One of the most relaxed
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consistency models isRelease Consistency[12], RC. In RC, one distinguishes betweenacquires

(acquiring a lock or a flag) andreleases (releasing a lock or a flag). RC specifies that the processor

is not allowed to proceed after an acquire before the acquire has completed and that a release is

not allowed to be issued until all preceding requests have completed. The most important implica-

tion of RC in our framework is that the processor does not stall on write and release requests, i.e.,

all write stall time can be hidden and the synchronization stall time might decrease.

Relating the expected performance effects of RC to the bars in Figure 2, we begin by conclud-

ing thatWhw < Wsw under sequential consistency. SinceW’hw = W’sw = 0 under RC, we expect the

software-only directory protocol to gain relatively more from RC than the hardware-only direc-

tory protocol does. Further, we expect bothShw andSsw to decrease, but a slight increase inRhw

andRsw can occur as a result of higher contention within the processor nodes. Finally, since RC is

not expected to change the number of coherence requests in the system, we expect the protocol

execution overhead, i.e.,Psw, to be unaffected. To summarize, given that the stall times are

equally reduced in both hardware-only and software-only directory protocols, the protocol execu-

tion overhead,Psw, will be a relatively larger component ofEsw when RC is used, and thusETR is

increased. However, sinceWhw < Wsw under sequential consistency, the write stall time reduction

under RC for a software-only directory protocol can outweigh the relatively higher p-time under

RC which might even lead to a decreasedETR. In Section 5.3 we show how our intuitions relate

to simulation results.

4  Architectural Parameters and Benchmark Programs

In this section we go through our detailed architectural assumptions, including timing parameters,

and our set of parallel benchmark applications. The simulation models are built on top of the

CacheMire Test Bench [2], a simulation framework and programming environment. The frame-

work consists of multiple SPARC processors simulated at the instruction level and an architec-

tural simulator of the multiprocessor model. The processors issue memory references to the

architectural simulator which delays the processors according to its timing model. Thus, the same

interleaving as in the target system is obtained. Instruction and private data references are not fed

to the architectural simulator since we assume they expire a single-cycle cache hit.

4.1  Detailed Architectural and Timing Assumptions

We simulate a multiprocessor with 16 nodes and the organization of a processor node is shown in

Figure 3. Each node contains a processor with its cache hierarchy, a memory module, a network

interface, and a local bus. We comment on the organizational differences between hardware-only

and software-only directory protocols where necessary.

The two-level cache hierarchy consists of a 2 Kbytes on-chip write-through first-level cache

(FLC) and a 64 Kbytes off-chip copy-back second-level cache (SLC). Both caches are direct-

mapped with a default block size of 64 bytes and full inclusion is maintained. Similar to many
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contemporary microprocessors, we assume that the processor manages its own caches, i.e., the

SLC controller is on-chip. A first-level write buffer (FLWB) with 16 entries connects theFLC and

theSLCand allows processor writes to complete in a single cycle. Further, theSLC is lockup-free

and supports multiple pending requests which is essential under, e.g., release consistency and

prefetching. The buffering of pending requests are done in a 16 entries large second-level write

buffer (SLWB).

The memory module consists of a data portion, a state memory containing the global state for

each memory block, and a memory controller. In a addition, in a hardware-only directory protocol

a separate directory (striped in Figure 3) is needed to record which caches having copies of the

different memory blocks. Further, the memory controller also implements the memory actions in

the coherence protocol. The page size in the system is 4 Kbytes and the pages are allocated to the

memory modules in a round-robin fashion, i.e., pages with consecutive page numbers are allo-

cated in consecutive memory modules. Moreover, synchronization operations, i.e., acquires and

releases, are supported by a queue-based mechanism similar to the one implemented in Dash [20].

The network interface is responsible for routing messages between the node and the network,

and is connected to the processor and the memory module through a 128 bits wide split transac-

tion bus. The network interface also collects invalidation acknowledgments and notifies the mem-

ory-protocol engine when the last acknowledgment has arrived. In a software-only directory

protocol, the network interface also routes messages to the interrupt buffer and from the send
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buffer (shaded in Figure 3). When a coherence request arrives at the home node, the message is

put into the interrupt buffer, the processor is interrupted, and a software handler is executed. This

handler might generate new coherence messages which are put in the send buffer. The interrupt

and send buffers are interfaced to theSLC bus, have the same access time as theSLC, and are

accessible through memory mapped addresses. For more details, see [14], where we go through

the design considerations for a processor node supporting software-only directory protocols. As

suggested in [14], we assume that directory entries are cached when the software handlers access

them.

