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Abstract

In shared-memory multiprocessors, caches are attached to the processors in order to
reduce the memory access latency. To keep the memory consistent, a cache coherence
protocol is needed. A well known approach is to record which caches have copies of a
memory block in a directory and only notify the caches having a copy when a proces-
sor modifies the block. Such a protocol is called a directory-based cache coherence
protocol. This thesis, which is a summary of seven papers, identifies three problems in
a directory-based protocol, and evaluates implementation and performance aspects of
some design alternatives. The evaluation methodology is based on program-driven
simulation.

The write-invalidate policy, which is used in the baseline protocol, forces all other
copies of a block to be invalidated when a processor modifies the block. This leads to
a cache miss each time a processor accesses an invalidated block. To reduce the num-
ber of cache misses, a competitive-update policy is proposed in this thesis. The com-
petitive-update policy is shown to reduce both the read stall and execution times as
compared to write-invalidate under a relaxed memory consistency model. However,
update-based policies need more buffering and hardware support in the caches.

In the baseline protocol, the implementation cost of the directory is proportional to
the number of caches. To reduce this cost, an alternative directory organization is pro-
posed which distributes the directory information among the caches sharing the same
memory block. To achieve a low write latency, the caches sharing a block are orga-
nized in a tree. The caches are linked into the tree in parallel with application execu-
tion to achieve a low read latency.

The hardware-implemented directory controller in the baseline protocol may lead
to high design complexity and implementation cost. This thesis evaluates a design
alternative where the controller is implemented using software handlers executed on
the compute processor. By using efficient strategies and proper architectural support,
this design alternative is shown to be competitive with the baseline protocol. How-
ever, the performance of this alternative is more sensitive to other design choices, e.g.,
block size and latency tolerating techniques, than the baseline protocol.
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1 Introduction

Parallelism is a way to meet the ever increasing demand for computational power. One approach
to achieve higher performance is to connect several processors together in a multiprocessor. In a
shared-memory multiprocessor, all memory in the machine is presented to the programmer as one
single memory unit. However, even though the memory often is physically distributed over sev-
eral memory modules, a memory access takes a significant amount of time to complete, referred
to as the memory access latency. To reduce this latency, caches are attached to each processor in
order to bring the data closer to the processors. Since caches allow multiple copies of the same
datum to be present in the machine, a mechanism is required to ensure a coherent view of the

memory. This mechanism is referred to as the cache coherence protocol [24].

Given that there exist several copies of a datum and one processor wants to modify the datum,
the cache coherence protocol is responsible for notifying all other caches having copies where to
obtain the new value. Therefore, the protocol must handle two problems. The first is how to notify
the other caches of a new value. The second is how to locate the caches to be notified. In this the-
sis we consider a protocol, that is similar to the one implemented in the Stanford DASH multipro-
cessor [20] and constitutes our baseline protocol, which solves the two problems above as
follows. When a processor modifies a datum, the protocol notifies all other caches having copies
of this datum by invalidating these copies. In order to locate which copies to invalidate, a direc-
tory records which caches have a copy of a datum. Such a protocol is called a directory-based
cache coherence protocol [2, 5]. For each memory block, the directory has one bit vector with as
many bits as there are caches in the system. Associated with the directory is a hardware imple-

mented directory controller which is responsible for managing the directory.

This thesis, which is a summary of seven papers referred to as I-VII, addresses three prob-
lems with the above protocol, and evaluates performance and implementation aspects of some
design alternatives for it. In the performance evaluations, the baseline protocol is used as a refer-
ence protocol. The first problem arises when a processor wants to access an earlier invalidated
datum. Then, it has to fetch a fresh copy which results in a long access latency. An alternative is to
update the other copies with the new value upon processor writes resulting in shorter read access
latencies. In I and II, which are summarized in Section 2, this design alternative is evaluated. The
second problem concerns the implementation cost of the directory, which increases proportionally
with the number of caches. To reduce this cost, a novel directory organization is proposed and
evaluated in Section 3, which summarizes III and IV. The third problem is related to the hard-
ware implemented directory controller; a large design effort is required in order to engineer it cor-
rectly. By migrating the directory controller functionality to software, the hardware design effort
can be reduced. Section 4, which summarizes V, VI, and VII, addresses the issues involved when

designing a software implemented directory controller.



2 Coherence Policy Alternatives in Shared-Memory Multiprocessors

When multiple caches have copies of the same datum and one processor modifies it, the coher-
ence policy [24] defines how to notify the other caches of the modification. In the rest of the the-
sis, I will use the term block instead of datum, since a block which contains multiple data is the
unit that the cache coherence protocol handles. The baseline protocol uses a write-invalidate pol-
icy [13], which forces all other copies of the block to be invalidated upon a processor write,
resulting in an exclusive copy of this block in the cache of the writing processor. Unfortunately,
when a processor accesses an invalidated block it encounters a cache miss, known as a coherence
miss. All misses including the coherence misses have a long read miss latency. The main motiva-
tion in I and II is to reduce the read stall time, which is the product of the total number of misses
and the average read miss latency.

2.1 Performance of the Write-Update Policy

Under the write-update policy [21], the total number of cache misses is reduced since coherence
misses are eliminated; upon a processor write, all copies of a block are updated. Unfortunately,
the write-update policy generates more network traffic than the write-invalidate policy. One of the
objectives in I is to evaluate if the write-update policy actually can reduce the read stall time as
compared to the write-invalidate policy despite the larger amount of network traffic. This issue
has been addressed earlier in the context of bus-based multiprocessors [10, 11] but not for multi-

processors with a general interconnection network and a directory-based protocol.

Using program-driven simulations of a detailed multiprocessor model [3], I find in I that for
two of four studied applications, the write-update policy reduced the read stall time significantly;
up to two thirds in the best case, as compared to the baseline protocol. Unfortunately, for the other
two applications the read stall time was longer under the write-update policy than the write-inval-
idate policy; in the worst case almost five times longer. For these two applications, the write-
update policy generates between eight and ten times as much network traffic as the write-invali-
date policy.

There are mainly two reasons why the write-update policy generates more traffic than the
write-invalidate policy [9]. First, if one processor writes several times to the same block with no
intervening access by another processor, the overhead for all updates but the last one is unneces-
sary. Second, a block may by present in a cache and continue to be updated even though it is no
longer accessed by the processor. This higher traffic causes contention in the network which
increases the average miss latency for the remaining read misses, and may result in a longer read

stall time for the write-update policy than for the write-invalidate policy.

2.2 The Competitive-Update Policy

To cope with the high communication demand under the write-update policy but still benefit from

a low cache miss rate, a technique called competitive snooping has been proposed in the context



of bus-based multiprocessors [19]. The basic idea is to only update those copies that are regularly
accessed by the processors. When a copy of a block has been updated a predefined number of

times with no intervening local processor access, the block is invalidated.

Based on the idea of competitive snooping, I propose in I a competitive-update policy. While
competitive snooping is defined in the context of a bus-based system, the competitive-update pol-
icy is applicable to so called CC-NUMA multiprocessors with a directory-based cache coherence
protocol. In addition to updating the cached copies, competitive-update offers a big advantage for
CC-NUMA multiprocessors as follows. In CC-NUMA multiprocessors under the write-invalidate
policy, a read miss initiates a request for a fresh copy from memory. The memory needs to for-
ward the request to the cache with the exclusive copy, which updates the memory. Then, the
memory supplies a fresh copy to the requesting cache. Under the competitive-update policy, the
memory is kept up-to-date and can supply a fresh copy at once as long as at least two caches have

a copy of the block, which results in a significantly lower read latency.

To implement the competitive-update policy, a counter is associated with each block frame in
the cache. When the local processor accesses a block, the counter is set to a predefined threshold.
For each update of the block by another processor, the counter is decremented. When the counter

reaches zero, the block is invalidated and the updates to it cease.

Regarding performance, I show that the competitive-update policy reduces the read stall times
as compared to the write-invalidate and the write-update policies for the four applications that we
use. However, the network traffic for the competitive-update policy is still higher, between 25%
and 85%, than for the write-invalidate policy. I evaluate various thresholds and find that four
establishes a good trade-off between miss rate reduction and network traffic for the studied appli-

cations.