As for the timing assumptions, we assume that the SPARC processors and theirFLCs are

clocked at 100 MHz, i.e., 1 pclock = 10 ns. TheSLC interface is 128 bits wide and theSLC is

implemented in SRAM with an access time of 30 ns to the first word in a block and 10 ns between

the other words in the same block, resulting in a block transfer time of 60 ns. The memory module

has an 128 bits wide interface and is implemented in DRAM with an access time of 90 ns to the

first word and 10 ns between the rest of the words in a block, resulting in a 120 ns access time for

a whole block. Both the local bus and the network interface are assumed to run at 100 MHz.

While we also vary the network latency later in this study, the default interconnection network has

an infinite bandwidth and a constant latency of 300 ns, i.e., 30 pclocks, which approximately cor-

responds to the latency in a 50 MHz mesh network with 32-bit flits. However, contention is cor-

rectly modelled in all parts within a processor node. Finally, the default software handler

execution time is 50 pclocks excluding memory and buffer access times. To the default handler

execution time, we add 6 pclocks for each message the handler sends, 13 pclocks for each read or

write of the state of a memory block, and finally, 1 pclock or 16 pclocks for each directory access

depending on whether a directory entry is cached or not.

4.2  Benchmark Programs

In our experimental evaluation we use three parallel programs taken from the SPLASH suite [25]

(Water, Ocean, and MP3D) and one that has been provided to us by Stanford University (LU).

The programs are written in C with parallelism and process coordination expressed using thepar-

macs macros from Argonne National Laboratory. The applications are compiled withgcc ver-

sion 2.1 and optimization level-O2. All applications are from the scientific and engineering

domain, and a short description of them together with the data set sizes we use are summarized in

Table 1. Statistics are gathered in the parallel section of the applications to avoid initialization

effects, which we assume to be negligible in an execution with more realistic data sets. Water and

MP3D are two applications with a high degree of migratory sharing, while producer-consumer

sharing dominates in LU and Ocean. As for the miss rates, we have found that coherence misses

dominates in Water and MP3D, cold and replacement misses dominate in LU, and finally, coher-

ence and replacement misses dominate in Ocean.



- 12 -

5  Performance Effects of Latency Tolerating and Reducing Techniques

In this section we will go through the relative performance between hardware-only and software-

only directory protocols under adaptive sequential prefetching (Section 5.1), under migratory

optimization (Section 5.2), and under release consistency (Section 5.3). Finally, in Section 5.4 we

evaluate the performance effects of different block sizes.

5.1  Adaptive Sequential Prefetching

In this section we evaluate how the relative performance between a hardware-only and a soft-

ware-only directory protocol changes when adaptive sequential prefetching is applied. The execu-

tion times of the four applications are shown in Figure 4. For each application, four bars are

shown. The two left bars correspond to the execution time for a hardware-only directory protocol

without (HW) and with (HW-P) adaptive sequential prefetching, and the two right bars corre-

spond to a software-only directory protocol without (SW) and with (SW-P) adaptive sequential

prefetching. For each bar, the execution time is decomposed, from bottom to top and with the

notations from Figure 2, into the following components: the busy (Bx), the read stall (Rx), the

write stall (Wx), and the synchronization stall times (Sx), wherex is eitherhw or sw. Finally, for

software-only directory protocols, the protocol execution overhead (Psw) is shown at the top. To

simplify the discussion, we will use these notations in the rest of this section.

We first focus on the relative execution times of HW and SW in Figure 4. By comparing the

execution times, we find that the execution time ratios between SW and HW are between 1.16

(Water) and 1.76 (MP3D). TheseETR values are in accordance with the results earlier presented

in [13, 14].

Prefetching aims at reducing the read stall times, thus obtaining a shorter execution time. As

we see in Figure 4, the execution times under HW-P is lower than under HW for all applications.

In addition, simulation results show that prefetching reducesRhw with 36%, 27%, 13%, and 11%

for Water, LU, Ocean, and MP3D, respectively.