The total execution time of an application depends not only on the read stall time but also on
the write latency. The write latency is the time it takes to complete one write request, i.e., to inval-
idate or update all other copies upon a processor write. A write request to a block that is exclusive
in the local cache can complete locally, resulting in a short write latency. By contrast, the write
latency is longer if other copies need to be invalidated or updated. When a processor writes sev-
eral times to a block without any intervening access by another processor to the same block, only
the first write incurs a long write latency for the write-invalidate policy while succeeding writes
can complete locally. By contrast, for the write-update policy, all writes encounter the longer

write latency to update remote copies.

In a system where the processors stall on writes until they have completed, the write latency
can contribute significantly to the total execution time. To reduce the execution time, some
researchers have proposed techniques that allow the processors to continue their program execu-
tion without waiting for writes to complete [1, 8, 12]. As a result, the write latency can be over-

lapped with both computation and other latencies, e.g., read miss latency.



To allow the processor to continue its execution without waiting for a write to complete, we
need to buffer write requests. Another issue examined in I is to quantify how much buffer space
update-based policies need as compared to the write-invalidate policy. While only a few buffer
entries is enough for the write-invalidate policy, sixteen entries seems more reasonable for the
update-based policies. Further, the results in I also show that while the write-invalidate policy
only needs support for one global pending invalidation request in the cache, update-based policies

need support for multiple pending updates to hide the write latency effectively.

2.3 An Adaptive Update-Based Protocol

Even though the competitive-update policy both has lower read stall time and execution time for
the applications studied, it is suboptimal for applications with migratory data objects [14]. Migra-
tory data objects, which are not uncommon in parallel programs, are accessed by only one proces-
sor at the time, usually in a read-modify-write manner, but by many processors in the long run.
Unfortunately, this behavior generates unnecessary traffic for the competitive-update policy in the
following way. Consider a situation where N processors read and modify a block in a circular
fashion and the competitive threshold 7 is smaller than N-/. When processor i has modified the
block, N-1 other processors read and modify the block before processor i reads it again. When
processor i reads the block it has been updated N-1 times, but since 7<N-1, it has also been inval-
idated for processor i. As a result, the updates to processor i are useless and only generate unnec-

essary network traffic.

The objective in II is to reduce the unnecessary traffic generated for migratory data blocks
under the competitive-update policy by using the migratory detection mechanism proposed in
[25] in the context of the write-invalidate policy. Blocks detected as migratory are handled differ-
ently than other blocks; instead of a read miss request followed by an invalidation request, the
read miss and the invalidation requests are merged resulting in only one request, a read-exclusive

request.

In II, I modify the migratory detection mechanism from [25] to detect migratory data blocks
under an update-based coherence policy. The modified detection mechanism works as follows.
When a processor wants to modify a block, updates are sent to all other caches with a copy. How-
ever, these updates are tagged to indicate that the block potentially is migratory. Each cache that
receives a tagged update decides locally whether it can agree that the block is migratory or not. If
all caches agree that the block is migratory, the block is deemed migratory and is handled with

read-exclusive requests as proposed in [25].

For one application, I detected a problem with the detection mechanism. When two processors
share the same block but read and write different variables in it, referred to in the literature as
false sharing, the detection mechanism classifies the block as migratory. However, in this situa-
tion it turns out to be better to resort to the competitive-update policy. Therefore, the detection

mechanism is extended to only classify a block as migratory if it has migrated among at least
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three caches. Further, to reclassify a block when it stops to be migratory, a mechanism is included
which detects when a block starts to be read-only instead of migratory.

In II, a performance evaluation of an adaptive update-based protocol with the modified migra-
tory detection mechanism incorporated is carried out. The results show that the adaptive protocol
can significantly reduce the cache miss rate by up to 71% and the network traffic by up to 26% as

compared to a write-invalidate protocol.

3 The Scalable Tree Protocol — An Alternative Directory Organization

In the baseline protocol the directory is implemented with bit vectors [4]. One bit vector is associ-
ated with each memory block and each bit vector is N bits long, given that the system has N
caches. Such a directory is called a full-map directory. Unfortunately, the implementation cost of
the directory becomes very high for large-scale systems since the length of the bit vectors
increases proportionally with the number of caches. In Section 3.1, I discuss two alternative direc-
tory organizations, and then in Section 3.2, evaluate the implementation cost and performance of
the different organizations.

3.1 A Novel Directory Organization

To reduce the cost of the directory, one possibility is to distribute the directory. One such proposal
is the Scalable Coherent Interface (SCI), which is an approved IEEE standard [18]. In the SCI, the
caches sharing the same block are organized in a double-linked list. Unfortunately, the time it
takes to traverse and invalidate or update the list of caches upon a processor write is O(n), where
n is the number of caches in the list, i.e., the write latency is proportional to the number of caches

sharing the block. If many caches share the same block, the write latency can become prohibitive.

In III, I propose a new directory-based cache coherence protocol, called Scalable Tree Proto-
col (STP), with an alternative directory organization. When designing the protocol, I followed
two guidelines; the directory should have an organization with a low implementation cost, i.e., a
low memory overhead, and coherence actions must be handled efficiently. To achieve a low
implementation cost, the directory is distributed among the caches as it is in the SCI. In contrast
to the SCI, however, the caches sharing the same block are organized in a tree structure instead of
a linear list. By organizing the caches in a tree, the write latency becomes O(log n) instead of
O(n), where n is the number of caches in the tree.

To achieve low read latencies, data is supplied from memory for non-exclusive blocks. Fur-
ther, linking the cache into the tree is done after the cache has received data and in parallel with
computation. The caches are linked into the tree at the leaf-level of the tree, and each level is
filled before caches are linked into a new level. Thus, a balanced tree is obtained and a logarith-
mic write latency is achieved. When a cache does a block replacement, an important issue to
address in a tree-based protocol is how to maintain a balanced tree, even if the cache doing the

replacement is in the middle of the tree. I solve the problem by moving a cache from the leaf-level
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in the tree to the place in the tree where the cache doing the block replacement resides, thus a log-

arithmic write latency is always obtained.

3.2 Evaluation of Different Directory Organizations
Although the STP is a promising cache coherence approach for large-scale multiprocessors, it is
important to evaluate its implementation cost and performance as compared to the SCI and the

baseline protocol. The implementation cost is evaluated in III and the performance in IV.

I show in III, that the implementation cost of the STP is three pointers of length log, N bits
for each memory block and three plus K pointers, also of length log, N bits, for each cache block,
where N is the number of caches in the system and K is the fan-out in the tree. Thus, the STP has
significantly lower implementation cost than a full-map protocol. The SCI meets the goal of a low
implementation cost for the directory since one pointer of size log, N bits, where N is the number
of caches in the system, is associated with each memory block. In addition, the SCI associates two
pointers of size log, N bits with each cache block in order to build the double-linked list. As a
result, the SCI has slightly lower implementation cost than the STP.

The performance results in IV show that the read stall time is the same for all three directory
organizations. The write latency for the STP and the SCI is competitive with the write latency for
the full-map protocol when only a few processors share the same block. However, when many
processors share a block, the SCI suffers from long write latencies while the STP is still competi-
tive with the full-map protocol. In IV, I do not evaluate the impact of block replacements on the
performance. Since replacements take more time in the STP than the other two protocols, the STP

is expected to suffer more than the others if replacement misses dominate over coherence misses.