Continuing with the performance effects under the software-only directory protocol, we find

by comparing the read stall times under SW and SW-P that prefetching reducesRsw with 34%,

4%, 2%, and 12% for Water, LU, Ocean, and MP3D, respectively. So in that respect, prefetching

helps performance. Unfortunately, bothWsw andSsw increase by up to 25% (Ocean) and 24%

Table 1: The parallel programs together with the data set sizes we use in our simulations.

Application Description Data set size/Input data

Water Water molecular dynamics simulation 288 molecules, 4 time steps

LU LU-decomposition of a dense matrix 200x200 matrix

Ocean Simulate eddy currents in an ocean basin 128-by-128 grid, tolerance 10-7

MP3D Particle-based wind-tunnel simulator 10,000 particles, 10 time steps
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(LU), respectively, under SW-P as compared to SW as a result of longer queuing delays in the

home node. The average number of messages in the interrupt buffer at the time a new request is

deposited in the buffer increases under prefetching. For example, for LU the average number of

messages in the interrupt buffers upon deposit of a new message is increased from three to four

when prefetching is applied.

By examining the protocol execution overhead, we observe a significant increase ofPsw under

SW-P as compared to SW;Psw has increased by between 12% (MP3D) and 34% (Ocean). This

higher protocol execution overhead is expected according to the discussion in Section 3.2. The

increase ofPsw stems from a higher number of coherence requests to home, and our simulation

results show that SW-P generates between 9% (MP3D) and 33% (LU) more software handler

invocations than SW.

Finally, by adding all the execution time components under SW and SW-P, we conclude that

the total execution time,Esw, has increased by between 3% (Water) and 13% (Ocean) when adap-

tive sequential prefetching is applied to the software-only directory protocol. As a result, the exe-

cution time ratios (ETR) between SW-P and HW-P are higher than between SW and HW for all

applications. We summarize the resultingETR values in Table 2.

One reason why the adaptive sequential prefetching scheme incurs so much protocol execu-

tion overhead can be tracked down to a low prefetch efficiency, which turns out to be between

25% (MP3D) and 36% (LU). In other words, for each successful prefetch, i.e., a prefetched block
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without (HW and SW) and with adaptive sequential prefetching (HW-P and SW-P).
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that the processor accesses before the block is evicted from the cache, between two and three use-

less prefetches are issued. Even though useless prefetches increase contention also in a hardware-

only directory protocol, they can have a devastating effect on the performance of software-only

directory protocols. Therefore, a high prefetch efficiency in a prefetching scheme is more impor-

tant in software-only than in hardware-only directory protocols.

In Figure 4 we see that prefetching is able to reduceRsw but at the cost of higherPsw under

SW-P. An interesting question is whether the reduction ofRsw can outweigh the increase ofPsw

for reasonable network latencies. Therefore, we simulate network latencies of 60 pclocks and 120

pclocks, which is 2 and 4 times the baseline latency, respectively. Four times the default network

latency might seem long at a first glance, but considering contemporary multiple-issue processors

running at 300 MHz, a ratio between the instruction rate and the network frequency of eight is a

realistic design point to examine.

In Figure 5, we show the normalized execution times for the software-only directory protocol

with (SW-X-P) and without (SW-X) adaptive sequential prefetching, where X is the network

latency counted in processor clock cycles and has the values 30, 60, and 120. We start by conclud-

ing that prefetching reducesRsw for all applications and network latencies, although for Ocean the

reduction is negligible. For Water and MP3D, we see that as the network latency increases, the

read stall time reduction actually is larger than the increase in protocol execution overhead. As a

result, adaptive sequential prefetching has a potential to reduce the total execution time when the

speed gap between the processor and the network increases. However, for LU we observe that

even though prefetching reducesRsw significantly, the performance gain is outweighed mainly by

longer write stall times and higher protocol execution overhead. As a result, for the network laten-

cies we consider in this study, LU does not benefit from adaptive sequential prefetching under

software-only directory protocols. Finally, for Ocean the overhead resulting from prefetching

totally outweighs the small gains achieved in the read stall time. Therefore, we speculate that

adaptive sequential prefetching does not reduce the execution time of Ocean for any reasonable

network latency.

Since adaptive sequential prefetching exploits spatial locality, an important question to

address is whether adaptive sequential prefetching is more effective in reducing the execution

times for block sizes smaller than the default size of 64 bytes. Therefore, we evaluated the bene-

fits of adaptive sequential prefetching in software-only directory protocols for block sizes of 16

bytes and 32 bytes with network latencies of 30, 60, and 120 pclocks. The resulting execution

Table 2: Execution time ratios between software-only and hardware-only
directory protocols with and without prefetching.

Water LU Ocean MP3D

ETR = Esw(SW)/Ehw(HW) 1.16 1.37 1.43 1.76

ETR = Esw(SW-P)/Ehw(HW-P) 1.23 1.58 1.64 1.88
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time ratios between the software-only directory protocol with and without adaptive sequential

prefetching are summarized in Table 3.

We begin by concluding that the execution time ratios between the software-only and the

hardware-only directory protocols increase when adaptive sequential prefetching is applied for all

block size and network latency combinations we have evaluated (not shown in Table 3). As

expected, simulation results show that adaptive sequential prefetching generally reduces the read

stall times more for smaller block sizes. Unfortunately, similar to the results for 64 bytes blocks,

Table 3: Execution time ratios between software-only directory protocols with and without
sequential adaptive prefetching for different block sizes and network latencies.

Block size
Network
latency

ETR = E(SW-P)/E(SW)

Water LU Ocean MP3D

16 bytes

30 pclocks 1.00 1.00 1.27 1.13

60 pclocks 0.93 0.99 1.06 1.07

120 pclocks 0.84 0.99 1.08 1.12

32 bytes

30 pclocks 1.01 1.05 1.05 1.08

60 pclocks 0.97 1.04 1.08 1.04

120 pclocks 0.92 0.99 1.04 0.96
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the gains in execution time obtained by the read stall reduction is often outweighed by larger pro-

tocol execution overhead and/or by longer write and synchronization stall times. Therefore, even

though adaptive sequential prefetching seems useful for applications with high computation-to-

communication ratio such Water, the overall usefulness of it is questionable in software-only

directory protocols.

In summary, even though a prefetching scheme is efficient when applied under a hardware-

only directory protocol, it might increase the execution time when applied under a software-only

directory protocol. Since software-only directory protocols are more sensitive to useless

prefetches than hardware-only directory protocol, a low prefetch efficiency can have a devastating

effect on the performance of software-only directory protocols. Simulation results show that the

execution time ratio between software-only and hardware-only directory increases by between

6% and 15% for our default architectural parameters. However, as the speed difference between

the processor and the network increases, prefetching has a potential to reduce the execution time

also under software-only directory protocols. Since adaptive sequential prefetching does not pro-

vide any consistent performance improvement for software-only directory protocols, other

prefetching schemes with higher prefetch efficiency seems to be a more promising alternative to

consider.

5.2  Migratory Optimization

In this section we evaluate the relative performance between a software-only and a hardware-only

directory protocol when the migratory optimization technique is applied. Migratory optimization

reduces the protocol execution overhead as discussed in Section 3.3 and have, as we will see,

other effects on theETR than the prefetching technique in the previous section. In Figure 6, we

show the resulting execution times when the migratory optimization technique is applied to hard-

ware-only and software-only directory protocols, referred to as HW-M and SW-M, respectively.

We first conclude that the migratory optimization reduces execution times for all applications

under both hardware-only and software-only directory protocols. In order to understand the

effects the migratory optimization has on the different execution time components, we go through

each of them starting with the write stall time component.

By looking at the write stall times in Figure 6, we see that bothWhw andWsw are significantly

reduced for Water and MP3D under HW-M and SW-M, respectively. This result is expected from

the discussion in Section 3.3 and in accordance with the results presented in [26]. By looking at

the write stall time reduction in more detail, we find thatWhw is reduced by 73% and 75% for

Water and MP3D, respectively, while the corresponding numbers forWsw are 78% for both Water

and MP3D. In other words,Wsw is reduced relatively more thanWhw as a result of shorter queuing

delays in home; the reduced number of coherence requests reduces the average size of the inter-

rupt buffer. For LU and Ocean, only small decreases in the write penalty are observed. In total,
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this corresponds well to the application behavior; in Water and MP3D, migratory sharing domi-

nates while producer-consumer sharing dominates in LU and Ocean.