4 Design and Performance of a Software-Only Directory Protocol

In the baseline protocol, a directory controller implemented in hardware manages the directory.
However, the complexity of a hardware implemented controller requires a large design effort to
engineer it correctly, leading to a high implementation cost. In addition, a hardware implemented
controller does not provide any flexibility in its design. To address these issues, some research
projects have suggested to migrate the controller functionality from hardware to software [6, 16,
17, 23]. While these proposals only have migrated parts of the directory controller to software or
have included a special protocol processor, V-VII evaluate a design alternative where the control-
ler functionality is implemented by software handlers executed on the compute processor and the
directory is allocated in main memory. Such a protocol is referred to as a software-only directory
protocol [6]. A software-only directory protocol has lower performance than the baseline proto-

col, but V-VII propose several ways to increase the performance of such protocols.
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4.1 Basic Properties of Software-Only Directory Protocols

To build intuition into the performance problems associated with software-only directory proto-
cols, I describe how a read miss to a memory block that is exclusive in one processor’s cache is
handled. The protocol actions and latencies involved for a read miss to an exclusive block are
shown in Figure 1. When a processor experiences a cache miss, a miss request is sent over the
network to the node where the block is allocated (1). When the miss request arrives at the mem-
ory, the directory controller checks whether the memory has an up-to-date copy (2). In this sce-
nario, the block is exclusive in another cache, so the controller sends a write-back request to the
cache with the exclusive copy (3). The cache with the exclusive copy sends a fresh copy to the
memory (4 and 5). When the block is written back to memory, the directory controller updates the
directory (6) and forwards a copy to the requesting cache (7). Finally, the requesting cache loads
the block and the processor continues its execution (8). As a result, a read miss incurs the latency
of four network hops (7,,,,) plus the latency of two interactions with the directory controller (7,,;

and T,,») plus the time to retrieve the block from the remote cache (7).

@©® @

P+C M eo e P+C M so e P+C M

ONG, @ A |® L@

Interconnection network

Coherence actions of a read miss

| time -
[
OO, ® @6 @
(2 - (2 - {242 —
* Tnet Tswl Tnet TC Tnet Tsw2 Tnet *
Read miss Timing of a read miss Load block

Figure 1: Coherence actions and the timing of a read miss to an exclusive memory block.

In a software-only directory protocol, each interaction with the directory controller causes an
interrupt on the compute processor. In V, I show that these interrupts can have a devastating effect
on the performance since the time it takes to execute software handlers, i.e., T§,,; and T, is
included in the memory access latency of a read miss or write request. If the number of handler
invocations is reduced or if they are handled in parallel with the message transfer over the net-
work, T,,; and Ty, » can be removed from the memory access latency. Among the objectives in V
and VI is to find out whether it is possible to reduce, remove, or hide T,,,; and T, , from the read

or write latency seen by the requesting processor.
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In V, I describe the basic functionality of a processor node to enable software handler execu-
tion on the compute processors. This functionality includes a fast mechanism for switching from
execution of application code to software handler execution, buffering of requests from other
nodes that require handler invocations, e.g., read miss and write requests, buffering of software
handler initiated messages such as write acknowledgments, and mechanisms to ensure forward

progress of the application program.

4.2 Efficient Handling of Read Misses and Architectural Support in the Processor Node

In V, a strategy is proposed that removes or hides 7,,; and T, from the read miss latency. This
strategy includes forwarding of requests to blocks that are exclusive without handler invocation,
and the ability to supply data to the requesting cache before interrupting the compute processor.
To accomplish this, the hardware needs access to the state of a block, and efficient data transfer
mechanisms so the compute processor can handle the directory at a slower pace in the back-
ground. Using this strategy, the read latency in the software-only directory protocol is shown to be
virtually the same as in the baseline protocol. However, the handler latency is more difficult to
remove from the write latency since a directory lookup must be done in order to know which cop-
ies to send invalidations to. Note that even though the handler latency can be removed from the

memory access latency, it still burdens the compute processor.

In V, read misses to up-to-date blocks stored in the local memory, referred to as local misses,
involve software handler invocations. This is a severe performance limitation since read misses to
for example private data should not incur any software handler invocation. Therefore, one of the
objectives in VI is to remove the handler latency for local misses. I show that handler invocations
can be avoided for local misses by not keeping track of whether the local cache has a copy of a
memory block or not. Instead, the system relies on snooping mechanisms within the processor

node to maintain coherence.