Continuing with the synchronization stall times, we observe that they are also reduced when

the migratory optimization is applied. This effect, which is most pronounced for LU, Ocean, and

MP3D, arises mainly because of more efficient barrier synchronizations. In our barrier implemen-

tation, a counter variable is used to keep track of the current number of processors waiting at the

barrier. This counter variable exhibits migratory sharing and, of course, benefits from the migra-

tory optimization. However, for Ocean,Ssw is reduced relatively less thanShw, 19% and 26%,

respectively, when the migratory optimization is applied which might increase theETR. This sur-

prising observation is explained as follows. In [13],Ssw was found to be larger thanShw due to

imbalance in the number of coherence interrupts; some processors encounter up to ten times as

many interrupts as other processors. Even though the barrier itself is more efficient with the

migratory optimization, the inherent larger overhead due to the interrupt imbalance in software-

only directory protocols are not affected.

The next execution time component to examine is the protocol execution overhead,Psw,

which is reduced by 35% and 56% for Water and MP3D, respectively. This reduction stems from

a significantly lower number of coherence interrupts in the home nodes as we predicted in Section

3.3. For Water, the number of coherence interrupts has decreased by 34% and for MP3D by 52%.

For the other two applications, LU and Ocean,Psw is virtually unaffected as expected.
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Finally, bothRhw andRsw are virtually unaffected for three of the applications (Water, LU, and

MP3D) when we apply the migratory optimization. However, for Ocean we observe thatRhw and

Rsw are increased by 11% and 27%, respectively, when the migratory optimization is applied.

Ocean has a non-negligible amount of false sharing [11], which causes many blocks to be deemed

as migratory even though they are not. As a result, the miss rate increases with 12% under HW-M

and 29% under SW-M. This effect was as far as we know first observed and reported in [23].

In Table 4, we show the resulting execution time ratios between SW and HW, and between

SW-M and HW-M, respectively. Using the migratory optimization results in lowerETR for appli-

cations with a high degree of migratory sharing (Water and MP3D). The lowerETR results both

from a relatively larger reduction ofWsw than ofWhw and from a reduction ofPsw. For LU, we

find that theETR is virtually the same with and without the migratory optimization. Finally, for

Ocean theETR increases, mainly as a result of a relatively smaller reduction ofSsw thanShw and a

larger increase ofRsw than ofRhw when migratory optimization is applied.

In summary, we have found the migratory optimization effective in reducing both the write

stall time and the protocol execution overhead for applications with a high degree of migratory

sharing. Since the write and synchronization stall times are relatively more reduced under SW-M

than under HW-M, the execution time ratio decreases. Further, the migratory optimization has a

potential to reduce the synchronization stall times also for other applications as a result of more

efficient barrier synchronizations. Finally, the migratory optimization can increase theETR for

applications with a high degree of false sharing which penalizes SW more than HW.

5.3  Release Consistency

In this section we evaluate the relative performance of hardware-only and software-only directory

protocols when release consistency is applied. In Figure 7, we show the relative execution times

of hardware-only and software-only directory protocols under sequential consistency (HW and

SW, respectively) and release consistency (HW-RC and SW-RC, respectively). The execution

times are normalized to the execution time of a hardware-only directory protocol under sequential

consistency.

A comparison between the execution times of HW and HW-RC, and between the execution

times of SW and SW-RC in Figure 7 shows that release consistency gives a consistent perfor-

mance improvement for both hardware-only and software-only directory protocols. This is con-

sistent with results presented in earlier studies [13, 16].

Table 4: Execution time ratios between software-only and hardware-only
directory protocols with and without the migratory optimization.

Water LU Ocean MP3D

ETR = Esw(SW)/Ehw(HW) 1.16 1.37 1.43 1.76

ETR = Esw(SW-M)/Ehw(HW-M) 1.11 1.36 1.53 1.46
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By comparing the protocol execution overhead for SW and SW-RC, we see that the intuition

from Section 3.4 seems to be correct; since the number of coherence requests are the same under

sequential and release consistency,Psw should not be affected. As the results presented in Figure 7

show,Psw is virtually unaffected for all applications which confirms our intuition.

As we can see in Figure 7, release consistency removes the write stall time for all applica-

tions. Under the hardware-only directory protocol, this is achieved with virtually no increase in

read and synchronization stall times. By contrast, under the software-only directory protocol the

read stall time is increased for two of the applications, LU and Ocean. For LU, the main reason is

longer delays in the first-level write buffer. Under sequential consistency, aFLC read miss gets

served by theSLC almost at once, while under release consistency it has to wait in average seven

cycles. So, why does this happen in a software-only protocol? In a software-only directory proto-

col, each global write request takes a longer time than in a hardware-only directory protocol.

Therefore, the second-level write buffer with its 16 entries is filled up much more often in a soft-

ware-only directory protocol which blocks requests from the first-level write buffer. For Ocean,

the longer read stall time originates from a combination of longer delays in the first-level write

buffer and higher contention in the network interface of the home nodes.

The resulting execution time ratios between SW and HW, and between SW-RC and HW-RC

are presented in Table 5. For three of the applications, LU, Ocean, and MP3D, theETR increases

when release consistency is applied as we predicted in Section 3.4. The relatively larger contribu-
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tion from Psw to the total execution time under release consistency results in a higherETR for

MP3D. For LU and Ocean, a combination of a relatively largerPsw and a longer read stall time

increasesETR. Surprisingly, theETR slightly decreases for Water when release consistency is

applied. This is caused by slightly shorterSsw andPsw under release consistency as compared to

under sequential consistency.

The results presented in this section show that release consistency hides all write penalty for

both hardware-only and software-only directory protocols. As expected, the execution time ratio

between software-only and hardware-only directory protocols increases for three of the applica-

tion when release consistency is applied. However, for the fourth application, Water, which is an

application with high computation-to-communication ratio, theETR slightly decreases when

release consistency is applied.

5.4  Effects of Block Size Variations

As we discussed in the introduction, larger block sizes has a potential to reduce the read stall time

and at the same time reduce the protocol execution overhead. To understand whether this intuition

is true and also to understand how the block size choice impacts theETR between software-only

and hardware-only directory protocols, we simulated block sizes of 16, 32, 64, 128, and 256

bytes. The resulting execution times are shown in Figure 8, where HW-X and SW-X denotes the

hardware-only and the software-only directory protocols, respectively, and X is the block size in

bytes. All execution times are normalized to the execution time for the hardware-only directory

protocol with a block size of 64 bytes, i.e., HW-64.

We start by looking at the execution times for the hardware-only directory protocol. For three

of the applications (Water, LU, and MP3D) we observe a constant decrease of the execution time

as the block size increases from 16 bytes up to 256 bytes. However, remember that we do not

model contention in the interconnection network, and thus, the results are biased towards larger

block sizes. If contention were modelled, we expect that the best block size choice should be less

than 256 bytes. For Ocean the best block size, as indicated by our results, seems to be 64 bytes.

Larger block sizes increase the execution time as a result of false sharing [11].

By looking at the execution times for the software-only directory protocol, similar effects as

for the hardware-only protocol can be observed but they are more pronounced. For two of the

applications (Water and MP3D) the execution time decreases more rapidly than for the hardware-

only directory protocol as the block size increases from 16 bytes to 256 bytes. For LU, the execu-

Table 5: Execution time ratios between software-only and hardware-only directory
protocols under sequential consistency and release consistency.

Water LU Ocean MP3D

ETR = Esw(SW)/Ehw(HW) 1.16 1.37 1.43 1.76

ETR = Esw(SW-RC)/Ehw(HW-RC) 1.13 1.50 1.52 1.92
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tion time dramatically decreases up to a block size of 128 bytes, and then it increases slightly

again. Finally, for Ocean, we see a steep decrease in execution time for increasing block sizes up

to 64 bytes, and then the execution time increases rapidly as a result of false sharing. As expected,

we find by looking at the results in Figure 8 that the protocol execution overhead decreases with

increasing block sizes for all applications except for Ocean, wherePsw slightly increases for 128

bytes and 256 bytes blocks. Intuitively,Psw decreases as a result of fewer coherence interrupts.

In contrast to the execution time variations between different block sizes for the hardware-

only directory protocol, the execution time variations are much more dramatic for the software-

only directory protocol. In other words, the performance of the software-only directory protocol is

more sensitive to the block size choice than the hardware-only directory protocol performance is.