Another objective in VI is to identify the necessary architectural support for software-only
directory protocols. To address this issue, I show in VI a possible organization of a processor
node with support for efficient handling of read misses, i.e., a node supporting the strategies pro-
posed in V and VI. Further, I also identify and discuss several deadlock situations present in soft-
ware-only directory protocols. Even though some situations are unique to software-only directory

protocols, there exists published solutions to these problems.

A third objective in VI is to evaluate the performance effects of caching the directory infor-
mation when a software handler is executed. If there exists locality in the directory accesses,
caching the directory is expected to increase the performance. On the other hand, when a block
with directory information is cached a block needed by the application program may be evicted
from the cache, possibly resulting in a performance loss. The results presented in VI show that
there is little interference between application data and directory data, and that caching the direc-

tory information consistently results in better performance.
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4.3 Effects of Latency Tolerating and Reducing Techniques

In software-only directory protocols, as well as in hardware-based directory protocols such as the
baseline protocol, the performance is often limited by processor stall times resulting from mem-
ory access latencies. To address this problem, techniques to either reduce or tolerate these laten-
cies have been proposed and evaluated in the context of hardware-based directory protocols [1, 7,
8,12, 15,22, 25]. One of the objectives in VII is to evaluate the effectiveness of such techniques

in the context of software-only directory protocols.

For software-only directory protocols, the total execution time is prolonged not only by pro-
cessor stall times, but also by protocol execution overhead resulting from the handler invocations.
Even though T,,; and T, do not affect the memory access latency seen by a requesting proces-
sor, they can still burden the compute processor in the node where a memory block is allocated.
Unfortunately, the results in V indicate that there is very limited possibilities to overlap this proto-
col execution overhead, referred to as p-time, by other processor stall times. As a result, the effec-
tiveness of latency tolerating or reducing techniques in software-only directory protocols depends
on how they impact p-time. They can be divided into three classes depending on whether p-time
increases, decreases, or 1s invariant when a technique is applied. As representatives for the three
classes I study adaptive sequential prefetching [7], a migratory optimization technique [25], and

release consistency [12], respectively.

Adaptive sequential prefetching, which has been shown effective for the baseline protocol [7],
uses special prefetch requests to bring a block into the cache prior to its use, thus reducing the
read stall time. Unfortunately, some prefetches are useless and do not reduce the read stall time,
e.g., because the prediction of which block to prefetch is not perfect. The results presented in VII
indicate that this can be a severe problem since each useless prefetch increases p-time without
reducing the read stall time. In VII, I find that adaptive sequential prefetching often degrades the
performance of software-only directory protocols due to a too high number of useless prefetches,
which increases p-time so much that the read stall time reduction is outweighed. Therefore, larger
attention must be turned to the number useless prefetches when choosing a prefetch scheme for
software-only directory protocols than for a hardware-based protocol. An alternative to prefetch-
ing is to increase the block size. The results in VII indicate that a larger block size has a potential
to reduce both the read stall time and p-time at the same time. However, the performance of soft-

ware-only directory protocols is more sensitive to the block size choice than the baseline protocol.

The migratory optimization technique reduces the number global write requests, and thus
reduces both p-time and the write stall time. As a result, the total execution time can be reduced
relatively more for software-only directory protocols than for the baseline protocol. In VII, I show
that the performance of the software-only directory protocol increases as compared to the baseline
protocol for three of four applications. In general, software-only directory protocols gain rela-
tively more than the baseline protocol when techniques that reduce p-time are applied. This fact is

confirmed both with the migratory optimization technique and when the block size is varied.
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Finally, the results in VII show that release consistency manages to hide all write latency for
both the software-only directory and the baseline protocols, virtually without affecting the proto-
col execution overhead. However, since the protocol execution overhead is unaffected, it becomes
a relatively larger part of the total execution time under release consistency. As a result, for three
of our applications, the execution time ratio between the software-only directory and the baseline
protocols increases when release consistency is applied. In total, VII shows that the efficiency of
a latency tolerating technique not only depends on how well it attacks the latency as seen by the
requesting processor, but also on how it interacts with the node where a memory block is allo-
cated. As a result, more attention is needed when choosing the appropriate latency tolerating tech-

nique for software-only directory protocols than for the baseline protocol.
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