The ratios between the execution times for the worst block size choice and for the best block size

choice are 1.25, 1.74, 1.19, and 1.80 for Water, LU, Ocean, and MP3D, respectively, for the hard-

ware-only directory protocol. The corresponding ratios for the software-only directory protocol

are 1.34, 3.33, 1.41, and 2.11, which indicates the higher sensitivity to the block size choice.

The resulting execution time ratios between software-only and hardware-only directory proto-

cols for the various block sizes are summarized in Table 6. Since the execution time varies rela-

tively more for the software-only than for the hardware-only directory protocol, theETR values

also vary. For Water and MP3D, theETR decreases as the block size increases, i.e., the execution

time decreases faster for the software-only than for the hardware-only directory protocol for

increasing block sizes. For LU, theETR also follows the variations in the software-only directory
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Figure 8: Normalized execution times of the applications for 16, 32, 64, 128, and 256 bytes blocks.
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protocol execution, i.e., theETR decreases for block sizes up to 128 bytes and then increases

slightly for 256 bytes blocks. Finally, for Ocean, theETR decreases up to 64 bytes block, and then

starts to increase again.

6  Discussion and Generalizations

In this study we have only considered read-shared prefetching, i.e., the block is prefetched in a

shared mode. An alternative is to allow read-exclusive prefetching [21], i.e., when a block is

prefetched, it is obtained in an exclusive mode. A successful read-exclusive prefetch not only

reduces the read stall time, possibly to zero, but also removes the coherence actions associated

with a separate ownership acquisition. Thus, the total number of coherence requests is expected to

decrease when read-exclusive prefetching is used, and as a result, the protocol execution overhead

is also expected to decrease. Our experience from Section 5.2 indicates that techniques reducing

the protocol execution overhead is expected to decrease the execution time ratio between soft-

ware-only and hardware-only directory protocols. Therefore, we expect software-only directory

protocols to be more competitive with hardware-only directory protocols when read-exclusive

prefetching is used.

In Section 5.1, we found rather small gains of adaptive sequential prefetching under the soft-

ware-only directory protocol. Since adaptive sequential prefetching exploits spatial locality, and

in Section 5.4 we showed that with 64 bytes blocks we exploit most of the spatial locality in the

applications, the gains are limited. Adaptive sequential prefetching also suffers from a too low

prefetch efficiency to be really effective in a software-only directory protocol. Therefore, we

expect software-controlled prefetching schemes [3, 19, 21, 22] to have a larger potential to

increase the performance of software-only directory protocols since they can exploit knowledge

about the application behavior.

We have also studied a stride prefetching scheme [9] as an alternative to adaptive sequential

prefetching. Since stride prefetching is more selective than adaptive sequential prefetching when

issuing prefetches, we believed that stride prefetching should be better than adaptive sequential

prefetching for a software-only directory protocol. Unfortunately, our results indicate that stride

prefetching either issues too few prefetches to reduce the read stall time or when the read stall

Table 6: Execution time ratios between the software-only and the hardware-only
directory protocols for block sizes of 16, 32, 64, 128, and 256 bytes.

Water LU Ocean MP3D

ETR = E(SW-16)/E(HW-16) 1.24 2.36 1.69 1.92

ETR = E(SW-32)/E(HW-32) 1.19 1.72 1.64 1.86

ETR = E(SW-64)/E(HW-64) 1.16 1.37 1.43 1.76

ETR = E(SW-128)/E(HW-128) 1.15 1.22 1.61 1.70

ETR = E(SW-256)/E(HW-256) 1.15 1.26 1.50 1.65
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time actually is reduced, the protocol execution overhead has increased to the same levels as for

adaptive sequential prefetching. This is not surprising since the results in [9] show that the most

common stride is one, and then stride and adaptive sequential prefetching behave similarly in

terms of read stall time reduction.

Multithreading is a latency tolerating technique used in, e.g., the MIT Alewife [1]. It has been

shown to be effective in hiding processor stall times for accesses that require global actions by

switching to another thread of computation [16]. However, since multiple threads run on the same

processor, the number of global actions originating from each processor is likely to increase. As a

result, the protocol execution overhead in a software-only directory protocol is expected to

increase. Therefore, building on our experience from Section 5.1, we expect the execution time

ratio between software-only and hardware-only directory protocol to increase when multithread-

ing is used.

As we have seen is the number of coherence interrupts on a processor a critical parameter in

software-only directory protocols. A way to reduce the number of coherence interrupts for each

processor would be to arrange the processors in clusters. Thus, coherence actions are only needed

for accesses to blocks allocated in other clusters; within each cluster a snoopy cache protocol can

be used. A simple back-on-the-envelope calculation give us the expected number of coherence

interrupts for each processor. Assume that we have P processors organized in K clusters and each

processor generates M misses evenly distributed over the clusters. Thus the total number of

misses in the system is M*P. For each cluster M*P/K misses can be served locally, thus totally

M*P*(K-1)/K misses require service in another cluster. Assuming that each processor services

equally many requests, it turns out that each processor responds to (M*P*(K-1)/K)/P = M*(K-1)/

K misses. Consider for example a system with 16 processors. If each cluster only has one proces-

sor, each processor has to respond to M*15/16 misses. On the other hand, if the processors are

organized in four clusters each processor only has to respond to M*3/4 misses, i.e., about 19%

fewer misses for each processor. Therefore, we believe that software-only directory protocols can

be an interesting design alternative for cluster-based multiprocessors.

7  Conclusions

In both software-only directory protocols, i.e., protocols where the directory management is done

by software handlers executed on the compute processor, and hardware-only directory protocols,

performance is often limited by processor stall time due to memory accesses. In addition to these

stall times, the total execution time for a software-only directory protocol might be prolonged due

protocol execution overhead resulting from the handler invocations. To cope with these latencies,

many latency tolerating and reducing techniques have been proposed and evaluated in the context

of hardware-only directory protocols. However, the effectiveness of such techniques in the con-

text of software-only directory protocols has been unexplored.
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In this study we have evaluated how the relative performance between software-only and

hardware-only directory protocols is affected when different latency tolerating and reducing tech-

niques are applied. The techniques can be divided into three classes depending on how they

impact the protocol execution overhead in software-only directory protocols; a technique either

increases, decreases, or does not affect the protocol execution overhead. As representatives for

the three classes we have chosen adaptive sequential prefetching, a migratory optimization tech-

nique, and finally, release consistency as techniques that increase, decrease, and do not affect the

protocol execution overhead, respectively.

Based on architectural simulations we have found that software-only directory protocols are

more sensitive to useless prefetches than hardware-only directory protocols are. Each useless

prefetch, i.e., a prefetch that fetches a block that is evicted from cache before the processor

accesses it, incurs protocol execution overhead in the node where the memory block is allocated

which potentially prolongs the total execution time. Our results show that even though adaptive

sequential prefetching reduces the read stall time by between 2% and 34% in a software-only

directory protocol, the execution time is prolonged by between 3% and 13% mainly due to too

many useless prefetches. Therefore, larger attention must be paid to the prefetch efficiency when

choosing a prefetch scheme for a software-only than for a hardware-only directory protocol.

In contrast, software-only directory protocols generally gain relatively more than hardware-

only directory protocols when techniques that reduce the number of coherence actions are

applied. This fact was confirmed both with the migratory optimization technique and when the

block size was varied. Further, software-only directory protocols is more sensitive to the choice of

the block size than hardware-only directory protocols are. As seen from a programmer’s point of

view, software-only directory protocols suffer more than hardware-only directory protocols when

the best block size for an application does not match the block size of the cache.

Release consistency, a technique which does not affect the protocol execution overhead, man-

ages to hide all write stall time for both software-only and hardware-only directory protocols.

However, since release consistency does not reduce the protocol execution overhead, it becomes a

relatively larger part of the total execution time. For three of our applications, this fact results in a

higher execution time ratio between software-only and hardware-only directory protocols when

release consistency is applied.

Overall, this study shows that the efficiency of a latency tolerating technique not only depends

on how well it tolerates the latency as seen by the local node, but also on how it interacts with the

node where a memory block is allocated. Therefore, more care has to be taken when choosing an

appropriate latency tolerating and reducing technique for software-only directory protocols than

needed for hardware-only directory protocols.
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